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Abstract An increasing number of distributed data-driven
applications are moving into shared public clouds. By shar-
ing resources and operating at scale, public clouds promise
higher utilization and lower costs than private clusters. To
achieve high utilization, however, cloud providers inevitably
allocate virtual machine instances non-contiguously; i.e.,
instances of a given application may end-up in physically dis-
tant machines in the cloud. This allocation strategy can lead
to large differences in average latency between instances.
For a large class of applications, this difference can result
in significant performance degradation, unless care is taken
in how application components are mapped to instances.
In this paper, we propose ClouDiA, a general deployment
advisor that selects application node deployments mini-
mizing either (i) the largest latency between application
nodes, or (ii) the longest critical path among all applica-
tion nodes. ClouDiA employs a number of algorithmic tech-
niques, including mixed-integer programming and constraint
programming techniques, to efficiently search the space of
possible mappings of application nodes to instances. Through
experiments with synthetic and real applications in Amazon
EC2, we show that mean latency is a robust metric to model
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communication cost in these applications and that our search
techniques yield a 15–55 % reduction in time-to-solution or
service response time, without any need for modifying appli-
cation code.
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1 Introduction

With advances in data center and virtualization technology,
more and more distributed data-driven applications, such
as high-performance computing (HPC) applications [24,34,
51,72], web services and portals [28,44,52,60], and even
search engines [6,8], are moving into public clouds [4]. Pub-
lic clouds represent a valuable platform for tenants due to
their incremental scalability, agility, and reliability. Never-
theless, the most fundamental advantage of using public
clouds is cost-effectiveness. Cloud providers manage their
infrastructure at scale and obtain higher utilization by com-
bining resource usages from multiple tenants over time, lead-
ing to cost reductions unattainable by dedicated private clus-
ters.

Typical cloud providers adopt a pay-as-you-go pricing
model in which tenants can allocate and terminate virtual
machine instances at any time and pay only for the machine
hours they use [2,49,66]. Giving tenants such freedom in
allocating and terminating instances, public clouds face new
challenges in choosing the placement of instances on phys-
ical machines. First, they must solve this problem at scale,
and at the same time take into account different tenant needs
regarding latency, bandwidth, or reliability. Second, even if a
fixed goal such as minimizing latency is given, the placement
strategy still needs to take into consideration the possibility

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191407821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-014-0375-9&domain=pdf


634 T. Zou et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.6  1  1.4

C
D

F

Mean Latency[ms]

Fig. 1 Latency heterogeneity in EC2
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Fig. 2 Mean latency stability in EC2

of future instance allocations and terminations, not only for
the current tenant, but also for other tenants who are sharing
the resources.

Given these difficulties, public cloud service providers do
not currently expose instance placement or network topology
information to cloud tenants.1 While these API restrictions
ease application deployment, they may cost significantly in
performance, especially for latency-sensitive applications.
Unlike bandwidth, which can be quantified in the SLA as
a single number, network latency depends on message sizes
and the communication pattern, both of which vary from one
application to another.

In the absence of placement constraints by cloud ten-
ants, cloud providers are free to assign instances to physi-
cal resources non-contiguously; i.e., instances allocated to a
given application may end-up in physically distant machines.
This leads to heterogeneous network connectivity between
instances: Some pairs of instances are better connected than
other pairs in terms of latency, loss rate, or bandwidth.
Figure 1 illustrates this effect. We present the CDF of the
mean pairwise end-to-end latencies among 100 Amazon EC2
large instances (m1.large) in the US East region, obtained by
TCP round-trip times of 1 KB messages. Around 10 % of the
instance pairs exhibit latency above 0.7 ms, while the bottom
10 % are below 0.4 ms. This heterogeneity in network laten-
cies can greatly increase the response time of distributed,
latency-sensitive applications. Figure 2 plots the mean laten-
cies of four representative links over a 10-day experiment,

1 The only exception we know of is the notion of cluster place-
ment groups in Amazon EC2 cluster instances. However, these cluster
instances are much more costly than other types of instances, and only a
limited number of instances can be allocated within a cluster placement
group.

with latency measurements averaged every 2 h. The observed
stability of mean latencies suggests that applications may
obtain better performance by selecting “good” links for com-
munication. In “Appendix 3,” we show that this intuition is
not restricted to Amazon web services: Similar observations
of latency heterogeneity and mean latency stability can be
made in other main public cloud service providers, namely
Google Compute Engine and Rackspace Cloud Server.

This paper examines how developers can carefully tune
the deployment of their distributed applications in public
clouds. At a high level, we make two important observa-
tions: (i) If we carefully choose the mapping from nodes
(components) of distributed applications to instances, we can
potentially prevent badly interconnected pairs of instances
from communicating with each other; (ii) if we over-allocate
instances and terminate instances with bad connectivity, we
can potentially improve application response times. These
two observations motivate our general approach: A cloud
tenant has a target number of components to deploy onto
x virtual machines in the cloud. In our approach, she allo-
cates x instances plus a small number of additional instances
(say x/10). She then carefully selects which of these 1.1 · x
instances to use and how to map her x application compo-
nents to these selected virtual machines. She then terminates
the x/10 over-allocated instances.

Our general approach could also be directly adopted by
a cloud provider—potentially at a price differential—but the
provider would need to widen its API to include latency-
sensitivity information. Since no cloud provider currently
allows this, we take the point of view of the cloud tenant, by
whom our techniques are immediately deployable.

1.1 Contributions of this paper

In this paper, we introduce the problem of deployment advice
in the cloud and instantiate a concrete deployment advisor
called ClouDiA (Cloud Deployment Advisor).

1. ClouDiA works for two large classes of data-driven appli-
cations. The first class, which contains many HPC appli-
cations, is sensitive to the worst-link latency, as this
latency can significantly affect total time-to-solution in
a variety of scientific applications [1,12,22,35]. The
second class, represented by search engines as well as
web services and portals, is sensitive to the longest path
between application nodes, as this cost models the net-
work links with the highest potential impact on appli-
cation response time. ClouDiA takes as input an appli-
cation communication graph and an optimization objec-
tive, automatically allocates instances, measures laten-
cies, and finally outputs an optimized node deployment
plan (Sect. 2). To the best of our knowledge, our method-
ology is the first to address deployment tuning for latency-
sensitive applications in public clouds.
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2. We formally define the two node deployment prob-
lems solved by ClouDiA and prove the hardness of
these problems. The two optimization objectives used
by ClouDiA—largest latency and longest critical path—
model a large class of current distributed cloud applica-
tions that are sensitive to latency (Sect. 3).

3. We present an optimization framework that can solve
these two classes of problems, and explore multiple algo-
rithmic approaches. In addition to lightweight greedy and
randomization techniques, we present different solvers
for the two problems based on mixed-integer and con-
straint programming. We discuss optimizations and
heuristics that allow us to obtain high-quality deployment
plans over the scale of hundreds of instances (Sect. 4).

4. We discuss methods to obtain accurate latency measure-
ments (Sect. 5) and evaluate our optimization framework
with both synthetic and real distributed applications in
Amazon EC2. We observe 15–55 % reduction in time-to-
solution or response times. These benefits come exclu-
sively from optimized deployment plans and require no
changes to the specific application (Sect. 6).

This paper extends and subsumes its earlier conference
version [71]. The substantial additional contribution of this
paper is: (a) the exploration of lightweight algorithmic
approaches to solve the node deployment problem under the
two optimization objectives used by ClouDiA (Sects. 4.3
and 4.5 as well as experimental results in Sect. 6.5). This
paper makes the following further additional contributions:
(b) the exploration of additional metrics to model commu-
nication cost other than mean latency, namely mean latency
plus standard deviation, and latency at the 99th percentile
(Sect. 3.2 and experimental results in Sect. 6.4); (c) a dis-
cussion of overlapped execution of ClouDiA with target
applications (Sect. 2.2); (d) the confirmation of the same
effects of latency heterogeneity and mean latency stabil-
ity in public cloud providers other than Amazon Web Ser-
vices, namely Google Compute Engine and Rackspace Cloud
Server (“Appendix 3”).

We discuss related work in Sect. 7 and then conclude.

2 Tuning for latency-sensitive applications in the cloud

To give a high-level intuition for our approach, we first
describe the classes of applications we target in Sect. 2.1.
We then describe the architecture that ClouDiA uses to sug-
gest deployments for these applications in Sect. 2.2.

2.1 Latency-sensitive applications

We can classify latency-sensitive applications in the cloud
into two broad classes: high-performance computing appli-
cations, for which the main performance goal is time-to-

solution, and service-oriented applications, for which the
main performance goal is response time for service calls.

