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Abstract A framework of applying the classification and regression tree theory (CART)

for assessing the concrete building damage, caused by surface deformation, is proposed.

The prognosis methods used for approximated building hazard estimation caused by

continuous deformation are unsatisfactory. Variable local soil condition, changing intensity

of the continuous deformation and variable resistance of the concrete buildings require the

prognosis method adapted to the local condition. Terrains intensely induced by surface

deformation are build-up with hundreds of building, so the method of their hazard esti-

mation needs to be approximated and relatively fast. Therefore, promising might be

addressing problems of reliable building damage risk assessment by application of clas-

sification and regression tree. The presented method based on the classification and

regression tree theory enables to establish the most significant risk factors causing the

building damage. Chosen risk factors underlie foundation for the concrete building damage

prognosis method, which was caused by the surface continuous deformation. The estab-

lished method enabled to assess the severity of building damage and was adapted to the

local condition. High accuracy of shown approach is validated based on the independent

data set of the buildings from the similar region. The research presented introduces the

CART to determination of the risk of building damage with the emphasis on the grade of

the building damage. Since presented method bases on the observations of the damages

from the previous subsidence, the method might be applied to any local condition, where

the previous subsidence is known.
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1 Introduction

The correct evaluation of the class of building’s potential damage, induced by surface

deformation, has been analyzed over the World for years. The main problem lies in its scale,

i.e., necessity to quickly evaluate the potential risk for a big group of buildings. Methods used

in Poland nowadays are both time-consuming and very inaccurate. The approximate esti-

mation of vulnerability of buildings in Poland is based on a common theoretical assumption

that the more numerous are the risk factors, the more accurately the vulnerability of the

buildings can be estimated (e.g., Polish point method). The building damage risk is assessed

by comparing the vulnerability of buildings in hazarded areas, associated with maximum

strains and tilts (GIG 2000). The final result of the presently applied method is information

that the buildings can be damaged (or to be more precise, that their usability level has dropped

down). It should be emphasized that the method for assessing damage risk for buildings

presently used in Poland was created in the 1950s (Knothe 1953; Przybyła and Świądrowski

1968). The criteria of negative aspect of continuous deformations of terrain assumed in this

method were based on experiences dating back to the 1950s. This method was created for

evaluating the impact of hard coal exploitation on continuous deformations of terrain. Later in

time, this method was adopted for evaluating risks generated by exploitation of other raw

minerals. The character and dynamics of deformation of terrain are different for copper ores

deposits or salt domes. The variable dynamics and range of continuous deformations, and

different construction characteristic typical of various counties definitely have influence on

the scale of potential damage. This certainly negatively affects the efficiency of the currently

applied method of assessing damage risk for buildings in areas subjected to continuous

deformations. Moreover, with this method, one cannot evaluate the degree to which the

building was damaged, which is a considerable drawback, hindering the process of managing

damage in areas staying under the influence of continuous deformation. A number of other

methods which are satisfactorily adaptable to the local conditions, thanks to which the

potential risk can be assessed for the buildings, are used worldwide (Bhattacharya and Singh

1984; Boscarding and Cording 1989; Burland and Wroth 1975; Mine Subsidence Engi-

neering Consultants 2007; National Coal Board 1975; Yu et al. 1988). It is worth noting that

these methods tend to minimize the negative factors. Methods based on two or three variables

enable quick evaluation of the risk. World’s investigations focused on the evaluation of

building’s damage due to continuous deformations and seismic tremors are aimed at creating

a classification thanks to which the class of building damage can be predicted (Askan and

Yucemen 2010; Grünthal et al. 2006; Grünthal and Wahlström 2006; Pei and van de Lindt

2009; Straub and Kiureghian 2008; Yucemen et al. 2004). Analyses made by the author reveal

that the methods used worldwide are equally or sometimes even more accurate than the ones

used in Poland (Malinowska 2013a, b). Moreover, the application of these methods is also

much simpler. The accuracy of selected methods mainly depends on the proper selection of

risk factors and scaling dependences between the risk and damage class.

Basing on the World’s and Polish experience, the author undertook an attempt at

creating a method employing minimum number of risk factors and which could be used for

efficient and reasonably accurate evaluation of the building damage class. Attention was

mainly paid to working out a classification algorithm for defining the degree to which the

building was damaged by continuous deformations in view of local conditions. The

algorithm presented in this paper can be used for adapting this method to the assessment of

building damage class in mining areas in changeable exploitation conditions. The analyses

were made with the geographic information system (GIS) and a classification and

regression theory (CART).
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2 A new method for assessing building’s damage risk

The investigation was done in followed stages (Fig. 1).

