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Abstract This paper looks at consensus algorithms for

agent cooperation with unmanned aerial vehicles. The

foundation is the consensus-based bundle algorithm, which

is extended to allow multi-agent tasks requiring agents to

cooperate in completing individual tasks. Inspiration is

taken from the cognitive behaviours of eusocial animals for

cooperation and improved assignments. Using the behav-

iours observed in bees and ants inspires decentralised

algorithms for groups of agents to adapt to changing task

demand. Further extensions are provided to improve task

complexity handling by the agents with added equipment

requirements and task dependencies. We address the

problems of handling these challenges and improve the

efficiency of the algorithm for these requirements, whilst

decreasing the communication cost with a new data

structure. The proposed algorithm converges to a conflict-

free, feasible solution of which previous algorithms are

unable to account for. Furthermore, the algorithm takes

into account heterogeneous agents, deadlocking and a

method to store assignments for a dynamical environment.

Simulation results demonstrate reduced data usage and

communication time to come to a consensus on multi-agent

tasks.

Keywords Consensus � Task allocation � Cooperation �
Cognitive behaviours � Eusocial animals

Introduction

The rise in the use of unmanned aerial vehicles (UAVs) is

becoming prevalent throughout the world. UAVs are

finding valuable usage in performing military tasks that fall

into the categories of the dull, dirty and dangerous [1]. As

research develops, the future of UAVs looks progressively

towards civilian activities [2]. Common applications

include surveillance of power lines or pipes [3], disaster

monitoring [4] and search and rescue operations [5]. As the

applications for UAVs grow, so too does their need to

cooperate to perform larger and increasingly complex

tasks.

Creating a UAV to cover all situations and problems is

difficult due to hardware and software limitations [6], and

it becomes far easier to specialise UAVs to a precise

problem. However, this reduces the UAV’s ability to solve

a wide variety of tasks in a dynamic environment. With a

diverse selection of UAVs that can form teams and work

together to complete tasks, limitations of any single UAV

can be solved. Using multiple UAVs will improve the

efficiency with which a number of tasks can be performed

by completing tasks in parallel. In this way then, a system

that allows heterogeneous agents to assign and complete

tasks together increases the flexibility of the system, an

aspect of producing higher autonomy [7].

Of particular interest within the area of UAV, cooper-

ation is the task assignment problem (TAP) which assigns a

finite number of agents to complete a finite number of tasks

as efficiently as possible. This problem can be solved with

a centralised or decentralised solution, but current research
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looks at decentralised methods that provide a feasible

solution for real-world application. Many researchers have

solved the TAP using auction algorithms [8–10], where

agents make bids for tasks and receive assignments based

on their bids by a single auctioneer. Whilst task allocation

for an individual agent is relatively simple, the difficulty

occurs when a decentralised algorithm is used for con-

sensus between all agents. One such solution that makes

use of auction algorithms is the consensus-based auction

algorithm (CBAA) [11], which solves the TAP for single-

agent tasks that are defined as tasks that require a single

agent to complete. The CBAA lets agents make bids for

tasks and provides a system for decentralised consensus on

assignments, giving us a conflict-free solution that has

superior convergence and performance than other auction

algorithms.

The consensus-based bundle algorithm (CBBA) [11]

was created to solve an extension of the TAP where agents

queue up tasks they will complete: individual agents take

available tasks and compute every permutation given their

current queue of tasks or ‘‘bundle’’, where the highest

rewarded permutation becomes their bid for that task. In

this way, agents continually remove and revise new tasks

as other agents find they can create a more valuable

sequence with that task. Thus, the CBBA gives a conflict-

free solution with a guaranteed 50 % optimality to the

multi-assignment problem.

Extensions of the problem can be developed that sim-

ulate realistic situations by designing complex tasks with

stricter requirements. The consensus algorithm needs to be

developed to handle these new tasks, including tighter task

selection and higher cooperative decision-making. The

requirements that are looked at are multi-agent, equipment

requirements and task dependencies, where a multi-agent

task is defined as one that requires more than one agent to

complete, an example of which would be using two UAV’s

to carry construction material [12]. A task that requires

specific equipment would require unique agents; Merino

et al. [13] looked at using multiple heterogeneous agents

for cooperative fire detection. Task dependencies are

defined as tasks that require other tasks to be completed

before they can start, creating a list of tasks that must be

completed in order.