2.1.1 Goal: time-to-solution

A number of HPC applications simulate natural processes via
long-running, distributed computations. For example, con-
sider the simulation of collective animal movement pub-
lished by Couzin et al. in Nature [20]. In this simulation,
a group of animals, such as a fish school, moves together
in a two-dimensional space. Animals maintain group cohe-
sion by observing each other. In addition, a few animals try
to influence the direction of movement of the whole group,
e.g., because they have seen a predator or a food source. This
simulation can be partitioned among multiple compute nodes
through a spatial partitioning scheme [62]. At every time
step of the simulation, neighboring nodes exchange messages
before proceeding to the next time step. As the end of a time
step is a logical barrier, worst-link latency essentially deter-
mines communication cost [1,12,35,72]. Similar communi-
cation patterns are common in multiple linear algebra compu-
tations [22]. Another example of an HPC application where
time-to-solution is critical is dynamic traffic assignment [64].
Here traffic patterns are extrapolated for a given time period,
say 15 min, based on traffic data collected for the previous
period. Simulation must be faster than real time so that simu-
lation results can generate decisions that will improve traffic
conditions for the next time period. Again, the simulation is
distributed over multiple nodes, and computation is assigned
based on a graph partitioning of the traffic network [64]. In all
of these HPC applications, time-to-solution is dramatically
affected by the latency of the worst link.

2.1.2 Goal: service response time

Web services and portals, as well as search engines, are prime
cloud applications [6,28,60]. For example, consider a web
portal, such as Yahoo! [52] or Amazon [60]. The rendering of
a web page in these portals is the result of tens, or hundreds,
of web service calls [44]. While different portions of the
web page can be constructed independently, there is still a
critical path of service calls that determines the server-side
communication time to respond to a client request. Latencies
in the critical path add-up and can negatively affect end user
response time.

2.2 Architecture of ClouDiA

Figure 3 depicts the architecture of ClouDiA. The dashed line
indicates the boundary between ClouDiA and public cloud
tenants. The tuning methodology followed by ClouDiA com-
prises the following steps:
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Fig. 3 Architecture of ClouDiA

1. Allocate instancesA tenant specifies the communication
graph for the application, along with a maximum num-
ber of instances at least as great as the required number
of application nodes. CloudDiA then automatically allo-
cates cloud instances to run the application. Depending
on the specified maximum number of instances, ClouDiA
will over-allocate instances to increase the chances of
finding a good deployment.

2. Get measurements The pairwise latencies between
instances can only be observed after instances are allo-
cated. ClouDiA performs efficient network measure-
ments to obtain these latencies, as described in Sect. 5.
The main challenge is reliably estimating the mean laten-
cies quickly, given that time spent in measurement is not
available to the application.

3. Search deployment Using the measurement results,
together with the optimization objective specified by
the tenant, CloudDiA searches for a “good” deployment
plan: one which avoids “bad” communication links. We
formalize this notion and pose the node deployment prob-
lem in Sect. 3. We then formulate two variants of the
problem that model our two classes of latency-sensitive
applications. We prove the hardness of these optimization
problems in “Appendix 1.” Given the hardness of these
problems, traditional methods cannot scale to realistic
sizes. We propose techniques that significantly speed up
the search in Sect. 4.

4. Terminate extra instances Finally, ClouDiA termi-
nates any over-allocated instances and the tenant can
start the application with an optimized node deployment
plan.

2.2.1 Adapting to changing network conditions

The architecture outlined above assumes that the applica-
tion will run under relatively stable network conditions. We
believe this assumption is justified: The target applications
outlined in Sect. 2.1 have long execution time once deployed,
and our experiments in Fig. 2 show stable pairwise laten-
cies in EC2. In the future, more dynamic cloud network
infrastructure may become the norm. In this case, the opti-
mal deployment plan could change over time, forcing us
to consider dynamic re-deployment. We envision that re-
deployment can be achieved via iterations of the architec-
ture above: getting new measurements, searching for a new
optimal plan, and re-deploying the application.

Two interesting issues arise with iterative re-deployment.
First, we need to consider whether information from previ-
ous runs could be exploited by a new deployment. Unfortu-
nately, previous runs provide no information about network
resources that were not used by the application. In addition,
as re-deployment is triggered by changes in network con-
ditions, it is unlikely that network conditions of previous
runs will be predictive of conditions of future runs. Second,
re-deployment should not interrupt the running application,
especially in the case of web services and portals. Unfortu-
nately, current public clouds do not support VM live migra-
tion [2,49,66]. Without live migration, complicated state
migration logic would have to be added to individual cloud
applications.

2.2.2 Overlapping ClouDiA with application execution

We envision one further improvement to our architecture that
will become possible if support for VM live migration or
state migration logic becomes pervasive: Instead of wast-
ing idle compute cycles while ClouDiA performs network
measurements and searches for a deployment plan, we could
instead begin execution of the application over the initially
allocated instances, in parallel with ClouDiA. Clearly, this
strategy may lead to interference between ClouDiA’s mea-
surements and the normal execution of the application, which
would have to be carefully controlled. In addition, this strat-
egy would only payoff if the state migration cost necessary to
re-deploy the application under the plan found by ClouDiA
would be small enough compared to simply running ClouDiA
as outlined in Fig. 3.

3 The node deployment problem

In this section, we present the optimization problems
addressed by ClouDiA. We begin by discussing how we
model network cost (Sects. 3.1 and 3.2). We then formalize
two versions of the node deployment problem (Sect. 3.3).
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3.1 Cost functions

When a set of instances is allocated in a public cloud, in
principle any instance in the set can communicate with any
other instance, possibly at differing costs. Differences arise
because of the underlying physical network resources that
implement data transfers between instances. We call the
collection of network resources that interconnect a pair of
instances the communication link between them. We formal-
ize communication cost as follows.

Definition 1 (Communication Cost)Given a set of instances
S, we define CL : S × S → R as the communication cost
function. For a pair of instances i, j ∈ S, CL(i, j) gives the
communication cost of the link from instance i to j .

CL can be defined based on different criteria, e.g., latency,
bandwidth, or loss rate. To reflect true network properties,
we assume costs of links can be asymmetric and the trian-
gle inequality does not necessarily hold. In this paper, given
the applications we are targeting, we focus solely on using
network latency as a specific instance for CL. Extending to
other network cost measurements is future work.

Our definition of communication cost treats communica-
tion links as essentially independent. This modeling decision
ignores the underlying implementation of communication
links in the datacenter. In practice, however, current clouds
tend to organize their network topology in a tree-like struc-
ture [11]. A natural question is whether we could provide
more structure to the communication cost function by reverse
engineering this underlying network topology. Approaches
such as Sequoia [53] deduce underlying network topology
by mapping application nodes onto leaves of a virtual tree.
Unfortunately, even though these inference approaches work
well for Internet-level topologies, state-of-the-art methods
cannot infer public cloud environments accurately [10,16].

Even if we could obtain accurate topology information, it
would be non-trivial to make use of it. First, there is no guar-
antee that the nodes of a given application can all be allo-
cated to nearby physical elements (e.g., in the same rack),
so we need an approach that fundamentally tackles differ-
ences in communication costs. Second, datacenter topolo-
gies are themselves evolving, with recent proposals for new
high-performance topologies [43]. Optimizations developed
for a specific tree-like topology may no longer be gener-
ally applicable as new topologies are deployed. Our general
formulation of communication cost makes our techniques
applicable to multiple different choices of datacenter topolo-
gies. Nevertheless, as we will see in Sect. 6, we can support
a general cost formulation, but optimize deployment search
when there are uniformities in the cost, e.g., clusters of links
with similar cost values.

To estimate the communication cost functionCL for the set
of allocated instances, CloudDiA runs an efficient network

measurement tool (Sect. 5). Note that the exact communica-
tion cost is application dependent. Applications communi-
cating messages of different sizes can be affected differently
by the network heterogeneity. However, for latency-sensitive
applications, we expect that application-independent net-
work latency measurements can be used as a good perfor-
mance indicator, although they might not precisely match
the exact communication cost in application execution. This
is because our notion of cost need only discriminate between
“good” and “bad” communication links, rather than accu-
rately predict actual application runtime performance.

3.2 Metrics for communication cost

Even if we focus our attention solely on network latency,
there are still multiple ways to measure and characterize such
latency. The most natural metric, shown in Figs. 1 and 2,
is mean latency, which captures the average latency behav-
ior of a link. However, some applications are particularly
sensitive to latency jitter, not only to heterogeneity in mean
latency [72]. For these applications, an alternate metric which
combines the mean latency with the standard deviation on
latency measurements may be the most appropriate. Finally,
demanding applications may seek latency guarantees at a
high percentile of the latency distribution.

While all the above metrics provide genuine characteriza-
tions of different aspects of network latency, two additional
considerations must be taken into account before adopting
a latency metric. First, since in our framework communica-
tion cost is used merely to differentiate “good” from “bad”
links, correlated metrics behave effectively in the same way.
So a non-straight forward metric other than mean latency
only makes sense if it is not significantly correlated with the
mean. Second, any candidate latency metric should guide the
search process carried out by ClouDiA such that lower-cost
deployments represent deployments with lower actual time-
to-solution or response time. Since most latency-sensitive
applications tend to be significantly affected by mean latency,
it is not clear whether other candidate latency metrics will
lead to deployments with better application performance. We
explore these considerations experimentally in Sect. 6.

3.3 Problem formulation

To deploy applications in public clouds, a mapping between
logical application nodes and cloud instances needs to be
determined. We call this mapping a deployment plan.