At the first stage, two research areas (training and testing) were selected. At second

stage, information about the buildings in that area, as well as potential and actual risk

factors was acquired (paragraph 2.1, Fig. 1 No. 1–2).

At the next stage, all factors, which may contribute to the building damage, were

analyzed. On this basis, the significance of factors could be determined in view of their

influence on building’s potential damage (paragraph 2.2, Fig. 1 No. 3–5).

At the following stage, attempts were made to determine boundary conditions of risk

factors using the interactive trees CART. A detailed characteristic was made for determining

the damage class to particular elements of the building. This created bases for defining risk

factors, for which the building could be damaged slightly, moderately or very severely. The

basic aim of this stage was finding detailed criteria of risk factor boundary values, thanks to

which classes of damage class could be discriminated (paragraph 2.3, Fig. 1 No. 6–7).

At the fourth stage, the efficiency of the classification was verified. The new method

was used for an independent group of buildings sited in the neighboring area. The obtained

results were compared with the efficiency of methods presently used in Poland (Fig. 1 No.

8–9). The results of estimation of the damage risk were confronted with actual damage

observed in buildings (paragraph 2.4, Fig. 1 No. 10–11).

2.1 Characteristic of research area

The empirical data were collected in a hard coal mine area in the Upper Silesia. Two

groups of excavation-induced buildings under the continuous surface deformations were

selected [training set ZB1 (Figs. 2, 3), testing set ZB2 (Figs. 4, 5)].

One of the major assumptions of the presented surveys was that the structure of

buildings sited in the neighboring area (within suburban areas) was similar as far as their

design and vulnerability were concerned. In the selected areas, there were single-family

dwelling houses, detached houses, single- to two-story objects typical of an industrial–

agricultural settlement. About 80 % of all objects were residential houses made of brick,

mostly with a cellar. The remaining objects were farm or warehouses. Most of the

buildings (ca. 80 %) were erected before 1985.

Mining done in those areas caused surface subsidence. The essential information about

mining has been presented in Tables 1 and 2.

The surveyed areas were so selected as to make terrain deformations the principal factor

responsible for damage. The spatial distribution of deformations in that area could not be

determined on the basis of the results of measurements. The frequency of the monitoring

was too low and the density of observation points insufficient to determine the spatial

distribution of extreme indices. Terrain deformations were assessed with the use of

Knothe’s functional method of predicting continuous deformations (Knothe 1953). Mea-

surements realized in the surveyed areas enabled one to only define assumed prediction

parameters more accurately. Buildings covered the continuous deformation impact area of

small and considerable strains, sometimes reaching up to 8 mm/m).

The research works were focused on acquiring information about:

• Construction and vulnerability characteristic of buildings preceding the exploitation,

• Maximum values of deformation indices observed under each of the buildings,

• Observed exploitation-induced damage.
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Fig. 1 Flowchart of model
definition algorithm
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Fig. 2 Research training area ZB1-mining panels localization

Fig. 3 Research training area ZB1-horizontal strain distribution
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2.2 Knowledge discovery with CART

2.2.1 CART background

When the qualitative and quantitative analysis of variables is required and when large sets

of data are involved, then data mining technique is a very good solution. A number of

classification trees are used for the CHAID, CART, QUEST practice. One of the most

frequent techniques of exploitation and classification of data is the CART method (Brei-

man et al. 1984). Its popularity results from, e.g., its basic assumptions regarding data, on

the basis of which the classification is made. Variables used for modeling do not need to

have a normal distribution (Rothwell et al. 2008). Moreover, the classification algorithm

used in the CART is resistant to the missing data. The analyses prove that when the

missing data do not exceed 5 % of the set, satisfactory results of CART classification can

Fig. 4 Research training area ZB2-mining panels localization

Fig. 5 Research training area ZB2-horizontal strain distribution
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be expected (Yong 2006). Thanks to its transparence and high accuracy, the method is used

in various branches of science, e.g., medicine (Ture et al. 2009), photogrammetry (Yang

et al. 2003), economics (Chang 2011), environmental protection (Smeti et al. 2009), food

science (Hazir et al. 2012) and chemistry (Chudzinska and Baralkiewicz 2011). The CART

classification is made in a few stages. The first one lies in assuming preliminary criteria of

division, stopping and construction of the tree. In the analyses conducted by the author, the

goodness of fit for a given class was estimated with the Gini Measure. Gini Measure helps

one estimate how frequently a random element will be misclassified. This index is cal-

culated as a sum of random probabilities of a given element to its misclassification ratio.

