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Abstract An extended offset-eccentric model of an archery

twin-round-wheel compound bow is derived. Varying some

parameters of the model, the respective effects on the calcu-

lated force–draw curve are considered. Two static quality

coefficients for the compound bow are introduced. It was

found that the twin-round-wheel compound bow can be

designed to be more energetic with the help of the model. For a

bow with some modifications 18.5% increment of energy was

calculated. Also a theoretical limit for the force–draw curve of

the compound bow is concluded.

Keywords Compound bow � Force–draw curve � Eccentric

wheel

1 Introduction

The force–draw relation of the archery bow is one of the

main interests of the serious archer. Indeed, the force–draw

(FD) curve of the bow not only determines the energy

which is stored in the limbs and transferred mainly to the

kinetic energy of the arrow, but also the experience of

drawing, aiming and releasing the bow. Compared to

conventional (or traditional) bows, the compound bow (a

bow with pulley systems at the tips of the bow limbs) offers

greater possibilities to manipulate the FD curve due to the

more complex bow configuration. The simplest type of

compound bows, the symmetric twin-round-wheel com-

pound bow, is presented in Fig. 1.

There are only a few researches concerning the com-

pound bow. The first investigations of the compound bow

including a model of the asymmetric single-cam compound

bow were presented by Park [1, 2]. In [3] Zanevskyy has

introduced an asymmetric model for a special type of

compound bow with centric cable eccentrics. A model for a

more usual round-wheel compound bow is presented in [4],

and the static deformation of the limbs of this kind of bow

is studied in [5]. A detailed model for the twin-cam com-

pound bow is introduced in [6].

While the most effective compound bows nowadays in

use have cam systems that differ markedly from circular, the

compound bow with eccentrics has still a special role.

Compared to non-round cams of the newest compound bows,

the round eccentrics can be manufactured by simpler means.

Although the mathematical model including round eccen-

trics (with or without the extension of this paper) is as well far

from trivial, it is conceptually more simple and numerically

more robust than models including non-round cams.

The aim of this paper is to develop the original round-wheel

compound bow model of paper [4] further and to check the

possibilities of improving the efficiency of the round-wheel

compound bow. The idea of offset between the cable and the

string eccentric centres is combined with the original model,

as this offers more options to modify the FD curve of the bow.

The round-wheel compound bow model with this extension

may be called briefly as offset-eccentric model.

2 Offset-eccentric model

Let us consider the round-wheel compound bow in case of

the cable and the string eccentrics of the upper wheel have

different centres, as in Fig. 2. The respective upper part of

the bow is presented in Fig. 3, from which we notice that
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s ¼ s0 þ Rðe0 � eÞ þ Ru

¼ e0

2
� dR sin e0 þ Rðe0 � eÞ þ Ru;

ð1Þ

where s is the length of the straight half-string, s0 the value

of s in the initial position, e the angle between the hori-

zontal line and the line that connects the centre of the upper

string eccentric and the upper axle point, e0 the value of e in

the initial position, R the radius of the string eccentric, e0

the distance between the upper and the lower axle point in

the initial position, dR the distance between the axle and

the centre of the string eccentric, and u the angle between

the horizontal line and the line that connects the centre of

the upper string eccentric and the point where the string

touches the upper string eccentric. Further, from Fig. 3 we

also conclude that

s cosu ¼ e

2
� dR sin eþ R sinu; ð2Þ

where e is the distance between the upper and the lower

axle point. From Eqs. (1) and (2) we get

e0

2
� dR sin e0 þ Rðe0 � eþ uÞ

h i
cosu� e

2

þ dR sin e� R sinu ¼ 0:
ð3Þ

The cable and the string eccentrics are firmly attached to

each other, so the rotating angle is the same for both

eccentrics,

e0 � e ¼ a0 � a; ð4Þ

where a is the angle between the horizontal line and the

line that connects the centre of the upper cable eccentric

and the upper axle point, and a0 the value of a in the initial

position. Now, with a fixed a the unknown e can be solved

from Eq. (4), when u can be obtained from Eq. (3) with the

Brent–Dekker method [7] for example. After this, s can be

calculated from Eq. (1). Moreover, from Fig. 2 we see that

the lever arms of the string and the cable tensions are

ds ¼ R� dR cosðu� eÞ; dc ¼ r þ d cosða� dÞ; ð5Þ

where r is the radius of the cable eccentric, d the distance

between the axle and the centre of the cable eccentric, and

d the angle between the horizontal line and the line that

connects the centre of the upper cable eccentric and the

point where the straight cable contacts the upper cable

eccentric.