Definition 2 (DeploymentPlan)Let S be the set of instances.
Given a set N of application nodes, a deployment plan
D : N → S is a mapping of each application node n ∈ N to
an instance s ∈ S.
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In this paper, we require thatD be an injection; that is, each
instance s ∈ S can have at most one application node n ∈ N
mapped to it. There are two implications of this definition.
On the one hand, we do not collocate application nodes on the
same instance. In some cases, it might be beneficial to collo-
cate services, yet we argue these services should be merged
into application nodes before determining the deployment
plan. On the other hand, it is possible that some instances
will have no application nodes mapped to them. This gives
us flexibility to over-allocate instances at first and then shut-
down those instances with high communication cost.

In today’s public clouds, tenants typically determine a
deployment plan by either a default or a random mapping.
CloudDiA takes a more sophisticated approach. The deploy-
ment plan is generated by solving an optimization problem
and searching through a space of possible deployment plans.
This search procedure takes as input the communication cost
function CL, obtained by our measurement tool, as well as a
communication graph and a deployment cost function, both
specified by the cloud tenant.

Definition 3 (Communication Graph) Given a set N of
application nodes, the communication graph G = (V, E) is
a directed graph where V = N and E = {(i, j)|i, j ∈ N ∧
talks(i, j)}.

The talks relation above models the application-specific
communication patterns. When defining the communication
graph through the talks relation, the cloud tenant should only
include communication links that have impact on the perfor-
mance of the application. For example, those links first used
for bootstrapping and rarely used afterwards should not be
included in the communication graph. An alternative formu-
lation for the communication graph would be to add weights
to edges, extending the semantics of talks. We leave this to
future work.

We find that although such a communication graph is typ-
ically not hard to extract from the application, it might be a
tedious task for a cloud tenant to generate an input file with
O(|N |2) links. ClouDiA therefore provides communication
graph templates for certain common graph structures such as
meshes or bipartite graphs to minimize human involvement.

In addition to the communication graph, a deployment
cost function needs to be specified by the cloud tenant. At a
high level, a deployment cost function evaluates the cost of
the deployment plan by observing the structure of the com-
munication graph and the communication cost for links in
the given deployment. The optimization goal for CloudDiA
is to generate a deployment plan that minimizes this cost.
The formal definition of deployment cost is as follows:

Definition 4 (Deployment Cost) Given a deployment plan
D, a communication graph G, and a communication cost
function CL, we define CD(D,G, CL) ∈ R as the deployment

cost of D. CD must be monotonic on link cost and invariant
under exchanging nodes that are indistinguishable using link
costs.

Now, we can formally define the node deployment prob-
lem:

Definition 5 (Node Deployment Problem) Given a deploy-
ment cost functionCD , a communication graphG, and a com-
munication cost function CL, the node deployment problem
is to find the optimal deployment

DOPT = arg minD CD(D,G, CL).

In the remainder, we focus on two classes of deployment
cost functions, which capture the essential aspects of the com-
munication cost of latency-sensitive applications running in
public clouds.

In high-performance computing (HPC) applications, such
as simulations, matrix computations, and graph process-
ing [72], application nodes typically synchronize periodi-
cally using either global or local communication barriers.
The completion of these barriers depends on the communi-
cation link which experiences the longest delay. Motivated
by such applications, we define our first class of deployment
cost function to return the highest link cost.

Class 1 (Deployment Cost: Longest Link) Given a deploy-
ment plan D, a communication graph G = (V, E) and a
communication cost function CL, the longest link deployment
cost CLLD (D,G, CL) = max(i, j)∈E CL(D(i),D( j)).

Another class of latency-sensitive applications is exempli-
fied by search engines [6,8] as well as web services and por-
tals [28,44,52,60]. Services provided by these applications
typically organize application nodes into trees or directed
acyclic graphs, and the overall latency of these services
is determined by the communication path which takes the
longest time [58]. We therefore define our second class of
deployment cost function to return the highest path cost.

Class 2 (Deployment Cost: Longest Path) Given a deploy-
ment planD, an acyclic communication graph G and a com-
munication cost function CL, the longest path deployment
costCLPD (D,G, CL)= maxpathP⊆G(�(i, j)∈PCL(D(i),D( j))).

Note that the above definition assumes that the application
is sending a sequence of causally related messages along
the edges of a path, and summation is used to aggregate the
communication cost of the links in the path.

Although we believe these two classes cover a wide spec-
trum of latency-sensitive cloud applications, there are still
important applications which do not fall exactly into either of
them. For example, consider a key-value store with latency
requirements on average response time or the 99.9th per-
centile of the response time distribution [21]. This applica-
tion does not exactly match either of the two deployment cost
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functions above, since average response time may be influ-
enced by multiple links in different paths. We discuss the
applicability of our deployment cost functions to a key-value
store workload further in Sect. 6.1. We then proceed to show
experimentally in Sect. 6.4 that even though longest link is not
a perfect match for such a workload, use of this deployment
cost function still yields a 15–31 % improvement in average
response time for a key-value store workload. Given the pos-
sibility of utilizing the above cost functions even if there is
no exact match, CloudDiA is able to automatically improve
response times of an even wider range of applications.

We prove that the node deployment problem with longest
path deployment cost is NP-hard. With longest link deploy-
ment cost, it is also NP-hard and cannot be efficiently approx-
imated unless P = NP (“Appendix 1”). Given the hard-
ness results, our solution approach consists of mixed-integer
programming (MIP), constraint programming (CP) formula-
tions, and lightweight algorithmic approaches (Sect. 4). We
show experimentally that our approach brings significant per-
formance improvement to real applications. In addition, from
the insight gained from the theorems above, we also show
that properly rounding communication costs to cost clusters
can be heuristically used to further boost solver performance
(Sect. 6.3).

4 Search techniques

In this section, we propose two encodings to solve the
Longest Link Node Deployment Problem (LLNDP) using
MIP and CP solvers (Sects. 4.1 and 4.2), as well as one
formulation for the Longest Path Node Deployment Prob-
lem (LPNDP) using a MIP solver (Sect. 4.4). In addition
to solver-based solutions, we also explore alternative light-
weight algorithmic approaches to both problems (Sects. 4.3
and 4.5).

4.1 Mixed-integer program for LLNDP

Given a communication graph G = (V, E) and a commu-
nication cost function CL defined over any pair of instances
in S, the Longest Link Node Deployment Problem can be
formulated as the following mixed-integer program (MIP):

(MIP) minimize
x

c

s.t.
∑

i∈V
xi j = 1 ∀ j ∈ S (1)

∑

j∈S
xi j = 1 ∀i ∈ V (2)

c ≥ CL( j, j ′)(xi j + xi ′ j ′ − 1)

∀(i, i ′) ∈ E,∀ j, j ′ ∈ S

xi j ∈ {0, 1} ∀i ∈ V, j ∈ S

c ≥ 0 (3)

In this encoding, the boolean variable xi j indicates
whether the application node i ∈ V is deployed on instance
j ∈ S. The constraints (1) and (2) ensure that the variables
xi j represent a one-to-one mapping between the set V and
S. Note that the set V might need to be augmented with
dummy application nodes so that we have |V | = |S|. Also,
the constraints (3) require that the value of c is at least equal
to CL( j, j ′) any time there is a pair (i, i ′) of communicating
application nodes and that i and i ′ are deployed on j and j ′,
respectively. Finally, the minimization in the objective func-
tion will make one of the constraints (3) tight, thus leading
to the desired longest link value.

4.2 Constraint programming for LLNDP

Whereas the previous formulation directly follows from the
problem definition, our second approach exploits the relation
between this problem and the subgraph isomorphism prob-
lem, as well as the clusters of communication cost values. The
algorithm proceeds as follows. Given a goal c, we search for a
deployment that avoids communication costs greater than c.
Such a deployment exists if and only the graph Gc = (S, Ec)

where Ec = {(i, j) : CL(i, j) ≤ c} contains a subgraph iso-
morphic to the communication graph G = (V, E). There-
fore, by finding such a subgraph, we obtain a deployment
whose deployment cost c′ is such that c′ ≤ c. Assume
c′′ is the largest communication cost strictly lower than c′.
Thus, any improving deployment must have a cost of c′′
or lower, and the communication graph G = (V, E) must
be isomorphic to a subgraph of Gc′′ = (S, Ec′′) where
Ec′′ = {(i, j) : CL(i, j) ≤ c′′}. We proceed iteratively until
no deployment is found. Note that the number of iterations
is bounded by the number of distinct cost values. Therefore,
clustering similar values to reduce the number of distinct
cost values would improve the computation time by lowering
the number of iterations, although it approximates the actual
value of the objective function. We investigate the impact
of cost clusters in Sect. 6. For a given objective value c, the
encoding of the problem might be expressed as the following
constraint programming (CP) formulation:

(CP) alldifferent
(
(ui )1≤i≤|V |

)

(ui , ui ′) 
= ( j, j ′) ∀(i, i ′) ∈ E,∀ j, j ′ ∈ S :
CL( j, j ′) > c
ui ∈ {1, . . . , |S|} ∀1 ≤ i ≤ |V |
This encoding is substantially more compact that the MIP

formulation, as the binary variables are replaced by integer
variables, and the mapping are efficiently captured within the
alldifferent constraint. In addition, at the root of the
search tree, we perform an extra filtering of the domains of