For elements assuming values from the interval 1 to m, the Gini index at node t is

calculated from the below dependence (Breiman et al. 1984):

I tð Þ ¼ 1�
Xm

i¼1

ðPi j=tð ÞÞ2 ð1Þ

where I(t) Gini index, Pi(j/t) is the relative frequency of class j at node t, t number of node.

Classification created at the first stage of research very frequently leads to generating a tree

with too many branches. The complexity of the tree may be caused by considerable dispersion

of data. The size of the tree also depends on given stop parameters, i.e., minimum population

in the successive nodes, minimum population of children, maximum number of levels and

maximum number of nodes. Many years’ experience has shown that mainly the population of

elements in the terminal nodes is decisive for the classification of a small number of cases

(Breiman et al. 1984). It should be emphasized that the increased size of the tree is not

proportionate to higher accuracy of classification. The generated trees tend to lower the actual

ability to make a correct classification by overfit of the training set. Generating biggest

possible trees is a common practice. Then follows the stage of cutting. This procedure lies in

decreasing the number of leaves, simultaneously tending to maximize the accuracy of clas-

sification. The last stage is the selection of a tree with best classification potential. A tree with

the smallest number of misclassifications is considered to be optimal. The accuracy of the

created model is realized with the use of cross-validation.

RE dð Þ ¼ 1

N

XN

i¼1

ðyi � dðxiÞÞ2 ð2Þ

where yi points in testing set (real variable), xi points in testing set (variable classified with

d model), N number of cases in a testing set.

The set of training data is divided into training and testing subsets. The prediction

abilities of a tree are evaluated on the basis of the testing set data. The commonly applied

practice of using CART trees advises choosing a tree with the minimum number of

terminal nodes and simultaneously lowest cross-validation value. The measure of the

Table 1 Basic information about mining in area ZB1

Mining
panel no.

Mining panel
depth (m)

Mining panel
thickness (m)

Speed of mining
(m/day)

Date of
mining start

Date of
mining end

721 574 3.0 2.7 VII 2002 V 2003

722 568 3.0 6.1 V 2003 X 2003

723 535 3.0 4.9 XII 2003 XI 2004

724 521 3.0 2.9 XI 2004 XI 2005
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cross-validation Ra(T) is a linear dependence between the complexity of tree and the cost

of misclassifications (Breiman et al. 1984).

RaðTÞ ¼ R Tð Þ þ aeT , a ¼ RaðTÞ � R Tð Þ
eT
�� �� ð3Þ

where Ra(T) cost-complexity measure, R(T) cost of misclassifications, eT
�� �� complexity of

tree measures as the number of terminal nodes in the tree, a parameter of tree complexity

(assumes values from 0—for maximal tree to 1 for minimal tree).

An optimal tree has minimal complexity and at the same time lowest possible classi-

fication error (Fig. 6). Presented graph is an example of relation between complexity of the

tree and accuracy of classification. If the tree is to complex, it is usually overfitted.

However, to large generalization of the tree (low complexity) leads to low accuracy of

classification. This dependence has been taken into account during estimation of optimal

tree in the research.

2.2.2 Preparing data for classification

Classification was made on a set of training data ZB1 in a town X. The population was 141,

and the buildings had a detailed characteristic of damage of their particular elements. An

attempt was made to make boundary values for risk factors on the basis of registered

damage class more precise. The aim of this operation was determining the boundary values

of risk factors, for which the building could be damaged to some extent. Basing on the

registered damage, seven types of damage in buildings were finally distinguished

(Table 3). Four Boolean-type variables: falling off tiles, woodworks damage, falling off

plaster and chimney ducts damage. These variables were ascribed true (damaged) and false

(undamaged) values. Damage could be specified in more detail for three variables. These

were: partition wall damage, load-bearing wall damage and ceiling damage. These vari-

ables could be characterized as: no damage, small, moderate and high. The intensity of

load-bearing walls, partition walls and ceiling damaging was determined on the basis of the

aperture of fissures, their distribution and intensity of occurrence. The direction of fractures

was also taken into account in the evaluation.

The variables were classified, and four damage classes were distinguished (Table 4).

