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Parameters in a complex material model for powder compaction, based on a continuum mechanics ap-
proach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and
stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate com-
pleteness and limitations of the material model. Finite element simulations with varied material parameters
are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a
simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to
anisotropy and the plastic strain evolution angle have a small impact on the final result.
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1. Introduction

Classic cutting inserts are manufactured by compacting hard
metal powder blends into a predefined shape followed by sintering
to full density and posttreatment. When designing a new cutting
insert, the shape of the pressing tool is often an issue, since the
density after compaction and therefore also the shrinkage during
sintering is uneven and hard to predict. By making simulations of
the manufacturing process based on the finite element (FE)
method, the shape of an insert after compaction and sintering can
be predicted and used for design of pressing tools (Ref 1).

Modeling of powder compaction can roughly by divided
into two types, describing either pressing up to intermediate or
up to high densities. The first type can be described as a
micromechanical approach using analytical (Ref 2) or numer-
ical methods, such as the discrete element method (DEM) (Ref
3-5). In (Ref 4, 5), DEM simulations are compared with
experiments and it was concluded that the numerical results are
accurate up to material densities being approximately 50–60%
of a fully compacted insert, which evidently is not sufficient for
simulation of the manufacturing process.

The reason for failure of the micromechanical models at
higher densities is that such models are based on the
mechanical behavior at particle-particle (powder-powder) con-
tacts. Out of necessity, it is most often assumed that each
powder contact is mechanically independent of the neighboring
contacts. At higher densities, such an assumption is no longer
accurate. It should be noted that research has been conducted in

order to include the effect from neighboring contacts into
micromechanical modeling of powder compaction (Ref 6, 7).

At the moment, however, DEM modeling at high densities is
an undeveloped research field where large computer capacity is
needed for simulation of whole insert geometries. Consequently,
some type of macroscopic approach has to be relied upon in this
situation in order to describe the powder compaction process
completely in an accurate (and practical) manner.

In doing so, powder compaction to high density ismostly treated
phenomenological assuming a porous solid and using, for example,
a Gurson model (Ref 8), a CamClay model (Ref 9) or a Drucker-
Prager CAP model (Ref 10). Here, a material model that can be
described as an extendedDrucker-Prager CAPmodel, suggested by
(Ref 11), with material parameters presented in (Ref 12) is
scrutinized. The model is complex with many material parameters,
whichmakes it very hard to define a complete set of parameters for a
specific powder blend. Previous research presented in (Ref 12) on
inversemodelingwith an instrumented die (Ref 13),where the force
against a die wall and press forces was compared with FE-
simulations, shows that either a less complex material model or
more extensive tests, or a combination of both, are needed to
complete a full material description including characterization.
From this inverse modeling, it was possible to determine a limited
number of material curves and material constants but not nearly
sufficient for completely determining the constitutive behavior.

To better understand which parameters of the material model
(Ref 11) could be possibly disregarded and to suggest further
material characterization tests, sensitivity studies are presently
performed. To some extent, this is performed in (Ref 14), but
there is a need to do this for different kinds of stress fields, i.e.,
more inserts, and recording responses over the whole cutting
insert. In this paper, FE-simulations of a number of real inserts
with totally different geometries are used to perform sensitivity
analysis for the material parameters. The response variables are
density and stress, after compaction or at maximum com-
paction, at 10–20 points over the whole geometry.

2. Material Model

The material model used in this study, presented in (Ref 11)
and used in (Ref 1), (Ref 12) and (Ref 13), is an elastic-plastic

Hjalmar Staf, Department of Solid Mechanics, Royal Institute of
Technology, 10044 Stockholm, Sweden; and Sandvik Coromant AB,
R&D, SE-12680, Stockholm, Sweden; Per Lindskog, Sandvik
Coromant AB, R&D, 12680 Stockholm, Sweden; and Daniel C.
Andersson, Inspecta Sweden AB, Box 30100, 10425 Stockholm,
Sweden; Per-Lennart Larsson, Department of Solid Mechanics,
Royal Institute of Technology, SE-10044, Stockholm, Sweden. Contact
e-mail: plla@kth.se.