123



640 T. Zou et al.

Algorithm 1 G1
Require: Instances S
Require: Communication Graph G = (V, E)

1: Find (u0, v0) ∈ S × S of lowest cost
2: Find an arbitrary edge (x, y) ∈ E
3: D(x) = u0, D(y) = v0
4: for i = 1 to |V | − 2 do
5: cmin = ∞
6: for (u, v) ∈ S × S do
7: if D−1(v) is undefined and

D−1(u) has unmatched neighbors then
8: if CL(u, v) < cmin then
9: cmin = CL(u, v)

10: umin = u, vmin = v

11: end if
12: end if
13: end for
14: w = one of D−1(umin)’s unmatched neighbors
15: D(w) = vmin
16: end for

the xi j variables that is based on compatibility between appli-
cation nodes and instances. Indeed, as the objective value c
decreases, the graph Gc becomes sparse, and some applica-
tion nodes can no longer be mapped to some of the instance
nodes. For example, a node in G needs to be mapped to
a node in Gc of equal or higher degree. Similar to [70], we
define a labeling based on in- and out-degree, as well as infor-
mation about the labels of neighboring nodes. This labeling
establishes a partial order on the nodes and expresses com-
patibility between them. This compatibility relationship is
used to remove from the domain of an application node every
instance that would not be compatible. For more details on
this labeling, please refer to [70].

4.3 Lightweight approaches for LLNDP

Randomization and greedy approaches can also be applied
to the LLNDP. We explore each of these approaches in turn.

4.3.1 Randomization

The easiest approach to finding a (suboptimal) solution for
LLNDP is to generate a number of deployments randomly
and select the one with the lowest deployment cost. Com-
pared with CP or MIP solutions, generating deployments
randomly explores the search space in a less intelligent way.
However, since generating deployments is computationally
cheaper and easier to parallelize, it is possible to explore a
larger portion of the search space given the same amount of
time.

4.3.2 Greedy algorithms

Greedy algorithms can also be used as lightweight approaches
to quickly find a (suboptimal) solution for LLNDP. We
present two greedy approaches:

Algorithm 2 G2
Require: Instances S
Require: Communication Graph G = (V, E)

1: Find (u0, v0) ∈ S × S of lowest cost
2: Find an arbitrary edge (x, y) ∈ E
3: D(x) = u0, D(y) = v0
4: for i = 1 to |V | − 2 do
5: cmin = ∞
6: for (u, v) ∈ S × S do
7: for w where (D−1(u), w) ∈ E do
8: cuv = CL(u, v)

9: for (w, x) ∈ E do
10: if D(x) is defined and CL(v,D(x)) > cuv then
11: cuv = CL(v,D(x))
12: end if
13: end for
14: if cuv < cmin then
15: cmin = cuv

16: vmin = v,wmin = w

17: end if
18: end for
19: end for
20: D(wmin) = vmin
21: end for

(G1)Recall that the deployment planD is a mapping from
application nodes to instances. Let D−1 be the inverse func-
tion of D, mapping each instance s ∈ S to an application
node n ∈ V . The first greedy approach, shown in Algo-
rithm 1, works as follows:

1. Find a link (u0, v0) ∈ S × S of lowest cost, and for an
arbitrary edge (x, y) ∈ E , let D(x) = u0,D(y) = v0

(Lines 1–3);
2. Find a link (u, v) ∈ S × S of lowest cost s.t. instance

u is mapped to a node in the current partial deployment
that still has unmatched neighbors, and instance v is not
mapped in the current deployment (Lines 5–13);

3. Add the instance v to the partial deployment by letting
D(w) = v, where (D−1(u), w) is one of the unmapped
edges in E (Lines 14 and 15);

4. Repeat Steps 2 and 3 until all nodes are included (Lines
4–16).

This greedy approach is simple and intuitive, but it has
one potential drawback: Although the links explicitly picked
by the algorithm typically have low cost, the implicit links
introduced while selecting a partial solution following the
lowest cost-edge criterion can have substantial cost. This is
because the mapping of a node to an instance v implies that
other nodes already in the deployment are then connected
to v by the corresponding underlying links. We address this
issue in the refined greedy approach below.

(G2) In order to avoid selecting high-cost links implicitly
when mapping a low-cost link, we revise the lowest cost-edge
criterion in Step 2 above as shown in Algorithm 2. Instead of
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costing a particular (u, v) ∈ S × S simply by the cost of the
corresponding link, we take the highest cost among the cost
of (u, v) and of all links between D(w) and v assuming node
w is added to the current partial deployment (Lines 7–18).
Intuitively, we consider not only the explicit cost of a given
link that is a candidate for addition to the deployment, but also
the costs of all other links which would be implicitly added to
the deployment by this candidate mapping. By selecting the
candidate with the minimum cost among both explicit and
implicit link additions, this greedy variant locally minimizes
the longest link objective at each decision point.

4.4 Mixed-integer programming for LPNDP

As previously mentioned, the node deployment problem is
intrinsically related to the subgraph isomorphism problem
(SIP). In addition, the longest link objective function allows
us to directly prune the graph that must contain the com-
munication graph G and therefore can be encoded as a series
of subgraph isomorphism satisfaction problems. This plays a
key role in the success of the CP formulation. On the contrary,
the objective function of the Longest Path Node Deployment
Problem (LPNDP) interferes with the structure of the SIP
problem and rules out sub-optimal solutions only when most
of the application nodes have been assigned to instances.
As a result, this optimization function barely guides the sys-
tematic search and makes it less suitable for a CP approach.
Consequently, we only provide a MIP formulation for the
LPNDP.

Given a communication graph G = (V, E) and a commu-
nication cost function CL defined over any pair of instances
in S, the Longest Path Node Deployment Problem (LPNDP)
can be formulated as the following mixed-integer program
(MIP):

(MIP) minimize
x

t

s.t.
∑

i∈V
xi j = 1 ∀ j ∈ S

∑

j∈S
xi j = 1 ∀i ∈ V

cii ′ ≥ CL( j, j ′)(xi j + xi ′ j ′ − 1) ∀(i, i ′) ∈ E, ∀ j, j ′ ∈ S

t ≥ ti , ti ≥ 0 ∀i ∈ V

ti ′ ≥ ti + cii ′ ∀(i, i ′) ∈ E

xi j ∈ {0, 1} ∀i ∈ V, j ∈ S

cii ′ ≥ 0 ∀(i, i ′) ∈ E

t ≥ 0

As in the previous MIP encoding, the boolean variable
xi j indicates whether the application node i is deployed on
instance j in a one-to-one mapping. In addition, the variable
cii ′ captures the communication cost from application node
i to node i ′ that would result from the deployment specified

by the xi j variables. The variable ti represents the longest
directed path in the communication graph G that reaches
the application node i . Finally, the variable t appears in the
objective function and corresponds to the maximum among
the ti variables.

4.5 Lightweight approaches for LPNDP

As with LLNDP, we explore both randomization and greedy
approaches.

4.5.1 Randomization

Similarly to LLNDP, we can find a (suboptimal) solution for
LPNDP by generating a number of random deployments in
parallel and selecting one with the lowest deployment cost.

4.5.2 Greedy heuristic approach

Since the communication graph for LPNDP can be any
directed acyclic graph containing paths of different lengths,
the effect of adding a single node to a given partial deploy-
ment cannot be easily estimated. Therefore, the greedy algo-
rithms described in Sect. 4.3 cannot be directly extended
to LPNDP. However, given a LPNDP with communication
graph G, we can still solve LLNDP with G greedily and use
the resulting mapping as a heuristic solution for LPNDP. We
experimentally study the effectiveness of these lightweight
approaches in Sect. 6.5.

5 Measuring network distance

Making wise deployment decisions to optimize performance
for latency-sensitive applications requires knowledge of pair-
wise communication cost. A natural way to characterize the
communication cost is to directly measure round-trip laten-
cies for all instance pairs. To ensure such latencies are a
good estimate of communication cost during application exe-
cution, two aspects need to be handled. First, the size of
the messages being exchanged during application execution
is usually nonzero. Therefore, rather than measuring pure
round-trip latencies with no data content included, we mea-
sure TCP round-trip time of small messages, where message
size depends on the actual application workload. Second, dur-
ing the application execution, multiple messages are typically
being sent and received at the same time. Such temporal cor-
relation affects network performance, especially end-to-end
latency. But the exact interference patterns heavily depend
on low-level implementation details of applications, and it
is impractical to require such detailed information from the
tenants. Instead, we focus on estimating the quality of links
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without interference, as this already gives us guidance on
which links are certain to negatively affect actual executions.