Fig. 1 A typical twin-round-wheel compound bow in the initial

position and its upper wheel system (Ref. [4], https://creativecom

mons.org/licenses/by/4.0/)

Fig. 2 The wheel system of the upper limb of the round-wheel

compound bow with different eccentric centres when the bow is

drawn. Note that e is here negative

Fig. 3 The upper part of the compound bow in the initial (1) and

drawn (2) positions. Note that in position 2 e is negative. The cables

and the cable eccentric are left out from the figure for clarity (Ref. [4],

replaced symbols dR, e and e0, https://creativecommons.org/licenses/

by/4.0/)
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The draw is here defined as the distance from the mid-

point of the string to the vertical line that connects the riser

ends (or bottoms) of the upper and the lower limbs.

According to Fig. 3, the draw is

D ¼ ð1 � AÞL sin hU þ AL sin h� dR cos e

þ R cosuþ s sinu;
ð6Þ

where L is the length of the limb (measured from the

bottom of the limb to the axle point along the limb), A the

ratio between the length of the supposed elastic portion of

the limb with respect to L, h the angle between the vertical

line and the line that connects the upper axle point and the

supposed hinge point of the limb, and hU the angle between

the undeflected bow limb and the vertical line.

The offset-eccentric model can now be formed from the

original round-wheel model by replacing equations (8)–

(11) and (13) of paper [4] with Eqs. (1)–(6). By choosing

dR ¼ d and e0 ¼ a0 the offset-eccentric model is simplified

into the original model.

3 Results

As one measure of evaluating the statics of the compound

bow, Mullaney has suggested the ratio of stored energy to

peak force [8]. This measure is quite usable when com-

paring some minor adjustment differences, or different

bows with the same full draw. The drawback of this ratio is

that it strongly depends on the full draw.

In [9] Kooi and Sparenberg have presented the static

quality coefficient for traditional bows with or without

recurved limbs. This quality coefficient is dimensionless

and can also be used when comparing traditional bows with

different full draws. However, in compound bows the force

acting on the arrow at full draw is usually far from the

maximum force.

On the other hand, when designing the compound bow,

it seems reasonable to first search an eccentric system

which produces the desired shape of the FD curve, and only

after that consider the riser design. So there is also a need

for evaluating the quality of the FD curve with a measure,

which is independent of the value of D in the initial posi-

tion. For these reasons, let us define two static quality

coefficients for the compound bow,

q ¼
RDF

D0
FðDÞ dD

ðDF � hÞFmax

; qF ¼
RDF

D0
FðDÞ dD

ðDF � D0ÞFmax

; ð7Þ

where F is the absolute value of the force acting on the

arrow, D0 the value of D in the initial position, DF the full

draw (here, the draw with the local minimum value of the

force F), h the distance between the grip (handle) sup-

porting point and the vertical line that connects the bottoms

of the upper and the lower limbs (positive, when the grip

supporting point is on the archer’s side from this line), and

the peak force

Fmax ¼ maxfFðDÞg; D0 �D�DF: ð8Þ

We may call the measure q shortly as the static quality

coefficient, whereas qF may be called as the FD curve

quality coefficient. The measures defined in Eq. (7) are

dimensionless.

The value of h depends on the shape of the riser. With

straight riser h ¼ 0. The riser is called ‘‘reflex’’ when

h[ 0, and ‘‘deflex’’ when h\0. From Eq. (7) we notice

that if h ¼ D0 and the FD curve is a perfect rectangle,

q ¼ qF ¼ 1. However, if D0 � h is too small, the string will

hit the bow hand when the bow is launched, and the

clearance for the cables may also be a problem. Indeed, in

practice D0 � h is usually at least about 15 cm in com-

pound bows, so q\qF. While the coefficient qF is inde-

pendent of h, for real bows the front part of the FD curve

cannot be a vertical line, a fact we shall discuss later on.

Hence, q\qF\1.

Now we shall study the effects of varying some bow

parameters of the model. The calculations are done as

described in Sect. 2 and in paper [4]. There are 12 initial

bow parameters (and the supplemental parameter h) and

innumerable ways to vary them. After preliminary testing it

seems that the parameters related to the pulley system have

the relatively greatest effects on the FD curve, which is our

main interest, so we shall first limit our considerations on

parameters d, a0, dR and e0. Let us call the bow with

parameter values of Table 1 in paper [4] as B1, which has

also a straight riser with h ¼ 0. The bow B1 has the same

centre for cable and string eccentrics, when dR ¼ d and

e0 ¼ a0. The FD curve quality coefficient of B1 is 0.619. In

the following only the changed parameter values are

mentioned, when the other parameter values needed in the

model are the respective values of the bow B1.