JMEPEG (2016) 25:4408–4415 �The Author(s). This article is published with open access at Springerlink.com
DOI: 10.1007/s11665-016-2294-y 1059-9495/$19.00

4408—Volume 25(10) October 2016 Journal of Materials Engineering and Performance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191408313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-016-2294-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-016-2294-y&amp;domain=pdf


model with a yield surface of Drucker-Prager CAP kind. To
determine the yield surface an elliptic cap part fCAP and a
quadratic failure curve ffailure, as a function of relative density d
(density divided by sintered density), the first invariant of the
Cauchy stress tensor rI and the second invariant of the
deviatoric stress tensor rII are defined in Eq 1–5.

The function fCAP and ffailure yields.

f CAP d;rI;rIIð Þ ¼ ffiffiffiffiffiffi

rII
p � 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L� X dð Þð Þ2� L� rIð Þ2
q

ðEq 1Þ

f failure d;rI;rIIð Þ ¼ ffiffiffiffiffiffi

rII
p � c0 dð Þ � c1 dð ÞrI þ c2 dð Þr2

I

� �

ðEq 2Þ

where R, L, X(d) and Y(d) are material parameters and

c0 dð Þ ¼ �Y dð Þ
L2
ffiffi

3
p � L�X dð Þ

R Y dð Þ � 2Lð Þ
L2 þ Y dð Þ Y dð Þ � 2Lð Þ ðEq 3Þ

c1 dð Þ ¼ 2Lc2 dð Þ ðEq 4Þ

c2 dð Þ ¼ �
Y dð Þ
ffiffi

3
p þ L�X dð Þ

R

L2 þ Y dð Þ Y dð Þ � 2Lð Þ ðEq 5Þ

An offset u from the associative flow direction is deter-
mined as a function of the proportion between deviatoric and
volumetric stress Ju defined by

Ju ¼ rii

X dð Þ ðEq 6Þ

Further the material model accounts for anisotropy, described
as the intensity of plastic anisotropy e and resulting in kine-
matic hardening. The back stress j gives kinematic hardening
by, in the yield function, replacing r with r- j. A second-or-
der stretch tensor P defined in (Ref 11) is coaxial with j as
shown in Eq 7, yielding the back stress

j ¼ h eð ÞrI
P0
ffiffiffiffiffiffi

P0
II

p ðEq 7Þ

where P¢ and P¢II are the deviator and second invariant of P,
respectively, h is a scaling function and e is updated based on
the evolution of plastic shear strain, deviatoric plastic work
and volumetric plastic work defined by the linear constants
ca, cd and cv.

The hyperelastic behavior is assumed to be isotropic and
described with density dependent bulk modulus K(d) and
Poisson�s ratio m.

In summary, the material constants and functions are:
L and R are material constants that define the yield surface

as shown in Fig. 1. L is related to hydrostatic compressive
yield. Both are included in the sensitivity study with a small
area of interest due to their high impact.

X(d), Y(d) and C(d) are hydrostatic compressive yield stress,
uniaxial compressive yield stress and shear yield stress, all as a
function of relative density d, shown in Fig. 2. In the sensitivity
study, they are included by changing the magnitude of the curve
with scale factors CX, CY and CC, respectively.

K(d) is the bulk modulus as a function of relative density d,
shown in Fig. 2(a) and included in the sensitivity analysis with
scale factor CK.

u(d) is the plastic strain evolution angle as a function of d,
shown in Fig. 2(e) and included in the sensitivity analysis with
scale factor CFI.

m is Poisson�s ratio and included in the sensitivity study as a
variable PR.

ca, cv and cd are hardening parameters describing how much
plastic shear strain, volumetric plastic work and the deviatoric
plastic work influence intensity of anisotropy e. They are
included in the sensitivity study with variables CA, CVand CD,
but with a higher start value than in (Ref 12), since the
development of e otherwise is too small.

Explicit values on relevant material constants (and material
curves) are summarized in Fig. 1, 2 and Table 1. These values
are pertinent to industrially used hard metal powder materials.

3. Cutting Inserts

Four different cutting insert geometries are simulated: three
are commercially available and one is more theoretical. They
are chosen so that they cover the different stress fields and
density variations that may appear in a green body. In an
attempt to test the material model and to find new ways for
material testing, the theoretical insert is simulated multiaxially,
i.e., compacted from different directions.