Experimental studies have demonstrated that clouds suf-
fer from high latency jitter [56,61,72]. However, we have
observed experimentally that it is possible to obtain stable
measurements of mean latency, if sufficient repetitions are
carried out (see results in Fig. 2). Unfortunately, to estimate
mean latency accurately and properly capture latency hetero-
geneity among links, multiple round-trip latency measure-
ments have to be obtained for each pair of instances. Since
the number of instance pairs is quadratic in the number of
instances, such measurement takes substantial time. On the
one hand, we want to run mean-latency measurements as
fast as possible to minimize the overhead of using ClouDiA.
On the other hand, we need to avoid introducing uncon-
trolled measurement artifacts that may affect the quality of
our results. We propose three possible approaches for orga-
nizing pairwise mean latency measurements in the following.

1. Token Passing. In this first approach, a unique token is
passed between instances. When an instance i receives
this token, it selects another instance j and sends out a
probe message of given size. Once the entire probe mes-
sage has been received by j , it replies to i with a message
of the same size. Upon receiving the entire reply mes-
sage, i records the round-trip time and passes the token
on to another instance chosen at random or using a pre-
defined order. By having such a unique token, we ensure
that only one message is being transferred at any given
time, including the message for token passing itself. We
repeat this token passing process a sufficiently large num-
ber of times, so multiple round-trip measurements can be
collected for each link. We then aggregate these measure-
ments into mean latencies per link.
This approach achieves the goal of obtaining pair-
wise mean-latency measurements without correlations
between links. However, the lack of parallelism restricts
its scalability.

2. Uncoordinated. To improve scalability, we would like
to avoid excessive coordination among instances, so that
they can execute measurements in parallel. We intro-
duce parallelism by the following simple scheme: Each
instance picks a destination at random and sends out a
probe message. Meanwhile, all instances monitor incom-
ing messages and send reply messages once an entire
probe message has been received. After one such round-
trip measurement, each instance picks another probe des-
tination and starts over. The process is repeated until we
have collected enough round-trip measurements for every
link. We then aggregate these measurements into mean
latencies per link.
Given n instances, this approach allows up to n messages
to be in flight at any given time. Therefore, this approach

provides better scalability than the first approach. How-
ever, since probe destinations are chosen at random with-
out coordination, it is possible that: 1) one instance needs
to send out reply messages while it is sending out a probe
message; or 2) multiple probe messages are sent to the
same destination from different sources. Such cross-link
correlations are undesirable for our measurement goal.

3. Staged. To prevent cross-link correlations while pre-
serving scalability, coordination is required when choos-
ing probe destinations. We add an extra coordinator
instance and divide the entire measurement process
into stages. To start a stage for n instances in paral-
lel, the coordinator first picks � n

2 
 pairs of instances
{(i1, j1), (i2, j2), . . . , (i� n

2 
, j� n
2 
)} such that ∀p, q ∈

{1..n}, i p 
= jq and i p 
= iq if p 
= q. The coordinator
then notifies each i p, p ∈ {1, .., � n

2 
},of its corresponding
jp. After receiving a notification, i p sends probe messages
to jp and measures round-trip latency as described above.
Finally, i p ends its stage by sending a notification back to
the coordinator, and the coordinator waits for all pairs to
finish before starting a new stage.
This approach allows up to n

2 messages between instances
in flight at any time at the cost of having a central coor-
dinator. We minimize the cost of per-stage coordination
by consecutively measuring round-trip times between the
same given pair of instances Ks times within the same
stage, where Ks is a parameter. With this optimization, the
staged approach can potentially provide scalability com-
parable to the uncoordinated approach. At the same time,
by careful implementation, we can guarantee that each
instance is always in one of the following three states: (1)
sending to one other instance; (2) receiving from one other
instance; or (3) idle in networking. This guarantee pro-
vides independence among pairwise link measurements
similar to that achieved by token passing.

5.1 Approximations

Even the staged network latency benchmark above can take
non-negligible time to generate mean latency estimates for
a large number of instances. Given that our goal is simply
to estimate link costs for our solvers, we have experimented
with other simple network metrics, such as hop count and
IP distance, as proxies for round-trip latency. Surprisingly,
these metrics did not turn out to correlate well with round-
trip latency. We provide details on these negative results in
“Appendix 2.”

6 Experimental results

In this section, we present experiments demonstrating the
effectiveness of ClouDiA. We begin with a description of
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the several representative workloads used in our experiments
(Sect. 6.1). We then present micro-benchmark results for
the network measurement tools and the solver techniques
of ClouDiA (Sects. 6.2 and 6.3). Next, we experimentally
demonstrate the performance improvements achievable in
public clouds by using ClouDiA as the deployment advi-
sor (Sect. 6.4). Finally, we show the effectiveness of light-
weight algorithmic approaches compared with solver-based
solutions (Sect. 6.5).

6.1 Workloads

To benchmark the performance of ClouDiA, we implement
three different workloads: a behavioral simulation workload,
a query aggregation workload, and a key-value store work-
load. Each workload illustrates a different communication
pattern.

6.1.1 Behavioral simulation workload

In behavioral simulations, collections of individuals inter-
act with each other to form complex systems. Examples of
behavioral simulations include large-scale traffic simulations
and simulation of groups of animals. These simulations orga-
nize computation into ticks and achieve parallelism by parti-
tioning the simulated space into regions. Each region is allo-
cated to a processor and internode communication is orga-
nized as a 2D or 3D mesh. As synchronization among proces-
sors happens every tick, the progress of the entire simulation
is limited by the pair of nodes that take longest to synchro-
nize. Longest link is thus a natural fit to the deployment cost
of such applications. We implement a workload similar to the
fish simulation described by Couzin et al. [20]. The commu-
nication graph is a 2D mesh, and the message size per link
is 1 KB for each tick. To focus on network effects, we hide
CPU-intensive computation and study the time to complete
100 K ticks over different deployments.

6.1.2 Synthetic aggregation query workload

In a search engine or distributed text database, queries are
processed by individual nodes in parallel and the results are
then aggregated [8]. To prevent the aggregation node from
becoming a bottleneck, a multi-level aggregation tree can be
used: Each node aggregates some results and forwards the
partial aggregate to its parent in the tree for further aggrega-
tion. The response time of the query depends on the path from
a leaf to the root that has highest total latency. Longest path is
thus a natural fit for the deployment cost of such applications.
We implement a two-level aggregation tree of a top-k query
answering workload. The communication graph is a tree and
the forwarding message size varies from the leaves to the
root, with an average of 4 KB. We hide ranking score com-

putation and study the response time of aggregation query
results over different deployments.

6.1.3 Key-value store workload

We also implement a distributed key-value store workload.
The key-value store is queried by a set of front-end servers.
Keys are randomly partitioned among the storage nodes, and
each query touches a random subset of them. The commu-
nication graph therefore is a bipartite graph between front-
end servers and storage machines. However, unlike the sim-
ulation workload, the average response time of a query is
not simply governed by the slowest link. To see this, con-
sider a deployment with mostly equal-cost links, but with a
single slower link of cost c, and compare this to a similar
deployment with two links of cost c− ε. If longest link were
used as the deployment cost function, the second deployment
would be favored even though the first deployment actually
has lower average response time. Indeed, neither longest link
nor longest path is the precisely correct objective function for
this workload. We evaluate the query response time over dif-
ferent deployments by using longest link, with a hope that it
can still help avoid high-cost links.

6.2 Network micro-benchmarks

6.2.1 Setup

The network measurement tools of ClouDiA are imple-
mented in C++ using TCP sockets (SOCK_STREAM). We
set all sockets to non-blocking mode and use select to process
concurrent flows (if any). We disable the Nagle Algorithm.

We ran experiments in the Amazon Elastic Compute
Cloud (Amazon EC2). We used large instances (m1.large)
in all experiments. Each large instance has 7.5 GB memory
and four EC2 Compute Units. Each EC2 Compute Unit pro-
vides the equivalent CPU capacity of a 1.0–1.2 GHz 2007
Opteron or 2007 Xeon processor [2]. Unless otherwise stated,
we use 100 large instances for network micro-benchmarks,
all allocated by a single ec2-run-instance command, and set
the round-trip message size to 1 KB. We show the following
results from the same allocation so that they are comparable.
Similar results are obtained in other allocations.

6.2.2 Round-trip latency measurement

We run latency measurements with each of the three
approaches proposed in Sect. 5 and compare their accuracy
in Fig. 4. To make sure token passing can observe each link a
sufficiently large number of times, we use 50 large instances
in this experiment. We consider the mean latencies for 502

instance pairs as a 502-dimension vector of mean latencies,
of which each dimension represents one link. In ClouDiA,
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Fig. 5 Latency measurement convergence over time. Root-mean-
square error drops quickly within the first 5 min

link latencies are only used to determine the relative order
in choosing links or paths; thus, if one methodology over-
estimates or underestimates all link latencies by the same
factor, its measurements result in the same deployment plan
as the ideal plan generated from the accurate measurements.
To avoid counting such overestimation or underestimation
as error, measurements are first normalized to the unit vec-
tor. Then, staged and uncoordinated are compared with the
baseline token passing. The CDF of the relative error of each
dimension is shown in Fig. 4. Using staged, we find 90 %
of links have less than 10 % relative error and the maximum
error is less than 30 %, whereas using uncoordinated we find
10 % of links have more than 50 % relative error. Therefore,
as expected, staged exhibits higher measurement accuracy
than uncoordinated.