In case of round-wheel compound bow, it is usual that

the force required to keep the bow in full draw position,

where the force has a local minimum value, is about one-

third of the maximum peak force. This reduction of force

with respect to the maximum force is referred to as the

bow’s let-off [10]. From Fig. 4 we notice that parameter

d has a strong influence on the let-off.

With the increased value of d the peak force increases

but the local minimum force in full draw decreases, so that,

for example with the value of d ¼ 16:7 mm the let-off is

about 80%, as seen from Fig. 4. While this large let-off

may be desirable, it must be noted that in reality the value

of d ¼ 16:7 mm may already be out of reach in the

viewpoint of material strength, for the radius of the cable

eccentric of the bow B1 is r ¼ 19:9 mm, and the axle has
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dimensions as well. With large let-off the coefficient qF is

also lower. For example, the bow of Fig. 4 with the value

d ¼ 16:7 mm has qF ¼ 0:589.

While d had a quite straightforward effect to the mini-

mum force value in full draw, it could be expected that the

effect of dR to the value of the peak force would be rather

similar. However, the parameter dR affects mostly on the

placement of the peak force and the skewness of the FD

curve, as can be seen from Fig. 5. The slopes of both the

front and the rear parts of the curve seem to change in

accordance with dR. Some differences on the peak force

and the let-off can also be seen.

The value of a0 has also a clear effect on the FD curve of

the compound bow, as can be seen from Fig. 6. With the

value of a0 ¼ 0� the peak force and the full draw are

decreased, and the curve has become slightly skewed. With

the value a0 ¼ 100� the full draw and the force in full draw

are increased, and the front part of the FD curve is a bit

convex (downward), while the rear part of the curve is

slightly concave. The peak force is then close to the orig-

inal, and even if the let-off is only about 50%, the value of

qF is as large as 0.685.

From Fig. 7 we notice that parameter e0 affects both the

height and the width of the peak of the FD curve from both

sides. With the value e0 ¼ 0� the peak is wide and the FD

curve quality coefficient as large as qF ¼ 0:737, albeit the

let-off is less than 50%. With the value e0 ¼ 100� the peak

force has increased and the front part of the FD curve is

convex, when the value of FD curve quality coefficient has

decreased to the value of qF ¼ 0:514.

Earlier it was mentioned that in the view of maximizing

the static quality coefficient the FD curve should be a

rectangle. However, there is a limit for the FD curve of the

compound bow, considering especially the front part of the

curve. If we assume that

R ¼ dR ¼ 0 ð9Þ

the string is attached straight to the axle point, and the

pulleys do not play any role. Our compound bow has thus

simplified to a traditional one, and from Eq. (1) we get the

length of the half-string of this traditional bow,

st ¼
e0

2
: ð10Þ

Substituting Eqs. (9) and (10) into (6) we have the

respective draw,

Dt ¼ ð1 � AÞL sin hU þ AL sin hþ e0

2
sinut: ð11Þ

Further, substituting Eqs. (9) and (10) into (2) gives

Fig. 4 The force–draw curves of the bow B1 with different values of

parameter d

Fig. 5 The force–draw curves of the bow B1 with different values of

parameter dR

Fig. 6 The force–draw curves of the bow B1 with different values of

parameter a0
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e ¼ e0 cosut; ð12Þ

where ut is the angle between the vertical line and the half-

string of this traditional bow. From Fig. 3 we also notice

that

g

2
þ ð1 � AÞL cos hU ¼ e

2
� AL cos h; ð13Þ

where g is the distance between the bottoms of the upper

and the lower limb. Now, substituting Eqs. (12) into (13)

we may write for our traditional bow

e0 cosut ¼ gþ 2ð1 � AÞL cos hU þ 2AL cos h: ð14Þ

For the round-wheel compound bow the absolute value of

the force F acting on the arrow is [4]

F ¼ 2dckðh� hUÞ sinu
dc sinðhþ uÞ þ 2ds sin h cos d

; ð15Þ

where k is the spring constant of the elastic portion of the

limb, so for the respective traditional bow we get

Ft ¼
2kðh� hUÞ sinut

sinðhþ utÞ
: ð16Þ

With given h, the angle ut can be solved from Eq. (14),

when the FD curve of the respective traditional bow can be

formed with the help of Eqs. (11) and (16). In the ‘‘Ap-

pendix’’ it is shown that this curve is indeed the limiting

FD curve for any round-wheel compound bow with the

same initial parameter values g, L, A, hU, k and e0.