Insert 1 has a hole that is perpendicular to the compaction
direction. Since compaction is symmetric from two sides, three
symmetry planes can be assumed; see Fig. 3(a). Insert 2 has amore
simple geometry and a hole that is parallel to the compaction
direction, shown in Fig. 3(b). The compaction is 30% from the top
and 70% from the bottom, and therefore, only two symmetries are
assumed. The third insert is compacted in two steps, first 70% in
one direction and then 30% in the other, and both compaction
directions are perpendicular to the hole as shown in Fig. 3(c). In
contrast to the pressing motion, this geometrical shape is simple.
The last insert, Insert 4, has a shape that is long and thin, similar to
the insert analyzed in (Ref 14), as can be seen in Fig. 3(d).

It should also be mentioned that results for two geometries
investigated previously will also be discussed, i.e., the cylin-
drical die investigated in (Ref 12) and (Ref 13) and also the
insert analyzed in (Ref 14) and discussed above.

4. Finite Element Simulations

Finite element simulations are performed quasi-statically in
the commercial software LS-DYNA (Ref 15), using explicit

Fig. 1 Schematic of the yield surface in the material model (Ref
11) and used in analysis
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integration. 150,000–250,000 one-point tetrahedron elements
that are remeshed during compaction are used to describe the
powder. Problems with shear locking are minimized by
remeshing. The material model discussed above is implemented

in LS-DYNA (Ref 16) and used in all simulations. Pressing
tools are assumed to be rigid and modeled with shell elements,
and contact is described by the Coulomb friction law, with a
frictional coefficient

Fig. 2 Material curves suggested in (Ref 11) and used in the analysis scaled. (a) Elastic bulk modulus K(d). (b) Hydrostatic compression yield
stress X(d). (c) Uniaxial compression yield stress Y(d). (d) Shear yield stress C(d). (e) Flow angle offset u(d). (f) Back stress scale function h(d)
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l ¼ 0:2; ðEq 8Þ

as thoroughly discussed in (Ref 17).
Figure 4 shows the standard von Mises effective stress

re ¼
ffiffiffiffiffiffiffi

3J2
p

; ðEq 9Þ

where J2 is the second deviatoric stress invariant, at maxi-
mum compaction determined from FE-simulations of Insert
1–4 with material parameters from (Ref 12). Figure 5 shows
the corresponding results for the relative density d, density
over sintered density, at maximum compaction. The results in
Fig. 4, 5 indicate that the mechanical behavior of the four in-
serts is quite different and that it is possible to get a fairly
complete picture of the properties of the present constitutive
description from studying these inserts.

Concerning the accuracy of the present numerical approach,
this was investigated in (Ref 1) and (Ref 14), where good
agreement was found. In Table 2, maximum pressing forces
from FE-simulations and corresponding experiments are com-
pared and also here the agreement is good (Insert 3 is, as

described above, a theoretical geometry that is included for
completeness and therefore not tested). Accordingly, these
results give good confidence in the accuracy of the present
numerical approach.

5. Sensitivity Analysis

The material parameters defining the material model
described above are included in the sensitivity analysis.
Material curves are described with a scale factor, i.e., change
in magnitude of material curves is variables in the analysis. For
instance, the bulk modulus K(d), with variable CK, is described
as:

K dð Þnew¼ CK � K dð Þold ðEq 10Þ

Material constants, for example L, are simply a variable in
the sensitivity analysis. The variables are altered with ±15% in
FE-simulations for the sensitivity studies (area of interest). Due
to convergence problems in the simulations, some variables
have a smaller area of interest, as shown in Table 1.

Each insert geometry is analyzed in a separate sensitivity
analysis with two objective functions. One objective function is
the von Mises stress re at maximum compaction determined at
10–20 measuring points (sub-objective functions) and the other
is relative density d determined at the same 10–20 points. The
measuring points are distributed over the whole insert and
tighter in areas with high stress gradient, as shown in Fig. 6.

The sensitivity analysis is performed by using the commer-
cial software LS-OPT (Ref 18) mainly in two steps. In the first
step, FE-simulations with varied material parameters (variables)
are performed and used to build a surrogate model (section 2)
of each objective function. Since this analysis is only slightly
nonlinear in the parameter space and there is some noise due to
remeshing, a linear and 150% oversampled Meta model is used.
Trials with RBF and quadratic Meta models, as discussed in
(Ref 19), show similar results, and therefore, those models
would lead to the same conclusions.