Figure 5 shows convergence over time using the staged
approach with 100 instances and Ks = 10. Again, the mea-
surement result is considered as a latency vector. The result of
the full 30 min observation is used as the ground truth. Each
stage on average takes 2.75 ms. Therefore, we obtain about
3,004 measurements for each instance pair within 30 min. We
then calculate the root-mean-square error of partial observa-
tions between 1 and 30 min compared with the ground truth.
From Fig. 5, we observe the root-mean-square error drops
quickly within the first 5 min and smooths out afterwards.

Therefore, we pick 5 min as the measurement time for all
the following experiments with 100 instances. For experi-
ments with n 
= 100 instances, since the staged approach
tests n

2 pairs in parallel whereas there are O(n2) total pairs,
measurement time needs to be adjusted linearly to 5 · n

100
minutes.

6.3 Solver micro-benchmarks

6.3.1 Setup

We solve the MIP formulation using the IBM ILOG CPLEX
Optimizer, while every iteration of the CP formulation is per-
formed using IBM ILOG CP Optimizer. Solvers are executed
on a local machine with 12 GB memory and Intel Core i7-
2600 CPU (four physical cores with hyper-threading). We
enable parallel mode to allow both solvers to fully utilize all
CPU resources. We use k-means to cluster link costs. Since
the link costs are in one dimension, such k-means can be opti-
mally solved in O(kN ) time using dynamic programming,
where N is the number of distinct values for clustering and k
is the number of cost clusters. After running k-means clus-
tering, all costs are modified to the mean of the containing
cluster and then passed to the solver. For comparison pur-
poses, the same set of network latency measurements as in
Sect. 6.2 is used for all solver micro-benchmarks. In each
solver micro-benchmark, we set the number of application
nodes to be 90 % of the number of allocated instances. To
find an initial solution to bootstrap the solver’s search, we
randomly generate 10 node deployment plans and pick the
best one among those.

6.3.2 Longest link node deployment problem

We provide both a MIP formulation and a CP formulation
for LLNDP. Since the parameter of cost clustering may have
different impacts on the performance of the two solvers, we
first analyze the effect of cost clustering. Figure 6 shows the
convergence of the CP formulation for 100 instances with
different numbers of clusters. The communication graph for
Figs. 6, 7, and 8 is a 2D mesh from the simulation workload,
and the deployment cost is the cost of the longest link. We
tested all possible k values from 5 to the number of distinct
values (rounded to nearest 0.01 ms), with an increment of
5. We present three representative configurations: k = 5,
k = 20, and no clustering. As we decrease the number of
clusters, the CP approach converges faster. Indeed, with no
clustering, the best solution is found after 16 min, whereas
it takes 2 min and 30 s for the CP approach to converge with
k = 20 and k = 5, respectively. This is mainly due to the
fact that fewer iterations are needed to reach the optimal
value. Such a difference demonstrates the effectiveness of
cost clustering in reducing the search time. On the other hand,
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the smaller the value of k is, the coarser the cost clusters
are. As a result, the CP model cannot discriminate among
deployments within the same cost cluster, and this might
lead to sub-optimal solutions. As shown in Fig. 6, the solver
cannot find a solution with a deployment cost smaller than
0.81 for k = 5, while both cases k = 20 and no clustering
lead to a much better deployment cost of 0.55.

Figure 7 shows the comparison between the CP and the
MIP formulations with k = 20. MIP performs poorly with the
scale of 100 instances. Also, other clustering configurations
do not improve the performance of MIP. One reason is that
for LLNDP, the encoding of the MIP is much less compact
than CP. Moreover, the MIP formulation suffers from a weak
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Fig. 9 Convergence for solving LPNDP using MIP. Clustering does
not improve performance

linear relaxation, as xi j and xi ′ j ′ should add-up to more than
one for the relaxed constraint 3 to take effect.

Given the above analysis, we pick CP with k = 20 for
the following scalability experiments as well as LLNDP in
Sects. 6.4 and 6.5.

Measuring scalability of a solver such as ours is chal-
lenging, as problem size does not necessarily correlate with
problem hardness. To observe scalability behavior with prob-
lem size, we generate multiple inputs for each size and mea-
sure the average convergence time of the solver over all
inputs. The multiple inputs for each size are obtained by
randomly choosing 50 subsets of instances out of our initial
100-instance allocation. The convergence time corresponds
to the time the solver takes to not be able to improve upon the
best found solution within 1 h of search. Figure 8 shows the
scalability of the solver with the CP formulation. We observe
that average convergence time increases acceptably with the
problem size. At the same time, at every size, the solver is
able to devise node deployment plans with similar average
deployment cost improvement ratios.

6.3.3 Longest path node deployment problem

Figure 9 shows the convergence of the MIP formulation for
50 instances with different number of link cost clusters. The
communication graph is an aggregation tree with depth less
than or equal to 4. Similar to Fig. 6, the solver performs
poorly under the configuration of k = 5. Interestingly, clus-
tering costs does not improve performance for LPNDP. This
is because the costs are aggregated using summation over
the path for LPNDP, and therefore, the solver cannot take
advantage of having fewer distinct values. We therefore use
MIP with no clustering for LPNDP in Sects. 6.4 and 6.5.

6.4 ClouDiA effectiveness

6.4.1 Setup

We evaluate the overall ClouDiA system in EC2 with 100–
150 instances over different allocations. Other settings are the
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same as in Sect. 6.2 (network measurement) and Sect. 6.3
(solver). We use a 10 % over-allocation ratio in all experi-
ments except the last one (Fig. 12), in which we vary this
ratio. The deployment decision made by ClouDiA is com-
pared with the default deployment, which uses the instance
ordering returned by the EC2 allocation command. Note that
EC2 does not offer us any control on how to place instances,
so the over-allocated instances we obtain are just the ones
returned by the ec2-run-instance command.

6.4.2 Cost metrics

In Fig. 10, we study the correlation between three commu-
nication cost metrics under one representative allocation of
110 instances. Each point represents the link between a pair
of nodes: The x axis shows its mean latency (mean) and
the y axis shows its mean latency plus standard deviation
(mean+SD) or 99th percentile latency (99 %). While links
with larger mean latencies tend to have larger mean+SD or
99 % values, they are not perfectly correlated. This result
motivates us to study the actual application performance
under deployments generated by ClouDiA with different cost
metrics. Figure 11 shows the relative improvement of using
Mean+SD or 99 % compared with using mean. Using 99th

percentile latency reduces actual performance for all three
applications, suggesting that the performance of these appli-
cations is not well-captured solely by this metric. While using
Mean+SD improves performance for behavioral simulation
and aggregation query workloads, it reduces performance for
the key-value store workload. However, the observed differ-
ences in performance with respect to using mean are not dra-
matic. These results suggest that even with the existence of
latency jitter in public clouds, mean latency is still a robust
metric for these three applications, which are sensitive to
both mean latency and latency jitter. However, it is possible
for an application to be insensitive to mean latency while
remaining sensitive to latency jitter (e.g., an application that
can completely hide latency when there is no jitter). For such
an application, latency metrics other than mean latency may
work better.

6.4.3 Overall effectiveness

We show the overall percentage of improvement over five
different allocations in EC2 in Fig. 12. The behavioral sim-
ulation and key-value store workloads use 100 application
nodes, whereas the aggregation query workload uses 50
nodes. For the simulation workload, we report the reduction
in time-to-solution. For the aggregation query and key-value
store workloads, we report the reduction in response time.
Each of these is averaged based on an at least 10 min of obser-
vation for both. We compare the performance of ClouDiA
optimized deployment to the default deployment. ClouDiA
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achieves 15–55 % reduction in time-to-solution or response
time over 5 allocations for three workloads. The reduction
ratio varies for different allocations. Among three workloads,
we observe the largest reduction ratio on average in the aggre-
gation query workload, while the key-value store workload
gets less improvement than the others. There are two reasons
for this effect. First, the communication graph of the aggrega-
tion query workload has the fewest edges, which increases the
probability that the solver can find a high-quality deployment.
Second, the longest link deployment cost function does not
exactly match the mean response time measurement of the
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ferent over-allocation ratios. The largest improvement is obtained with
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key-value store workload, and therefore, deployment deci-
sions are made less accurately.

6.4.4 Effect of over-allocation

In Fig. 13, we study the benefit of over-allocating instances
for increasing the probability of finding a good deployment
plan. Note that although ClouDiA terminates extra instances
once the deployment plan is determined, these instances will
still be charged for at least 1 h usage due to the roundup pric-
ing model used by major cloud service providers [2,49,66].
Therefore, a trade-off must be made between performance
and initial allocation cost. In this experiment, we use an
application workload similar to Fig. 12, but with 150 EC2
instances allocated at once by a single ec2-run-instance com-
mand. To study the case with over-allocation ratio x , we use
the first (1 + x) · 100 instances out of the 150 instances
by the EC2 default ordering. Figure 13 shows the improve-
ment in time-to-solution for the simulation workload. The
default deployment always uses the first 100 instances,
whereas ClouDiA searches deployment plans with the 100 ×
extra instances. We report 38 % performance improvement
with 50 % extra instances over-allocated. Without any over-
allocation, 16 % improvement is already achieved by finding
a good injection of application nodes to instances. Interest-
ingly, with only 10 % instance over-allocation, 28 % improve-
ment is achieved. Similar observations are found on other
allocations as well.