Two solutions for the multi-agent task allocation prob-

lem [14, 15] both have their limitations that make them

unsuitable. Firstly, the creators of the CBBA extended their

algorithm for heterogeneous cooperation [14]; this exten-

sion solved duo cooperation constraints where a simulation

would contain two agent types that solve three different

types of tasks. Solo tasks required one type of agent; pre-

ferred duo tasks scored greater for the assignment of two

different agents and required duo tasks needed one of each

agent type. But this solution is limited to two agents, and

the proposed solution here will allow any number of agent

requirements on tasks. Secondly, another solution to the

multi-agent problem [15] used a central solver to group-

related tasks into a set and assign enough agents to com-

plete them. But using a centralised algorithm will not

provide a robust and feasible solution for real-world

applications. This paper provides a solution for the de-

centralised assignment of multiple tasks that require any

number of agents for their completion. Solving this prob-

lem can increase the cooperation of UAVs to an improved

autonomous operational level further reducing the need for

human interaction. To achieve this, agents need to develop

an increased awareness of what other agents are planning

more so than required for the CBBA. Agents must plan

their own schedules around that of others and come to

complex agreements on task order. As the complexity of

decision-making increases so too does the requirement for

information needed to make a decision and the underlying

communication required [16]. The reliance on decisions of

other agents adds to the problem, to deal with this chal-

lenge, inspiration can be drawn from the cognitive

behaviours of eusocial animals using their complex

behaviours for group decision-making [17–19].

Using the framework set up by the CBBA, we extend

the algorithm to account for existing limitations, leading us

to the consensus-based grouping algorithm (CBGA).

Cognitive Decision-Making from Eusocial Animals

Eusocial animals, like the majority of ant species, a number

of bee species and a few wasp species have some simi-

larities to that of robotic cooperative systems [17, 20, 21].

Unlike most animal species, eusocial animals focus on the

group rather than the individual. An ant, for instance, has

evolved to put the success of the colony ahead of itself;

ants have been shown to use self-sacrificial defences to

protect the nest [22]. Similarly with a cooperative system,

an individual agent should focus on maximising the per-

formance of the group as a whole rather than its own

performance. Multi-agent tasks present a unique set of

problems relating to team organisation and cooperation.

The CBBA as the bases for this extension is focused

entirely on the individual and improving its score which in

turn improves the overall team score. With multi-agent

tasks, a greater individual improvement is not necessarily

the best improvement for the team where incomplete team

assignments give no reward. Taking inspiration from col-

lective animal behaviours of large groups such as ants can

be useful in developing algorithms for group decision-

making. Ant nests allocate specific workers to specific

tasks without any central or hierarchical control [23, 24].

Whilst the task allocation is individual centric and the
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decision is made by an individual, it must still be beneficial

to the group. Some decisions will reduce an agent’s con-

tribution but overall increase the team’s performance, the

allocation algorithm must account for both loss of time and

score by not fully allocating multi-agent tasks.

Bees perform task partitioning where a task is split up into

a number of steps that are performed by multiple bees [25].

This focuses the hive on the task and its division rather than

the individual performing the task. As part of a ‘‘hygienic

behaviour’’, worker bees remove diseased brood cells from

the hive. This requires two operations, the removal of the cap

on the cell followed by removing the diseased brood. Often,

an individual worker bee will focus on either uncapping or

removal. Bee colonies show complex cooperative behav-

iours for the self-organisation and allocation of workers in

the hive [26]. Multiple systems have been proposed that

show how bee colonies come to collective decisions in tasks

such as the allocation of workers on nectar sources with

changing environmental conditions [27–29]. Detrain and

Deneubourg [30] show how if–then rules embedded in ant

behaviours, however simple in their logic ultimately pro-

duce efficient group-level responses for objectives such as

resource acquisition and risk avoidance. Further that these

behavioural rules coupled with self-organising processes

provide a robust and efficient method for problem solving. A

difficulty encountered with multi-agent tasks is that agents

can get stuck assigned to tasks that no other agents plan to

assist with. When a multi-agent task has insufficient

assignments, the task cannot be completed and will not

score. Bees have been shown to exhibit behaviours that

result in a form of task quitting by becoming insensitive to

certain stimuli for a period of time [31]. This process allows

bees to reassign to high-priority areas and would help

improve agent assignments by distributing agents to tasks

with a higher demand. With the inclusion of multi-agent

tasks, the developed algorithm has a greater focus on the

assignments and score of other agents. Using the task quit-

ting method from bee colonies and the team-focused

assignments of ant nests improvements in the cooperative

assignment for multi-agent tasks can be compared.

Consensus-Based Algorithms

Consensus-Based Auction Algorithm

The consensus-based auction algorithm (CBAA) solves

single assignment problems using both auction and con-

sensus in a decentralised system [11]. The algorithm con-

tains two phases that alternate until assignments and

consensus are achieved. The first phase of the algorithm is

the auction process, whilst the second is a consensus

algorithm that is used to converge on a winning solution.

The CBAA by iterating between the two phases can exploit

the benefits of both auction and consensus algorithms.

Robustness and computational efficiency are achieved

from the auction algorithm whilst the decentralised con-

sensus algorithm can exploit network flexibility and con-

verge on a conflict-free solution. The CBAA was shown to

provide a conflict-free, feasible solution, which previous

algorithms were unable to account for.