In the second step, the Meta model is used to analyze the
influence of the different variables linked to material parameters
(Table 1). The result is presented by using the Sobol�s total
effect indices (Ref 20), where zero means that the objective
function is completely unaffected by changes of this variable,
and a value of one (100%) means that the objective function is

Table 1 Start, minimum and maximum value for variables included in the sensitivity analysis and how they are linked to
material parameters in (Ref 11)

Variables Material parameter dependence Notation Starting Min Max

CA Influence of plastic shear strain on e ca 0.0174 0.0148 0.02
CV Influence of volumetric plastic work on e cv 0.00087 0.00074 0.001
CD Influence of deviatoric plastic work on e cd 0.00087 0.00074 0.001
PR Poisson�s ratio m 0.37 0.352 0.389
CFI Amplitude for offset from flow direction curve u(d) 0.87 0.74 1
CK Amplitude for bulk modulus curve K(d) 1 0.85 1.15
CC Amplitude for shear yield curve C(d) 0.87 0.74 1
CY Amplitude for uniaxial compressive yield curve Y(d) 1 0.85 1.15
CX Amplitude for hydrostatic compressive yield curve X(d) 1 0.85 1.15
R Yield surface parameter R 1.14 0.97 1.31
L Yield surface parameter L 0.85 0.82 0.9

Fig. 3 Shape after compaction (green body) of inserts included in
sensitivity studies. (a) Insert 1, cross-hole insert. (b) Insert 2, with
hole parallel to compaction direction. (c) Insert 3, compacted multi-
axially perpendicular to hole. (d) Insert 4, thin shaped
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Fig. 4 von Mises effective stress re (MPa) at maximum compaction of Insert 1–4 as described in Fig. 3

Fig. 5 Relative density d (density divided by sintered density) at maximum compaction of Insert 1–4 as described in Fig. 3
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dependent only on this variable. The Sobol index is a higher-
order sensitivity index, taking into account how variables affect
each other, and it should be treated in relative sense within a
particular analysis.

Finally in this context, it should be mentioned that error
estimation is performed in the sensitivity studies by adding a
dummy variable that does not affect the properties in the FE-
simulations. In the same manner as for the real variables, the
Sobol�s total effect index is calculated for the dummy
parameter. In the sensitivity studies, the corresponding index,
i.e., the error estimation, takes on values between 0.2 and 0.6%,
which must be considered satisfactory.

6. Result and Discussion

As mentioned repeatedly, the results discussed below are
pertinent to a material parameter sensitivity study based on the
constitutive description in the previous section (section 2). All

four inserts described in Fig. 3 are included in the sensitivity
study, and corresponding results for other types of inserts,
presented in (Ref 12-14), are also discussed.

First of all, however, it seems appropriate to further
underline the fact that the mechanical behavior of the cutting
inserts studied is different and that it is possible to get a fairly
complete picture of the characteristics of the material model by
studying these inserts. In doing so, the triaxiality factor, defined
as the hydrostatic stress divided by the von Mises effective
stress according to

W ¼ p

re
ðEq 11Þ

where

p ¼ rii ðEq 12Þ

is determined at maximum compaction; see also (Ref 14).
The results are depicted in Fig. 7, and in short, the triaxiality
factor differs considerably between the four inserts ensuring
completeness of the analysis.

The influence or importance of the different material
parameters (and implicitly material curves), with respect to
density d and stress re at maximum compaction, is depicted in
Fig. 8, 9. The results are pertinent to all the previously
discussed inserts (Insert 1–4).

The results indicate that there is a clear difference between
the behavior of Insert 1 that has a hole that is perpendicular to
the compaction direction, and the rest of the inserts. The
relatively large hole in Insert 1 results in large density variation,
and since the powder is pushed past the hole also more shearing
occurs. This leads to a larger influence from the parameters

Table 2 Press force at upper punch determined from
experiments and finite element simulations

Experiment (kN) FE simulation

Press force Insert 1 23 19
Press force Insert 2 24 22
Press force Insert 4 32 32

Insert 3 has not been tested

Fig. 6 Points on Insert 1–4 (a–d) where relative density and von Mises effective stress are recorded
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linked to anisotropy (ca, cv, cd), uniaxial compressive yield Y(d)
and shearing yield C(d). For the rest of the inserts with a more
simple compaction behavior, the hydrostatic compressive yield
X(d) is more important and parameters linked to anisotropy
have a very small influence.