6.5 Lightweight approaches

6.5.1 Setup

In Figs. 14 and 15, we compare the effectiveness of light-
weight approaches against the CP and MIP formulations.
Results are averaged over 20 different allocations of 50
instances with 10 % over-allocation. G1 is the simple greedy
algorithm, which adds a node following a lowest cost-edge
criterion at each step. G2 is the refined greedy algorithm,
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Fig. 15 Effectiveness of using lightweight approaches against MIP for
LPNDP. R2 finds a solution with longest path latency 5.10 % lower than
MIP

which iteratively adds a node such that partial deployment
cost is minimal after addition. R1 is the lowest deployment
cost obtained by generating 1,000 random deployments. R2
is the lowest deployment cost obtained by generating random
deployments in parallel using the same amount of wall-clock
time as well as the same hardware given to the CP or MIP
solvers. The solver setup and hardware configuration are the
same as in Sect. 6.3.

6.5.2 Longest link node deployment problem

In Fig. 14, both CP and R2 run for 2 min and all other meth-
ods finish in less than 1 s. G1 provides the worst solution
overall, with a cost 66.7 % higher than CP. We examine the
top-5 implicit links that are not explicitly chosen by G1, but
are nevertheless included in the final solution. These links are
on average 31.6 % more expensive than the worst link picked
by CP. G2 improves G1 significantly by taking implicit links
into consideration during each step of solution expansion.
Interestingly, R1 is able to generate deployments with aver-
age cost 3.39 % lower than G2. R2 is able to generate deploy-
ments with cost only 8.65 % higher than the best deployment
found by CP. Such results suggest that simply generating a
large number of random deployments and picking the best
one can provide reasonable effectiveness with minimal devel-
opment overhead.
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6.5.3 Longest path node deployment problem

In Fig. 15, both MIP and R2 run for 15 min and all other meth-
ods finish in less than 1 s. Although G1 and G2 are designed
for LLNDP, they are still able to generate deployments with
cost comparable to R1. Surprisingly, R2 is able to find deploy-
ments with cost on average 5.10 % lower than MIP. We con-
jecture that even though the MIP solver can exploit the search
space in a much more intelligent way than R2, the distribu-
tion of good solutions in this particular problem makes such
intelligent searching less important. Meanwhile, R2’s sim-
plicity and efficiency enable it to explore a larger portion of
the search space than MIP within the same amount of time.

To verify the effectiveness of R2, we also ran an addi-
tional experiment where the total number of instances was
decreased to 15. In this scenario, MIP was always able to
find optimal solutions within 15 min over 20 different allo-
cations. Meanwhile, R2 found suboptimal solutions for 40 %
of the allocations given the same amount of time as MIP. So
we argue that MIP is still a complete solution which guaran-
tees optimality when the search finishes. R2, however, cannot
provide any guarantee, even when the search space is small.

7 Related work

7.1 Subgraph isomorphism

The subgraph isomorphism problem is known to be NP-
complete [27]. There is an extensive literature about algo-
rithms for special cases of the subgraph isomorphism prob-
lem, e.g., for graphs of bounded genus [41], grids [42], or
planar graphs [23]. Algorithms based on searching and prun-
ing [18,19,59] as well as constraint programming [38,70]
have been used to solve the general case of the problem. Other
filtering approaches that have been proposed for the subgraph
isomorphism problem include filtering algorithms based on
local alldifferent constraints [57] and reasoning on
vertex dominance properties based on scoring and neighbor-
hood functions [3]. Nevertheless, none of these approaches
handle an objective function value on the isomorphic sub-
graph in order to find an optimal isomorphism function (i.e.,
deployment). In our node deployment problem, a mapping
from application nodes to instances needs to be determined
as in the subgraph isomorphism problem, but in addition the
mapping must minimize the deployment cost. In fact, we are
guaranteed that such a mapping exists, given that the physical
graph is complete (i.e., all the instances are connected). As
a result, the subgraph isomorphism problem can be trivially
solved and the key issue lies in finding an isomorphic sub-
graph that is optimal. Overall, in this paper, we build upon
the previous work on subgraph isomorphism by finding a

sequence of isomorphic subgraphs with decreasing deploy-
ment cost.

7.2 Overlay placement

Another way to look at the node deployment problem is
to find a good overlay within the allocated instances. The
networking community has invested significant effort in
intelligently placing intermediate overlay nodes to optimize
Internet routing reliability and TCP performance [30,55].
This community has also investigated node deployment
in other contexts, such as proxy placement [40] and web
server/cache placement [36,48]. In the database community,
there have been studies in extensible definition of dissemina-
tion overlays [46], as well as operator placement for stream-
processing systems [47]. In contrast to all of these previ-
ous approaches, ClouDiA focuses on optimizing the direct
end-to-end network performance without changing routing
infrastructure in a datacenter setting.

7.3 Virtual network embedding

Both the virtual network embedding problem [15,17,25,67]
and the testbed mapping problem [54] map nodes and links in
a virtual network to a substrate network taking into account
various resource constraints, including CPU, network band-
width, and permissible delays. Traditional techniques used
in solving these problems cannot be applied to our public
cloud scenario simply because treating the entire datacenter
as a substrate network would exceed the instance sizes they
can handle. Recent work provides more scalable solutions
for resource allocation at the datacenter scale by greedily
exploiting server locality [9,29]. However, this work does not
take network latency into consideration. CloudDiA focuses
on latency-sensitive applications and examines a different
angle: We argue network heterogeneity is unavoidable in
public clouds and therefore optimize the deployment as a
cloud tenant rather than the infrastructure provider. Such role
changing enables us to frame the problem as an application
tuning problem and better capture optimization goals rele-
vant to latency-sensitive applications. Also, we only need to
consider instances allocated by a given tenant, which is a sub-
stantially smaller set than the entire data center. Of course,
nothing precludes the methodology provided by ClouDiA
being incorporated by the cloud provider upon allocation for
a given tenant, as long as the provider can obtain latency-
sensitivity information from the application.

7.4 Auto-tuning in the cloud

In the database community, there is a long tradition of
auto-tuning approaches, with AutoAdmin [14] and COM-
FORT [63] as some of its seminal projects. Recently, more
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attention has focused on auto-tuning in the cloud setting.
Babu investigates how to tune the parameters of MapReduce
programs automatically [7], while Jahani et al. [33] auto-
matically analyze and optimize MapReduce programs with
data-aware techniques. Lee et al. [39] optimizes resource
allocation for data-intensive applications using a prediction
engine. Conductor [65] assists public cloud tenants in finding
the right set of resources to save cost. Both of the above two
approaches are similar in spirit to ClouDiA. However, they
focus on map-reduce style computation with high bandwidth
consumption. Our work differs in that we focus on latency-
sensitive applications in the cloud and develop appropriate
auto-tuning techniques for this different setting.

7.5 Cloud orchestration

AWS CloudFormation [5] allows tenants to provision and
manage various cloud resources together using templates.
However, interconnection performance requirements cannot
be specified. AWS also supports cluster placement groups
and guarantees low network latency between instances within
the same placement group. Only costly instance types are
supported and the number of instances that can be allocated to
the same placement group is restricted. HP Intelligent Man-
agement Center Virtual Application Network Manager [31]
orchestrates virtual machine network connectivity to ease
application deployment. Although it allows tenants to spec-
ify an “information rate” for each instance, there is no guar-
antee on pairwise network performance characteristics, espe-
cially network latency. Wrasse [50] provides a generic tool
for cloud service providers to solve allocation problems. It
does not take network latency into account.

7.6 Topology-aware distributed systems

Many recent large-scale distributed systems built for data
centers are aware of network topology. Cassandra [37]
and Hadoop DFS [13] both provide policies to prevent
rack-correlated failure by spreading replicas across racks.
DyradLINQ [68] runs rack-level partial aggregation to
reduce cross-rack network traffic. Purlieus [45] explores
data locality for MapReduce tasks also to save cross-rack
bandwidth. Quincy [32] studies the problem of schedul-
ing with not only locality but also fairness under a fine-
grained resource sharing model. The optimizations in these
previous approaches are both rack and application specific.
By contrast, ClouDiA takes into account arbitrary levels of
difference in mean latency between instances. In addition,
ClouDiA is both more generic and more transparent to appli-
cations.

7.7 Network performance in public clouds

Public clouds have been demonstrated to suffer from latency
jitter by several experimental studies [56,61]. Our pre-
vious work has proposed a general framework to make
scientific applications jitter-tolerant in a cloud environ-
ment [72], allowing applications to tolerate latency spikes.
However, this work does little to deal with stable differ-
ences in mean latency. Zaharia et al. [69] observed net-
work bandwidth heterogeneity due to instance colocation
in public clouds and has designed a speculative schedul-
ing algorithm to improve response time of MapReduce
tasks. Farley et al. [26] also exploit such network band-
width as well as other types of heterogeneity in public clouds
to improve performance. To the best of our knowledge,
ClouDiA is the first work that experimentally observes net-
work latency heterogeneity in public clouds and optimizes
application performance by solving the node deployment
problem.