Phase 1: The Auction Process

The first phase of the algorithm is the auction process. Here,

each agent i places a bid for a task j asynchronously with all

other agents. Every agent stores and updates two vectors x

and y of length Nm where Nm is the number of tasks in the

simulation, both are initialized as zero vectors. The first

vector xi records the task list for agent i, if agent i has been

assigned to task j, then xij ¼ 1, and 0 if not. The second

vector is the winning bids list yi which stores the current

highest winning bid for each task that agent i has knowledge

of. Agent i calculates the cost cij for each task j, subtracting

cost from a fixed reward to produce a task score S
j
i . Agent

i then places a bid that is greater than any current bid for a

task that provides the maximum individual increase in score.

Phase 2: The Consensus Process

The second phase of the CBAA is the consensus section of

the algorithm, which involves communicating the winning

bid lists of each agent and coming to a consensus on

assignments. Here, agents converge on a conflict-free

solution using a consensus strategy that converges on a list

of winning bids.

Each agent communicates their winning bid list to all

other agents within communication range. G(s) is a sym-

metrical adjacency matrix used to determine whether there

is a communication link between agents. If there exists a

link between agents i and k at time s, then gikðsÞ ¼ 1,

otherwise it is 0. When such a link exists, agents are said to

be neighbours. At an iteration of phase 2, agent i sends its

winning bid list yi to all its neighbours. Likewise, agent

i receives a winning bid list yk from each neighbour.

Consensus is performed on the winning bid lists such that

agent i replaces yij values with the largest value between

itself and its neighbours. If an agent finds that a task it had

selected has been outbid, then it will lose that assignment.

The Consensus-Based Bundle Algorithm

The major downside to the CBAA is that whilst at a specific

time each agent can select the most optimal task to complete,
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it does not take into account future selections. When a number

of tasks are located in close proximity, a single agent can

perform all the tasks rather than sending an agent for each

task. Researchers addressed the problem by grouping

assignments into bundles for bidding [14, 24–27] creating the

multi-assignment problem, where each agent bids for multi-

ple tasks. Each assignment combination or bundle was treated

as a single item for bidding which led to complicated winner

selection methods. The CBAA was extended to the multi-

assignment problem developing the CBBA [11], which gives

a conflict-free solution with a guaranteed 50 % optimality. In

the CBBA, each agent has a list of tasks potentially assigned

to it, but the auction process is done at the task level rather

than at the bundle level as previous algorithms had done.

Similar to the CBAA, the CBBA contains two distinct phases

for controlling the allocation and consensus of tasks.

Phase 1: The Bundle Construction

During the first phase, an agent internally builds up a single

bundle containing all the tasks it plans to complete and updates

it as the assignment process progresses. Each agent continu-

ally adds to its bundle until it is incapable of adding any other

tasks. Agents carry two lists of tasks: the bundle bi and a path

pi. The bundle contains all tasks an agent will complete and is

grouped in the order tasks were added, and the path, however,

contains an ordered sequence of tasks that agent i will perform.

Using S
pi

i as the total reward for agent i performing the tasks

along the path pi and where S
pihnfjg
i is the total reward from

inserting task j into position n of the path pi. If a task j is added

to the bundle bi, it incurs the score improvement of

cij bi½ � ¼
0; if j 2 bi

maxn� pij jS
pihn jf g
i � S

pi

i ; otherwise

�
; ð1Þ

where |�| denotes the cardinality of the list, and hn denotes

the operation that inserts the second list right after the nth

element of the final list. A new task is inserted into the

current path at all possible locations to find the highest

increase in reward. Each agent carries five vectors: a

winning bid list yi, a winning agent list zi, an agent update

time si, a bundle bi and the corresponding path pi. The

winning agent list zi stores the agent currently assigned to

each task such that when zij = k agent i believes that agent

k is assigned to task j. An agent needs to know not only if it

is outbid on a task it selects but who is assigned to each

task as well; this enables better assignments based on more

sophisticated conflict resolution rules.

Phase 2: Conflict Resolution

Similar to the CBAA, the CBBA runs a consensus phase to

remove agents bidding for the same task. In the CBAA,

agents made bids on single tasks and released them upon

receiving a higher value in the winning bids list. On the

contrary, in CBBA, agents make bids on tasks based on

their currently assigned task set. If an agent is outbid on a

task, then the score values for all the following tasks are no

longer valid. Therefore, when an agent is outbid, it must

release all the tasks added after the outbid task.

When agent i receives a message from another agent, k,

zi and si are used to determine which agent’s information is

the most up-to-date for each task. There are three possible

actions agent i can take on task j:

1. Update: yij ¼ ykj; zij ¼ zkj

2. Reset: yij ¼ 0; zij ¼ ;

3. Leave: yij ¼ yij; zij ¼ zij

Using a lookup table, an agent determines whether it

should update, reset or leave the bid. Agents compare their

knowledge on task j between the receiver i and the sender

k along with when each agent last received communication

from the agent they believe is assigned to task j. Agents

alternate between the two phases until they converge on a

conflict-free solution.

Problem

The CBBA is limited to single-agent tasks and is unable to

handle further restrictions on which agents can complete

those tasks. This paper develops an algorithm that can deal

with and provide a conflict-free solution to the following

restraints.