A corresponding sensitivity analysis studying density
and stresses after compaction and unloading was performed
and shows similar results as above for density. For the
stresses, the elastic parameters Poisson�s ratio m and bulk
modulus K(d) are more important, and since unloading is

performed in steps with one tool part at the time, the
hydrostatic yield curve X(d) is less important, and instead,
Y(d), C(d) and u(d) are substantially more influential on
the mechanical behavior. These results are not shown
explicitly for brevity.

The results from a sensitivity analysis where the force
against the wall of an instrumented die is considered, presented
in (Ref 12), show that X(d), L and R have a large influence.
Concerning the stresses at maximum compaction as analyzed in
this paper, the three material parameters with the largest

Fig. 7 Triaxiality factor W at maximum compaction of Insert 1–4 as described in Fig. 3

0.0% 20.0% 40.0% 60.0% 80.0%

L
R

CX
CY
CC
CK

CFI
PR
CD
CV
CA

Sobol index 

Insert 1

Insert 2

Insert 3

Insert 4

Fig. 8 Influence from variables defined in Table 1, related to the
von Mises effective stress re, at maximum compaction of Insert 1–4

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%
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Sobol index 

Insert 1

Insert 2

Insert 3

Insert 4

Fig. 9 Influence from variables defined in Table 1, related to the
relative density d (density divided by sintered density), at maximum
compaction of Insert 1–4
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influence are the same as in (Ref 12). Especially for Insert 4
with a thin shape that in some sense behaves as the
instrumented thin cylinder during compaction, the influence
from the different parameters is very similar. In this context, it
should also be mentioned that the conclusions drawn in (Ref
14) are very close to the corresponding ones from the present
sensitivity study pertinent to Insert 4. This is not a surprise
though as the insert studied in (Ref 14) resembles Insert 4.

Comparing results for stress with results for density
indicates that the influence from the bulk modulus K(d) is
more pronounced for density (higher bulk modulus gives more
plasticity). The multiaxial compacted insert (Insert 3) shows an
even bigger influence from this parameter. This fact is of
interest for future material testing as for instance density
measurements could be added to inverse modeling comple-
menting the results given by the previously discussed instru-
mented die.

Finally the results show that for both stress and density the
influence from the offset angle function u(d) is small. Since the
shape of this function, see Fig. 2, is almost unreasonably
complicated, a more simple shape or removing the curve from
the material model should be taken into consideration. In this
context, it should also be remembered that the offset angle
function u(d) is hard to determine experimentally.

The results mentioned above are important for future
simplification of the material model, and for future tests that,
for instance, could be added to inverse modeling with the
instrumented die (Ref 12). As discussed in Introduction, the
goal is to define a complete set of material parameters for a
certain powder blend. Upcoming research will therefore
examine the possibility to remove or simplify the offset angle
function u(d) and to remove or simplify plastic anisotropy in
the material model at issue here. Since the influence from the
bulk modulus is more pronounced when looking at the density,
density measurements of a green body will also be examined.

7. Conclusions

In the present study, the influence from different material
quantities, on the mechanical response at powder compaction,
is studied. The material model at issue is an extended Drucker-
Prager CAP model, suggested originally by Brandt and Nilsson
(Ref 11). The input to the sensitivity study is determined from
finite element simulations.

The most important conclusions from this study are:

• Material parameters linked to anisotropy are of small
importance for inserts with a simple shape and com-
paction motion.

• The plastic strain evolution angle u(d) has a small influ-
ence on density and stress for all insert shapes.

• The bulk modulus K(d) has a relatively large impact on
the density but not on the stress fields.

To define a complete set of material parameters for different
powder blends, it is suggested to examine the possibility to
remove or simplify the offset angle function u(d) and to remove
or simplify anisotropy in the material model, together with
further material tests. Since the influence from the bulk modulus
is substantial with respect to the density, it is consequently

suggested that density measurements of a green body could be
added to inverse modeling with the instrumented die.
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