8 Conclusions

We have shown how ClouDiA makes intelligent deployment
decisions for latency-sensitive applications under heteroge-
neous latencies, which naturally occur in public clouds. We
formulated the deployment of applications into public clouds
as optimization problems and proposed techniques to speed
up the search for high-quality deployment plans. We also pre-
sented how to efficiently obtain latency measurements with-
out interference. Finally, we evaluated ClouDiA in Amazon
EC2 with realistic workloads. ClouDiA is able to reduce
the time-to-solution or response time of latency-sensitive
applications by 15–55 %, without any changes to application
code.

As future work, we plan to extend our formulation to
support weighted communication graphs. Another direction
of practical importance is quantifying over-allocation cost
and analyzing its impact on total cost-to-solution for scien-
tific applications. Finally, we will investigate the deployment
problem under other criteria, such as bandwidth, for addi-
tional classes of cloud applications.
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Appendix 1: Problem complexity

Theorem 1 The Longest Link Node Deployment Problem
(LLNDP) is NP-hard.

Proof We reduce the subgraph isomorphism problem (SIP),
which is known to be NP-hard [27], to the LLNDP. Consider
an instance of SIP, where G1 = (V1, E1),G2 = (V2, E2),
and we look for a mapping σ : V1 → V2 such that whenever
(i, j) ∈ E1, then (σ (i), σ ( j)) ∈ E2. We build an instance
of the LLNDP as follows. We set N = V1, S = V2, G =
(V1, E1), and the costs CL(i, j) to 1 whenever the edge (i, j)
belongs to E2, and to 2 otherwise. By solving LLNDP, we
get a deployment planD. G2 contains a subgraph isomorphic
to G1 whenever CLLD = 1 and σ = D. ��

In order to show hardness of approximation, we will
assume in the next two theorems that all communication costs
are distinct. This assumption is fairly realistic, even more so
as these costs are typically real numbers that are experimen-
tally measured.

Theorem 2 There is no α-absolute approximation algo-
rithm to the Longest Link Node Deployment Problem in
the case where all communication costs are distinct, unless
P=NP.

Proof Consider an instance I of the LLNDP, consisting of
G = (N , E), CL(i, j) where i, j ∈ S, and CL(i, j) =
CL(i ′, j ′) if and only if i = i ′ and j = j ′. We order all
the communication links (i1, j1), (i2, j2) …, (i|N |2 , j|N |2) in
increasing order of their communication costs. Let (iw, jw)

be the longest link used in the optimal solution for I , with
optimal valueCL(iw, jw). Notice that any instance of LLNDP
that shares the same G and S as well as the same exact order-
ing of the communication links will also have an optimal
value equal to CL(iw, jw). Now, assume that there is an α-
absolute approximation algorithm A to LLNDP. We build
an instance I ′ by changing the communication costs in I to
CL(ik, jk) = (α + 1)k. Note that I and I ′ share the same
ordering of the communication links, and any two links in
I ′ have communication costs that are at least α + 1 apart.
Since A returns a longest link (iw′ , jw′) for I ′ such that
CL(iw′ , jw′) ≤ CL(iw, jw) + α, A actually solves I ′ opti-
mally. The fact that LLNDP is NP-hard completes the proof.

��
Theorem 3 There is no ε-relative approximation algorithm
to the Longest Link Node Deployment Problem in the case
where all costs are distinct, unless P=NP.

Proof As in the previous proof, we build an instance I ′ that
differs from I only by the costs of the links. We set these costs
to be CL(ik, jk) = (ε + 1)k for every link (i, j) where i, j ∈
S. In that case, for any two links (i p, jp) and (iq , jq) where
p < q, we have CL(i p, jp) < ε · CL(iq , jq). The fact that
a ε-relative approximation algorithm would return a longest
link (iw′ , jw′) of I ′ such that CL(iw′ , jw′) ≤ ε · CL(iw, jw)

completes the proof. ��
Theorem 4 The Longest Path Node Deployment Problem
(LPNDP) is NP-hard.

Proof The proof is otherwise identical to the proof of
Theorem 1 except when (i, j) does not belong to E2, we set
CL(i, j) to |E1| + 1 and the final check is now CLPD ≤ |E1|.

��

Appendix 2: Distance approximations

All techniques in Sect. 5 may require non-negligible mea-
surement time to obtain pairwise mean latencies. We also
experimented with the following two approximations to net-
work distance, which are both simple and intuitively related
to mean latency.

IP Distance

Our first approximation makes use of internal IPv4 addresses
in the cloud. The hypothesis is that if two instances share a
common /24 address prefix, then these instances are more
likely to be located in the same or in a nearby rack than if
the two instances only share a common /8 prefix. We can
therefore define IP distance as a measure of the dissimilarity
between two IP addresses: Two instances sharing the same /x
address prefix but not /x+1 address prefix have IP distance 32
- x. We can future adjust the sensitive of this measurement
by considering g(1 ≤ g < 32) consecutive bits of the IP
addresses together.

Hop Count

A slightly more sophisticated approximation is the hop count
between two instances. The hop count is the number of inter-
mediate routers through which data flows from source to
destination. Hop count can be obtained by sending packets
from source to destination and monitoring the Time To Live
(TTL) field of the IP header.

Experimental evaluation We evaluated the two approxi-
mations above with the same experimental setup described in
Sect. 6.2. We compare both IP distance and hop count against
the mean round-trip latency measurement results obtained
using the staged approach described in Sect. 5.
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Fig. 16 Latency order by IP distance

In Fig. 16, we show the effect of using IP distances as an
approximation. In this experiment, we consider 8 consecu-
tive bits of the IP address together: two instances sharing a
/24 address prefix have IP distance 1; two instances with the
same /16 prefix but not /24 prefix have IP distance 2, and so
on. We also experimented with other sensitivity configura-
tions and the results are similar. The x axis is in log scale and
divided into three groups based on the value of IP distance.
Since we used the internal IP addresses of EC2, all of which
share the same /8 prefix, we do not observe IP distance of 4.
Within each group, links are ordered by round-trip latency
measurements. If IP distance were a desirable approximation,
we would expect that pairs with higher IP distance would also
have higher latencies. Figure 16 shows that such monotonic-
ity does not always hold. For example, within the group of
IP distance = 2, there exist links having lower latency than
some links of IP distance = 1, as well as links having higher
latency than some links of IP distance= 3. Interestingly, the
lowest latencies are observed in pairs with IP distance= 2.

The effect of using hop count as an approximation is
shown in Fig. 17. Similarly, the x axis is in log scale and
divided into three groups based on hop count. We do not
observe any pair of instances that are two hops apart. Within
each group, links are ordered by round-trip latencies. As in
Fig. 16, there exists a significant number of link pairs ordered
inconsistently by hop count and measured latency.

The above results demonstrate that IP distance and hop
count, though easy to obtain, do not effectively predict net-
work latency.

Appendix 3: Public cloud service providers

To demonstrate the applicability of ClouDiA in public clouds
other than the one offered by Amazon Web Services, we
report latency heterogeneity and mean latency stability mea-
surements in Google Compute Engine and Rackspace Cloud
Server.

Figure 18 shows the CDF of the mean pairwise end-to-end
latencies among 50 Google Compute Engine n1-standard-1
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Fig. 17 Latency order by Hop count
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Fig. 19 Mean latency stability in Google Compute Engine
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Fig. 20 Latency heterogeneity in Rackspace Cloud Server

instances in the us-central1-a region, obtained by measuring
TCP round-trip times of 1 KB messages. Around 5 % of the
instance pairs exhibit mean latency below 0.32 ms, whereas
the top 5 % are above 0.5 ms. Figure 19 shows the mean laten-
cies of four representative links over 60 h, with each latency
measurement averaged over an hour. We observe a similar
behavior of mean latency stability over time as in Amazon
EC2. By contrast, latency heterogeneity is somewhat smaller;
however, it is still present.

Similarly, Fig. 20 shows the CDF of the mean pairwise
end-to-end latencies among 50 Rackspace Cloud Server
performance 1–1 instances in the Northern Virginia (IAD)
region, obtained by measuring TCP round-trip times of 1 KB
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Fig. 21 Mean latency stability in Rackspace Cloud Server

messages. Around 5 % of the instance pairs have latency
below 0.24 ms, whereas the top 5 % are above 0.38 ms.
Figure 21 shows the mean latencies of four representative
links over 60 h, with latency measurement averaged over an
hour. The effects observed are largely in line with the ones
seen in the Google Compute Cloud.

The above results confirm the existence of latency het-
erogeneity and mean latency stability in the public clouds of
both Google Compute Engine and Rackspace Cloud Server.
The results suggest that by adopting ClouDiA, cloud tenants
can achieve significant reduction in time-to-solution or ser-
vice response time in these public clouds as well, and not
only on Amazon E C2.
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