• Tasks require 1 to n agents

• Tasks require specific equipment or sensors

• Tasks can have an order of completion

Agents will need to form groups containing the correct

equipment before being able to complete a task. Addi-

tionally, tasks might require a specific order of completion.

Task Assignment Problem

The task assignment problem is a combinatorial optimisa-

tion problem that tries to find the least-cost solution

between two disjoint sets. There is a set of agents I �
f1; . . .;Nng and a set of tasks J � f1; . . .;Nmg. With a valid

assignment, each agent i 2 I must be assigned to a task and

each task j 2 J must have exactly one agent assigned.

An agent has a cost associated with it for completing a

task. Let cij be the non-negative cost of assigning the ith agent

to the jth task. The objective is to assign each task one agent
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in such a way as to minimise the overall cost of completing

all the tasks. If we define a binary variable Xij where Xij = 1

to indicate agent i is assigned to task j, otherwise Xij ¼ 0.

Then, the total cost of the assignment is equal to (2).X
Xij � cij for i ¼ 1 to n; j ¼ 1 to m: ð2Þ

For an assignment to be efficient, we say the task allocation

must be valid and the cost is minimised (3).

Cost ¼ min
X

Xij � cij for i ¼ 1 to n; j ¼ 1 to m
� �

:

ð3Þ

Restricted Task Assignment Problem

As we extend the TAP, we are creating restrictions that limit

which agents are valid depending on their equipment but we

remove the single assignment restriction. Each agent i can be

assigned to multiple tasks as part of the CBBA; conversely,

each task j can similarly have multiple agents assigned to it.

Each task j contains an agent requirement Lj that specifies how

many agents are required for the task. Although multiple agents

can potentially be assigned to a single task, the cost function

will stay the same; however, the algorithm will not limit Xij = 1

to a single instance for each j. Instead for an assignment to be

valid,
P
ðXij8iÞ ¼ Lj must be true. Additionally, there is a list

of equipment E � fe1; e2. . .; eNqg found in the assignments

where ei is a list of equipment that agent i has such that ei � E.

Similarly, task j requires a specific list of equipment ej where

ej � E. When ei \ ej 6¼ ;, agent i can assist on task j. A suc-

cessful assignment is worked out using

ejn eijXij [ 0
� �

6¼ ; and ijXij [ 0
� �

¼ Lj; ð4Þ

where ‘‘\’’ is the set compliment, thus when (4) is true task

j has been successfully assigned with the correct equipment

and number of agents.

When making assignments with task planning from the

CBBA, tasks are only available for bidding when all

requirements have been met, agents should be able to plan

all tasks in advance.

Therefore, we create a set of prerequisites Pj 2 J for

each task j containing which tasks must be completed

before the related task can be attempted. When Pj ¼ ;, task

j has no prerequisites and availability is limited to the

highest bidder as before. Using the existence of a winning

bid Yij, we can begin to establish whether a required task is

going to be completed.

Xij ¼
X
ðYim [ 0Þ 8 m 2 Pj: ð5Þ

when (5) is positive agent i can potentially complete task

j where all prerequisite tasks m have complete assignments.

Depending on the specific requirements of a task, we can

add either type of restriction to determine whether a spe-

cific agent can complete a chosen task.

Consensus-Based Group Algorithm

The consensus-based bundle algorithm (CBBA) was created

to solve an extension of the TAP where agents are allowed to

queue up tasks they will complete. Individual agents take

available tasks and compute every permutation given their

current queue of tasks. The greatest increase in reward is used

as the tasks bid. Agents continually add and remove tasks as

other agents find higher valued sequences with that task.

However, the algorithm does not consider multi-agent

requirements of the task, a multi-agent task is defined as a task

that requires more than one agent for it to be completed.

Further to that, current algorithms [14, 15, 32] simplify the

problem by allocating agents into groups and solving as a

regular TAP. These algorithms represent groups of agents as

individual agents and solve the problem with the CBBA. The

CBGA proposed in this research will solve the multi-agent

task problem but keep agents independent allowing them to

freely form groups to complete multi-agent tasks.

Further requirements are considered by placing equip-

ment requirements onto each task. This restricts which

agents can complete specific tasks and creates an algorithm

that can handle heterogeneous agents. After developing a

structure for assigning multiple agents to a single task, we

can use cooperation to solve equipment limitations. Current

algorithms are unable to account for the assignment and

consensus when multiple agents are required for a single

task. Using the framework set-up by the CBBA, the algo-

rithm is extended to account for the new requirements. Tasks

will require varying numbers of agents and equipment.

Further additions to autonomy can be achieved by adding

task scheduling to the framework where tasks are dependent

on the completion of other tasks.

The CBBA provides a conflict-free solution with a

guaranteed 50 % optimality; however, once we expand on

the situation and increase the requirements of tasks the

algorithm cannot complete these problems. The focus of

this research is to extend the CBBA to manage the

increased complexity of task requirements. These exten-

sions lead to the CBGA [33].