Criteria for evaluation of the final damage categories have been established based on Mine

Subsidence Engineering Consultants classification and Burland damage classification. Basis

for the classes was information about crack width limits (Burland and Wroth 1975; Mine

Subsidence Engineering Consultants 2007). The damaging of useful elements, i.e., sewage

systems, chimney ducts, falling off tiles, woodworks, was classified as functional damage.

An output modeling-dependent variable was obtained as a result of the classification of

thus observed building damage. The quality predictors which have the biggest influence on

Table 2 Basic information about mining in area ZB2

Mining
panel no.

Mining panel
depth (m)

Mining panel
thickness (m)

Speed of mining
(m/day)

Date of
mining start

Date of
mining end

903 705 4 6.5 IX 2006 I 2007

904 700 4.2 6.2 VII 2007 XII 2008

905 695 4.2 5.8 II 2009 III 2010

906 690 4.2 5.1 VIII 2010 VII 2011
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the damage class were: year in which the building was erected and maximum horizontal

strains.

2.2.3 Determining significance of risk factors

Another stage was finding independent risk factors deciding about damage occurrence in a

building and evaluation of its significance. The variables, which may have influence on the

potential damage class, can be divided into two groups. The first of them is related to the

building and its vulnerability to horizontal strains. This may result from the construction

properties, age of the object, way in which it was used, its geometry and foundation. The

second group of risk factors can be associated with horizontal strains of terrain surface

under the influence of underground exploitation (or other phenomena generating surface

deformations). World’s investigations reveal that maximal horizontal strains have the

biggest influence on damage risk of space objects. Factors that are independent variables

were assumed for the analyses. The factors, which were determined on the basis of

building’s characteristic, were refuted at the stage of preliminary data selection. Therefore,

the following variables were not analyzed: technical wearing (directly related to the age of

the object) and vulnerability category (or number of vulnerability points, determined on the

basis of, e.g., length of the building, compaction of structure, existing protection measures,

functions). Eventually, six independent variables were chosen for further analyses (Fig. 7).

The risk caused by continuous deformations of terrain surface was attributed to the

maximal horizontal strains, which assumed values from 0 to 9 mm/m. The remaining

factors were also related to the building’s characteristic. Three of the factors were of

quantitative character (year of construction, length of the building, number of stories) and

two of qualitative nature (protections, function).

The significance of particular predictors was analyzed in view of a dependent variable,

i.e., building damage, which was attributed Boolean values (‘true’ or ‘false’). The sig-

nificance analysis of predictors was conducted for a training research area ZB1, with the

population of 372 buildings, among which 141 objects were damaged. No grading of

damage was introduced. The group of damaged buildings covered all kinds of damage:

from small to severe. According to the ranking, maximal horizontal strain and the year of

construction were the most important predictors of building damage (Table 5). The

weights were established based on classification and regression tree. The four remaining

variables occupy a lower position in the ranking.

It should be noted that the weight of predicted horizontal strain factor is definitely

highest as compared to other risk factors. This is important in view of methods presently

applied for building risk evaluation, where the risk factors, i.e., vulnerability of buildings

and surface deformations, are assumed to have the same significance. The analyses made

by the author reveal that the vulnerability of buildings, estimated with the approximated

point method, has a definitely weaker influence on potential damage than horizontal strains

(Table 6).

This proved the assumption that new risk factors have to be defined.

2.2.4 Classification

Classification was made for 141 buildings, which were damaged to a varying degree (C1–

C4). The assumed predictors were: year of construction and maximal horizontal strains.

The categorized dependent variable was the damage class, as discussed in above section.
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During the first stage of research, the biggest possible tree was generated. It had 135

terminal nodes and 15 levels (Fig. 8). The tree was generated without limitations in the

sense of stop parameters.

The stop parameters were successively given, as according to Breiman et al. (1984) they

are can be used for obtaining an optimal tree. These were:

• Minimal number in the successive nodes 5,

• Minimal population of child 5,

• Maximal number of levels 10,

• Maximal number of nodes 1,000.

A tree of 19 terminal nodes and lowest cross-validation value was obtained for such

parameters. In view of the assumed minimal cross-validation value (plus standard devia-

tion) and simultaneously minimization of the number of terminal nodes, the tree of 19

nodes fulfilled these conditions (Table 7).

The procedure of cutting the tree was realized in stages. The least error of correct

classifications was the division criterion. Finally, a 15-node tree was selected. However,

the cross-validation value was higher than that of a 19-node tree. Nonetheless, this tree was

called optimal in the sense of classification correctness.