The minimum value of F in full draw has a close rela-

tion to the value of the lever arm of the cable tension dc.

Considering Figs. 1 and 2, it also seems natural that in full

draw, where the value of the force F has a (local) minimum

value, the lever arm of the cable force dc is also near its

minimum value, when the cables take most of the load.

More closely, from Eq. (15) we also notice that if dc ! 0

also F ! 0. On the other hand, for the minimum value of

dc the respective value of the prime variable can be judged

from the right-side Eq. (5), it is aminfdcg ¼ dminfdcg þ 180�.

Usually e=r � 1, when dminfdcg is quite small and

approximately aminfdcg � 180�.

Instead, there is no similar ‘‘rule of thumb’’ for the

relation between the peak force Fmax and the lever arm of

the string tension ds. Typically the peak force is achieved

after the draw where ds has its minimum, yet there are

exceptions. The distance between the respective draws

related to the peak force and to the minimum value of ds

may also be relatively great.

By modifying both the limbs and the wheels, we may

find a more efficient FD curve without too drastic changes

on the peak force, the initial value of draw, the full draw or

the let-off. For example, let us choose two more virtual

bows, B2 and B3. The initial parameters of the bows B1, B2

and B3 are presented in Table 1.

The upper eccentric system of the bow B1 in the initial

position is quite the same as seen in Fig. 1. The upper

eccentric systems of the bows B2 and B3 in the initial

position with axle point as origin are presented in Figs. 8

and 9, where the bow riser leaves on the left side as in

Fig. 1. Note that B2 can be also treated with the earlier

original round-wheel model without this paper. The cal-

culated FD curves of B1, B2 and B3 are presented in Fig. 10

with the before mentioned limiting FD curve for the bow

B3.

From Fig. 10 and from Table 2 we notice that the peak

forces and the full draws of the bows B1, B2 and B3 are

quite the same. The forces in full draw are rather near each

other, but the shapes of the curves differs distinctly, as can

be seen from Fig. 10.

It is interesting that the FD curve of the bow B3

resembles the FD curves of some single-cam compound

bows, as presented for example in [11].

According to q values of Table 2 the bow B3 is the best,

and also B2 is a clear improvement when compared to the

original bow B1. The stored energy of the bow B3 is 18.5%

greater and the value of q 18.8% greater than the respective

Fig. 7 The force–draw curves of the bow B1 with different values of

parameter e0

Table 1 The initial parameters of the bows B1, B2 and B3

Bow k a0 e0 R r dR d

B1 1032 52.5 52.5 26.8 19.9 13.7 13.7

B2 2553 -32 -32 41.0 19.9 16.0 16.0

B3 854 95 35 17.5 22.0 13.0 18.5

The value of k is expressed in N/rad, the values a0 and e0 in �, the

values of R, r, dR and d in mm. For all bows e0 ¼ 102:1 cm, g ¼ 38:1
cm, hU ¼ 20:5�, L ¼ 38:9 cm, A ¼ 0:598 and h ¼ 0
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values of the bow B1. Evidently it is possible to search such

parameters that q is even greater, while the peak force, the

let-off, the initial value of draw and also the full draw

remain almost unchanged. With the model it is also easy to

check for example that the maximum values of the static

string and cable tensions are not too high. On the other

hand, while the bow with appropriate limb and wheel

modifications seems better, the model is static and does not

take account of the possible effects of the modified wheel

and limb masses or limb material on the dynamic perfor-

mance of the bow.

The computations were checked as in [4] using the

following two expressions for the energy stored in the bow,

VðDÞ ¼
Z D

D0

FðDÞ dD ð17Þ

and

VðhÞ ¼ ALkðh2 � h2
0 þ 2h0hU � 2hhUÞ: ð18Þ

One by one, the cubic spline function with the respective

parameter values was fitted to the (D, F)-values of the

bows of Table 2 and then integrated numerically. Using the

draw from the initial position to the full draw and 2000

values for the prime variable a, it was found that the dif-

ferences between the calculations based on Eqs. (17) and

(18) were greatest for the bow B3, though also then \10�6

J.

Another check was made by using the twin-cam model

of paper [6]. The string and the cable cam radius were

gained by cubic spline interpolation of the polar transfor-

mations of the known eccentrics of bows B1, B2 and B3.