Local Data

With the CBBA, task and agent information are stored

locally at the beginning of the simulation. Each agent

342 Cogn Comput (2014) 6:338–350
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stores two vectors, a winning bids list yi and the winning

agent list zi. When transferring this data storage system

over to a multi-task multi-agent system, problems are

caused with consistency between agents and tasks. Dif-

ferent tasks can have varying number of agents assigned to

them, for tasks that require multiple assignments a vector

cannot store data of each assignment. Therefore, with the

CBGA, we need to modify the storage of these values to

allow multiple agent assignments. Originally, the winning

bids list yi and the winning agent’s list zi are two vectors of

length Nm where Nm is the number of tasks in the algo-

rithm. With these two vectors, each agent can keep track of

the highest bid for each task with yi and which agent made

that bid with zis. Once we make tasks require multiple

agents, we must convert both vectors into matrices to keep

track of contribution bids and multiple winners. This gives

two matrices of size Nm �maxðLjÞ where Lj is the required

number of agents for task j. However, each task j that has

an Lj less than the maxðLjÞ will leave unused space in the

matrix. Additionally, we now need to communicate two

matrices rather than two vectors.

Instead of using two matrices, we can remove redun-

dancy by merging them into a single matrix X which

contains all the winning bids and is of size Nn � Nm where

Nn is the number of agents in the simulation. This allows

the algorithm to use rows to display tasks and columns to

display agents, thus xij corresponds to the bid agent i has

made for task j otherwise 0 if the agent has not made a bid.

Using the values in each row, we can determine the total

score for completing a task as shown in (6).

Cj ¼
X

i

xij: ð6Þ

where Cj is the score for completing task j. Further, the

number of instances of nonzero values in each row should

never exceed the number of required agents Lj.

In a dynamic multi-agent system, we cannot assume each

agent will store data in the same order, in a dynamic envi-

ronment where agents look after their own data, new tasks or

agents can be discovered in different orders to other agents.

Therefore, we cannot use the matrix index of X as a reliable

identifier for an agent or task. Agents therefore need to store

individually a separate agent vector I that contains all known

agent IDs and a task vector J that contains all known task

IDs. These two vectors are used as lookup tables to the

assignment matrix X where each vector can be ordered dif-

ferently for each agent. With this new matrix shown in

Table 1, agents can store data dynamically and build up a list

of agent to task assignments as they discover new agents or

tasks in the environment. When a new agent is discovered an

extra, column is created in the assignment matrix and the ID

is added to the agent vector. Agents can individually build up

their assignment matrix in different orders but still

communicate the data reliably without conflict using their

own task and agent vectors. Update times from agents can

continue to be stored in a vector si and are similarly identi-

fied using the agent vector I.

Bundle Construction

In phase 1, each agent constructs a bundle of tasks bi and

the ordered path for those tasks pi. Bundle and path con-

struction works as developed in the CBBA [11] but with

new task restrictions. Each task provides a fixed score rj for

each agent as a reward according to the task requirement

and an agent’s capability. The overall cost function for an

agent i completing task j is worked out as

cij ¼ rj � ðdij þ tjÞ; ð7Þ

where dij is the distance agent i is from task j and tj is the

time it takes to complete task j. The sum of these costs is

taken away from the reward rj of completing task j. The

cost function is calculated using the agent’s current posi-

tion, for pre-planning a path of tasks to complete the pre-

vious task location must be used. Calculating the current

tasks, cost will vary depending on the previous task. An

agent must maximise the reward finding the best fitting

path for the tasks. When a task is placed inside the path, dij

takes the form dlj where l is the previous tasks location. The

value cij is used to work out whether a bid will be suc-

cessful against another agent. However, when working out

the minimum cost in pi, we need to account for other agents

involved in the task and their travel times, thus overall cost

for task j is

cij ¼ rj � max dmj 8m 2 M;Xij [ 0
� �

; dij

� �
þ tj

� �
; ð8Þ

where 8m 2 M;Xij [ 0 finds the latest arrival time to task

j out of the assigned agents in Xij and agent i.

Adding together, all the costs for an agent’s path gives

us S
pi

i the total score for agent i with path p. We can

describe the score for slotting task j into position n as

Table 1 Dynamic variable storage for agent i, where Xijk references

the winning bid agent i believes agent k has made for task j
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S
pihn jf g
i . When a task is updated with a new agent, the

previous paths do not immediately need to be discarded;

however, the path time may change depending on the new

assignment.

A problem with the CBBA for multi-agent assignments

is that agents decide which tasks to do based on their own

individual improvement. This is a result caused by the

multi-agent requirements where agents cannot receive a

score from a multi-agent task that do not have all the

required assignments. To create team-focused assignments,

agents will calculate the total value for a successful task

rather than just their individual contribution. This priori-

tises agents into completing team-based tasks that already

have assignments despite it rewarding less for the indi-

vidual [23].