Divisions introduced for the ultimate classification tree were presented in the successive

stages, following consecutive nodes. The division criterion in the first node was based on

the maximal horizontal strain variable. The division in this node enabled one to determine

the boundary value of horizontal deformations, for which small and bigger than small

damage was observed. The division in the first node was made for horizontal strain values

of 1.0 mm/m (Fig. 9a). Next division was made in a child node ID 3, again based on

maximal horizontal strain values. The division in this node will provide criterion of the

successive intensity degree: damage (Fig. 9b). Buildings, which were affected by hori-

zontal strains [3.0 mm/m, were damaged to moderate or high degree. Buildings exposed

to horizontal strains \3.0 mm/m were damaged to a small or moderate degree.

The division in the child node ID 5 resulted from the influence of horizontal strain

values. The horizontal strain of 5.5 mm/m was the boundary value found at this stage of

classification (Fig. 10a). High damage was observed for horizontal strains [5.5 when

classifying a child node ID. The last division was based on the predictor of the year of

construction (Fig. 10b). This is the only classification division based on this predictor. The

classification significance of this variable was slightly smaller than for maximal horizontal

strains. Therefore, the classification division based on this variable was made only once.

The year of construction is very important for the intensity of damage observed in

buildings under the influence of horizontal strains[5.5 mm/m. Moderate-class damage can

be expected for buildings constructed after 1950. In older buildings (constructed before

1950), high and moderate damage can be expected.

Fig. 6 Finding optimal tree
(Lewis 2000)
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Finally, four damage intensity zones were distinguished between maximal horizontal

strain and year of construction variables. Unlike maximal horizontal strain, the year of

construction decides about the damage class to a small extent. The final classification

presented in a tree form is presented below (Fig. 11).

The presented classification tree enabled one to estimate the building damage class on

the basis of horizontal strain and year of construction. It should be emphasized that the tree

had high classification accuracy parameters for the training set ZB1. The tree had to be

verified on an independent set of data to provide an evaluation of real classification

abilities.

3 Accuracy evaluation of presented method

The proposed method was assessed for its accuracy on an independent set of data about

residential houses ZB2 (Figs. 4, 5). Basic assumption for the method accuracy was to

achieve better results in buildings hazard estimation than it is achieved with a use of Polish

point method. The efficiency analyses of this method required determining class of damage

observed in buildings, as damage data had a descriptive character. Among 518 buildings,

127 were damaged.

The maximal horizontal strains in the subsoil were determined for 127 objects. Besides,

the information about the year of construction was acquired. Each building was ascribed a

class of damage on the basis of observed damage. The building risk was determined on the

basis of collected data with the newly defined method.

The post-factum evaluation of building damage was made with the use of a method

commonly applied in Poland. It was assumed that a small damage (C0) is observed when

Table 3 Description of dam-
aged elements and damage
classes

Damaged element Damage class

Load-bearing wall No/small/moderate/high

Partition wall No/small/moderate/high

Ceiling No/small/moderate/high

Falling off plaster True/false

Woodworks True/false

Falling off tiles True/false

Chimney duct True/false

Table 4 Criteria of building
damage classification

Damage
class

Load-bearing
wall damage

Partition wall
damage

Ceiling
damage

Functional
damage

C1 – Small – False

C2 Small Small/
moderate

Small False

C3 Moderate Moderate/
large

Moderate True

C4 Large Large Large True
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the vulnerability category is the same as the terrain category. When the terrain category is

bigger than the vulnerability class by: one—small damage is expected (C1), two—mod-

erate damage is expected (C2), three—high damage is expected (C3). High and very high

damage risk was not observed in the analyzed population (C4). The estimation results were

compared with real damage in buildings (Fig. 12).

Damage classified as very low and low was observed in 32 buildings. The prediction

model and the Polish method revealed low congruence of predictions and real values C1

(16 % of hits in the Polish method, 0 % of hits for the new classification). In the case of

moderate damage, they were observed in 46 buildings. The damage class predicted with

the use of the Polish method and new classification produced congruence of 2 % (Polish

method) and 17 % of hits (new method). In the case of moderate damage class (C3), a very

high congruence was noted for the new method (81 %) between the observed and esti-

mated damage degree. In the case of estimation made with the traditional (Polish) method,

Fig. 7 Risk factors
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zero congruence was obtained for this class. The significantly higher estimation accuracy

can be observed with the new classification than with the Polish classification point method

(Fig. 12).