Again, using the same draw domain and 2000 values for

the prime variable, the procedure described in paper [6]

was executed separately with every value of the prime

variable, resulting also in the respective values of D and F.

For comparing the force values with the same value of

draw, the cubic spline function was fitted to the calculated

Fig. 8 The upper eccentric system of the bow B2 in the initial

position. The diameter of the axle is 4.75 mm

Fig. 9 The upper eccentric system of the bow B3 in the initial

position. The diameter of the axle is 4.75 mm

Fig. 10 The force–draw curves of the bows B1, B2 and B3 with the

limiting FD curve for the bow B3

Table 2 The bows B1, B2 and B3

Bow D0 DF FðDFÞ VðDFÞ qF q

B1 22.8 67.3 73.1 61.7 0.619 0.409

B2 23.7 67.1 70.6 65.5 0.674 0.436

B3 21.7 67.1 88.3 73.1 0.719 0.486

For all bows the value of Fmax is 223.9 N. The values of D0 and DF

are expressed in cm, the value of FðDFÞ in N, and the value of VðDFÞ
in J. Coefficients qF and q are dimensionless
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(D, F)-values. The force differences between the offset-

eccentric model and the twin-cam model with the same

draw values were again greatest for the bow B3, yet \0:05

N.

4 Conclusion

A model of the twin-round-wheel compound bow with

offset between eccentric centres is introduced. It was found

that the parameters related to the eccentrics have relatively

the greatest effect on the FD curve. The internal consis-

tency of the model was tested, and the model was also

checked with the former twin-cam compound bow model.

Two static quality coefficients for the compound bow

were introduced, qF for the FD curve and q for the whole

bow. A theoretical limit, which is independent of the pulley

system, was also concluded for the FD curve of the com-

pound bow.

It was demonstrated that also the original round-wheel

model can be used for designing the round-wheel com-

pound bow more effective, when with the help of the off-

set-eccentric model presented here, even more energetic

compound bows with round eccentrics can be created. For

an example commercial bow, 18.5% increment of energy

and 18.8% increment of quality coefficient q is achievable

by modifying only the eccentric systems and the spring

constant k of the limbs. Finally, the reader is reminded that

the model is static only, hence the dynamical performance

of the bow must be estimated by other means.
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Appendix: A limit for the FD curve

Let us first choose a traditional bow with the positive initial

values g, L, A, hU, k and e0, and with assumptions

0\h\180�; 0\ut\90� ð19Þ

and

ut þ h� 180�: ð20Þ

The inequation (20) follows from the fact that if the line of

the elastic portion of the limb is parallel to the line of the

half-string, it is not sensible to draw the bow any more. The

angle ut, the draw Dt and the value of the force Ft with

given h can then be calculated from Eqs. (14), (11) and

(16).

Let us now consider the round-wheel compound bow

with the same initial values g, L, A, hU, k and e0. We shall

further make the assumptions

0\u\90�; 0\d\90� ð21Þ

0� dR\R; 0� d\r: ð22Þ

Then from Eq. (5) we notice that

ds [ 0; dc [ 0: ð23Þ

Let us suppose that the absolute value of the force acting on

the arrow is equivalent to the force acting on the arrow for

the before mentioned traditional bow with the same initial

values and also the same values of h and e. Then from

Eqs. (15) and (16) we get

sinu

sinðhþ uÞ þ 2ds

dc
sin h cos d

¼ sinut

sinðhþ utÞ
: ð24Þ

With Eqs. (19)–(23) we get from Eq. (24) after some

trigonometric manipulation

tanut ¼
sinu

cosuþ 2ds

dc
cos d

\ tanu; ð25Þ

so indeed ut\u, as shown in Fig. 11. The difference

between the draws can be seen from Fig. 11, it is

D� Dt ¼
ds

cosu
þ e

2
tanu� e

2
tanut: ð26Þ

Remembering Eq. (25) and the assumptions ds [ 0 and

0\u\90�, the right side of Eq. (26) is always [ 0, so

Fig. 11 The upper part of the round-wheel compound bow in drawn

position with the respective traditional bow half-string of length e0=2.

Note that e is here negative
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Dt\D. In the initial position u ¼ ut ¼ 0, when from

Eq. (26) we notice that also then D� Dt [ 0.

Thus, when a horizontal force is targeted to the midpoint

of the string of the round-wheel compound bow, the draw

of the respective traditional bow with the same limb and

riser parameter values is always the least. It should also be

noted that with minor changes a similar reasoning can be

conducted with the twin-cam model of [6], resulting in the

same outcome.
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