The bundle algorithm shown in Fig. 1 is similar to that

in the CBBA [11] but uses different costing functions, data

storage and allows multiple assignments. The bidding

aspect of the algorithm will not change with the complexity

of tasks; however, the cost functions will change as the

deciding factor in who should complete a task. However,

assignments for multi-agent tasks will function differently

to the CBBA. Multi-agent tasks are added to the valid task

list hij when either the task is not full (line 9, Fig. 1) or the

task is full but the agent has a higher bid than smallest

current bid in the task (line 11, Fig. 1). Single-agent tasks

are added to the valid task list hij in the same way as the

CBBA (line 17, Fig. 1) where I(�) is the unity if the argu-

ment is true and zero otherwise. From the list of valid tasks

hij, the task that provides the greatest improvement in score

at position ni,ji in the path pi is selected and added to the

agent’s assignments. This process is repeated until the

agent is unable to add any more tasks that improve its

score.

Consensus

Phase 2 of the algorithm takes communications received

from neighbours and analyses their knowledge of

assignments to come to a consensus. Each agent com-

municates their winning bid matrix Xi and the time

stamp si displaying the last information update from

each of the other agents. As agents receive assignment

data from neighbours, they will build up and store

assignment matrixes for each neighbour where Xijm is

defined as the bid agent i thinks agent m has made for

task j. The consensus algorithm is split into two sec-

tions, the first section (line 4–6, Fig. 2) deals with tasks

that require a single agent, using Lj to determine the

number of agents required for task j. Tasks requiring a

single agent will require the same consensus algorithm

as found in the CBBA [11]. The consensus algorithm

assumes only valid bids are made during the bundle

construction algorithm, thus no changes are required for

single-agent tasks. This paper focuses on tasks that

require more than one agent and thus require a different

consensus algorithm to converge on an answer for the

multi-agent tasks.

The second section (line 7–22, Fig. 2) contains the

multi-agent consensus part of the CBGA, which is split into

two phases: the first correlates the receiver’s current

information with that of the sender and secondly, the

receiver takes new information from the sender and merges

it with its own data to produce a consistent set of agreed

information. The CBBA used a table for determining

whether to update, leave or reset information; with the

extended problem, this becomes problematic. When

another agent has differing assignments, it does not nec-

essarily require leaving or updating the information as done

in the CBBA, and the information could merge causing

both agents to be correct. Further complications come

when equipment requirements are taken into account. The

algorithm is split into two phases to best handle the

incoming information; by correcting each agents

Fig. 1 Bundle construction for the CBGA
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information, the agent can merge incoming data better by

not having to account for mistakes in its own data.

The first phase (line 7–11, Fig. 2) takes all the winning

assignments the receiver has stored and compares how

correct that information is with the sender. Comparing

skm [ sim where skm is the last time, the sender k had

communication with m, the receiver i checks if it has had

an earlier update with m. If the sender has had a better

update time, then their data will be more accurate, and this

could be either a better bid or that the agent is no longer

assigned to the task. When Xijm [ 0, agent i believes an

assignment is taking place between agent m and task j. If

skm [ sim, then agent k has been updated by m; more

recently, thus, its information has better reliability.

During the second phase (line 12–23, Fig. 2), the

receiver’s information is updated with new information

from the sender. From the first phase, an agent knows that

all of its assignments, according to the sender, are currently

up-to-date. Following this, the agent can proceed through

each task and evaluate any additional data from the sender.

When the sender k has an agent m assigned to task j that is

neither the receiver nor assigned by i to the given task (line

12–13, Fig. 2), the algorithm can update the agents win-

ning bid list with the new assignment.

When the algorithm replaces an agent in a current group,

it must replace an agent that is carrying at least one piece of

identical equipment, as the bidding process will not let a

group fill up without meeting the required equipment list. IfP
m ðXijm [ 0Þ\Lj, then there is a space available in the

current task, and if em 2 ejn eijXij [ 0
� �

, there is still a

requirement for an agent m with specific equipment em

without the need to replace an assigned agent.

If there are not available spaces in the group, then

min Xijn 8n
� �

\ Xkjm and en ¼ em; ð9Þ

is used to find, if feasible, an agent with the same equip-

ment as m and with a lower contribution score. If these

conditions are met, then the algorithm can replace the

lower scored agent. To avoid any chance of deadlocking,

we must account for the small chance of scores being tied.

In this situation, the agent with the highest ID gets priority.

It is a systematic way to guarantee a winner despite equal

scores.

The purpose of a task quitting system is to move

resources to higher-demand areas; in the case of multi-

agent task assignment, task quitting will help remove

agents from tasks with unmet requirements to assist in

tasks that are closer to meeting the requirements.

X
i

Xij [ 0

 !
\ Lj and t � Tj [ d: ð10Þ

As agents assign tasks, they record the time of assignment

Tj. Using (10), when any agent finds a task they are assigned

to that is not filled within the time threshold d, they will

remove and mark the task unfeasible until other agents assign

themselves. With multi-agent tasks only providing a score

for a complete assignment, this method of task quitting

allows agents to adapt to the changing demand of tasks.