The evaluation of damage risk was made only for hits of each damage class. When

assessing the damage class, it is also very important to know the number of damage risk

overestimations and underestimations. The misclassification matrix is also used for

assessing the cost of risk (Table 8).

Fig. 8 Maximal classification tree

Table 5 Significance of risk
factors

Variables Weight

Predicted horizontal strain 1.00

Year of construction 0.68

Number of stories 0.60

Maximal length of wall 0.59

Function 0.33

Protection 0.14

Table 6 Significance of risk
factors in method presently
applied in Poland

Variables Weight

Predicted horizontal strain 1.00

Points of building vulnerability 0.41
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The spatial juxtaposition of estimation results with the new method clearly reveals a

tendency to overestimate the damage class with respect to the real values. Overestimation

was observed particularly for low class damage (C1 and C2). The estimation of severe

damage is highly accurate. The comparison of the results of damage evaluation with the

new method and the Polish method reveals that the latter method leads to considerable

underestimation of analyzed values. This has a great significance especially for severely

damaged buildings. According to evaluations made with the Polish method, buildings

which underwent severe damage C3 were expected to be subject of small and very small

damage. The evaluation of both methods in view of cost of misclassification shows that

considerably bigger risks and costs will be generated due to damage risk underestimations

than overestimations. Accordingly, the Polish method has very low prediction efficiency as

compared to the counterpart method.

The proposed method is simpler, and before all, more efficient than the Polish point

method.

4 Summing up

This research focuses on a procedure employed for adapting the existing and inefficient

methods of damage risk evaluation to local conditions. The proposed methodics can be

quickly implemented to any densely developed area staying under the influence of con-

tinuous deformations. One of the most important assumptions is the access to data, on the

Table 7 Number of nodes in
classification tree versus cross-
validation value

Number of terminal

nodes eT
�� ��

Cost of
misclassifications R(T)

Standard
deviation

135 0.6489 0.041704

91 0.6641 0.041265

19 0.5878 0.043007

15 0.6288 0.042051
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Fig. 9 Classification divisions for the first (a) and third node (b)
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basis of which the model can be adapted. Therefore, the analyzed areas should not have

been subjected to continuous deformation before. In the case of highly invested areas

where no cases of terrain deformation were observed, no local data for modeling can be

acquired. Alternatively, attempts can be made to collect data from areas where buildings

have a similar vulnerability and construction characteristic. Moreover, those buildings

C1
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Very high

Horizontal strain [mm/m]
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1940

1980

Y
ea

r
1 to 1.1
2 to 2.1
3 to 3.1
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Very high

0 2 4 6 8 0 2 4 6 8
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1900
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Y
ea

r

1 to 1.1
2 to 2.1
3 to 3.1
4 to 4.001

C2 C3

C3

C4

Small
Medium
High
Very high

(a) (b)

Fig. 10 Classification divisions in the fifth and seventh nodes

Fig. 11 Ultimate classification tree
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should undergo damage under the impact of surface deformation of representative inten-

sity. This type of set can be used for classification, thanks to which boundary criteria of

damage class can be distinguished. The advantage of this solution lies in its high adapt-

ability. Low reliability of the point method results from, e.g., qualitative diversity of

regions (buildings and exploitation), for which it is applied. Another thing is the subjective

approach of researchers who use this method and their professional competences.

The presented algorithm can be used for determining boundary criteria of building

damage class in any mining activity area. The new method might be an alternative to

currently used method for the building damage estimation on the mining areas. Presented

solution shall contribute to an incensement of the accuracy of the results of building

damage risk evaluation. The methodic presented in this paper is also applicable to areas

under the impact of continuous deformations generated by other underground activity than

hard coal mining. A similar classification could be presented, e.g., for fluids or water

production, materials which create considerable hazard for intensely developed areas.

It should be emphasized that the presented graph is adequate to areas where it was

implemented (or areas of similar characteristic). Owing to its simplicity, the presented

method can be used for an arbitrarily selected area.

Table 8 Decision cost matrix new method (a) and Polish method (b)

Observed damage class

C1 C2 C3 C4

(a) Predicted damage class new method

C0 0 0 0 0

C1 0 0 2 0

C2 5 8 4 1

C3 26 36 35 5

C4 1 2 2 0

(b) Predicted damage class Polish method

C0 27 36 32 0

C1 5 8 9 3

C2 0 1 2 1

C3 0 1 0 0

C4 0 0 0 0

Fig. 12 Comparison of the accuracy of developed method
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