When a task’s requirements are partially met, it is closer to

scoring than an unassigned task, thus it is naturally in more

demand to be completed. Inspired by the cognitive behav-

iours of worker bees in hives [31], this addition allows agents

to prioritise completing partially full tasks.

Performance

Test Scenario

Each test contains 20 tasks with a varying number of agents

where Nn 2 f1; . . .; 10g. The objective of each experiment

is to maximise the total agent score. The overall score of

each experiment is the sum of all rewards for the completed

Fig. 2 Conflict resolution for the CBGA for multi-agent tasks.

Consensus performed between two agents i and k updating agent bid

list for agent i
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tasks minus the cost of distance travelled. Multi-agent tasks

will reward a score to each agent involved signifying the

difficulty and importance of such tasks. Observations will

be made on the overall impact on the score and the amount

of communications per consensus. Communication

between agent i and agent k where allocation data are sent

is counted as a single communication step. Each experi-

ment was run 100 times for each increasing number of

agents.

Communication

With changes made to the data structures on each agent,

comparisons can be made between the two different data

storage methods. Adapting the original method to multi-

agent tasks uses multiple vectors to store each bid. The new

method uses a dynamic matrix for each agent. Assignments

are sent individually in the form ½ijxij�. Figure 3 shows that

the new system reduces the amount of data sent for multi-

agent tasks. Data sent with the new system gradually

increases over the simulation. The old method involved

sending the entire assignment data regardless of whether

bids had been made. With the new system, redundant data

are removed allowing agents to send only the required

information.

Multi-Agent Tasks

To test the relative effectiveness of multi-agent task

assignments, comparisons are drawn to that of the CBBA

where each task requires a single agent. Using the CBGA,

Fig. 4 shows the successful assignment of multi-agent

tasks where each task requires two agents, the experiment

is run in three dimensions but for easier visualisation only

displayed in one dimension over time. Figure 5 has three

experiments plotted that tested both algorithms, single-

agent tasks use the CBBA and multi-agent tasks use the

CBGA. The first experiment used just the CBBA where

each task required a single agent to complete it. The second

experiment tested the CBGA by requiring two agents to

complete each task, and the assignments are seen in Fig. 4.

The final experiment used both types of tasks making the

agents consensus on assignments for 10 multi-agent tasks

and 10 single-agent tasks.

In the experiment, the multi-agent tasks initially provide

lower scores than the single-agent tasks but as the number

of agents increases a greater increase in score is observed.

Interestingly, the total number of communication steps

actually decreases with the introduction of multi-agent

tasks, this is significant when noted that the tasks in the

experiment 2 double the total number of assignments

required for consensus from 20 assignments to 40 because

each task requires two agents instead of one agent.

As expected, the computational times in Fig. 6 show the

CBGA takes longer to come to a consensus, and this was

probable due to the increased complexity of assignments.

The CBBA solves single-agent assignments where each

task will require 1 assignment. The CBGA solves multi-

agent assignments where each task will require more than

one assignment. The CBBA in Fig. 5 had to solve 20

assignments, 1 per task; alternatively, the CBGA had to

solve 40 assignments because each task required 2 agents.

Comparing computational time and number of
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communication steps, the CBGA takes a longer time to

compute the consensus when receiving new assignments,

but requires less overall communication between agents to

achieve the final consensus.

Looking at the movement of agents in Fig. 4 presents

reasons why communication drops are observed for multi-

agent tasks with the CBGA. Between t = 0 and 60, each

agent assigns and completes its initial task along with

another agent. After completing the first task, agents

commonly stay together for succeeding tasks, with the

closest task yielding the highest reward neither agent needs

to dispute the best choice. Occasionally, two groups may

attempt the same task, which will then require consensus

but overall each self-made group continues through the

simulation effectively as one entity. With 5 agents mean

communication steps decreased significantly (decrease of

14 steps) between the CBBA (24 ± 8 steps) single-agent

tasks and the CBGA (10 ± 2 steps) multi-agent tasks as

shown in Fig. 5. At 10 agents mean communication steps

for consensus decreased further (decrease of 24 steps)

showing a significant communication drop for consensus

from single-agent tasks (47 ± 14 steps) to multi-agent

tasks (23 ± 4 steps). Improvements are significant to

p \ 0.01 for statistical significance at 1 %.

When addressing multi-agent tasks using an algorithm

that focuses on individual improvement, additional agent

incentive is required to increase the effectiveness of multi-

agent assignments. Task quitting and team rewards were

added, and their improvements can be seen in Fig. 7. Using

either task quitting or team rewards produced more com-

plete assignments which in turn provided a higher score.

Implementing task quitting on its own provides an average

increase of 206 with an average score of 5,962 ± 708.

Another improvement of 144 can be achieved by assigning

with respect to the team rewards over task quitting pro-

ducing an average score of 6,106 ± 601 but this

improvement is only significant to p \ 0.15. Further

improvements are gained from using both functions

increasing the mean base CBGA score from 5,756 ± 722

to a mean score of 6,216 ± 634 with a statistical signifi-

cance to p \ 0.01.

As task complexity increases, heterogenous agents are

introduced. Figure 8 shows three experiments involving

heterogenous agents and tasks: experiment #1 has two

agent types A and B complete solo tasks half requiring

agent type A and half requiring agent B. Experiment #2

contains the same scenario as found in experiment #1

except a third type of task is added that requires both agents
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A and B. Finally, experiment #3 contains three types of

agents and three different tasks requiring agents A, AB and

ABC, respectively. Agents are split evenly between the

three types with uneven splits focusing on agent A then B

first. Tasks are fixed at 20 in each simulation with a split of

8–6–6 between the three tasks A, AB and ABC. Figure 9

shows a typical assignment of experiment #3 with reduced

tasks for visual clarity. A reduction in the communication

required to meet a consensus is observed once a task

requires all three equipped agent types. These results might

be a consequent of the time constraints on the tasks which

will limit the available options from the maximum 20 tasks

down to a much easier to manage set of the earliest

obtainable. In Fig. 9, for equipment-dependant multi-agent

tasks, it is seen how agent C has very little choice in its

assignments and causes no conflict with other agents

because it must depend on its teammates to arrive and aid

its tasks. Agent A freely moves between its tasks and, when

required, aids its teammates. The reduced options for each

agent greatly reduce the length of communication time

required between team mates. More importantly, the
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reduced amount of conflicts caused helps agents come to a

quick consensus with smaller communication exchanges.

Figures 10 and 11 show the introduction of tasks that

have prerequisites where a specific task must be scheduled

for completion before the task with the prerequisite

requirement is assigned. It shows that compared to CBGA

tasks found in experiment #1, the number of communica-

tion messages sent to reach a consensus is usually lower

with the additional restrictions. By putting these pre-

requisite requirements on half the tasks in the simulation,

we reduce the number of tasks that agents find conflict

over, with the follow-up tasks having fewer conflicts.

Experiment #2 contained a problem where the task time

window for completion was randomly generated. In some

cases, this meant a task with requirements was set before

that of the requirement. This error created a number of

tasks that could never be achieved and therefore limited the

overall score obtainable. Interestingly, when these time

limits were removed in experiment three, the average score

decreased even though more tasks had become available.

This might be because only agents who were involved in

the prerequisite could attempt the follow-up task, but often

they would be busy completing other tasks. Although in

contrast after opening up accessibility on these tasks, the

overall communication levels increased. When tasks are

made accessible to everyone, points of conflict are ampli-

fied and therefore the number of communication steps

required to come to a consensus is also increased. By

limiting tasks to a small subset of agents, the overall

requirements on communication for consensus decrease.

Conclusions and Discussions

This paper presented an extension of the CBBA that

solves the multi-agent multi-task assignment problem with

group- and equipment-based dependencies. The new

storage of data and communication in the paper enables

agents to deal with multiple assignments on tasks and

allows consensus in a dynamic environments between

multiple heterogeneous agents. Additionally, the amount

of data communicated has been reduced for multi-agent

tasks. Inspiration from biological systems is used to create

conflict-free multi-agent assignments. Aspects from the

biological social structures in bees and ants were used to

improve team-focused consensus in multi-agent assign-

ments. Using bee inspired task quitting agents can re-

assign themselves to higher-demanded tasks by removing

failed team assignments where requirements are not met.

Statistical results show that using these biologically

inspired functions created significant improvements to the

multi-agent assignment problem. A further increase in the

quality of assignments is achieved with team-focused

rewards as seen in Fig. 7. In addition, the use of task

quitting not only improved the CBGA but its use and

results showed how task quitting can redistribute resources

to high-demand areas as suggested by its existence in bee

colonies. The process of evolution has created species of

animals, such as eusocial insects, that show self-organising

and adaptive qualities that can be observed and exploited

to improve bio-inspired robot and agent systems.

As expected, the increased complexity of the multi-

agent problem compared with the single-agent problem has

increased the computational time for consensus. However,

the computational time is similar for smaller groups of

agents shown in Fig. 6. Contrary to what was expected the

number of communication steps required for consensus has

decreased for both single- and multi-agent tasks. Obser-

vation of agent paths in Fig. 4 suggests that after the initial

assignment, agents are likely to stay together in groups that

potentially provide quick consensus with little conflict.

With agents staying together for assignments, the effective

number of agents with conflicting bids is reduced, thus the

number of communication steps for consensus is lower.

For multi-agent problems, agents group up to complete

tasks and in some cases for the entire simulation. With

increasingly, complicated group and equipment require-

ments groups are found to continue working together where

possible, but often an agent will leave to complete another

task and merge back again in a later task. By restricting

tasks to a smaller subset of agents with together task

requirements, the number of conflicting assignments is

reduced. When cooperation is a forced requirement, it in

fact simplifies the problem rather than completes it.
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