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Abstract Multi-modal, multi-parametric Magnetic
Resonance (MR) Imaging is becoming an increasingly sophis-
ticated tool for neuroimaging. The relationships between pa-
rameters estimated from different individual MR modalities
have the potential to transform our understanding of brain
function, structure, development and disease. This article de-
scribes a new software package for such multi-contrast
Magnetic Resonance Imaging that provides a unified model-
fitting framework. We describe model-fitting functionality for
Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry
and Diffusion Weighted imaging, providing command line
documentation to generate the figures in the manuscript.
Software and data (using the nifti file format) used in this
article are simultaneously provided for download. We also
present some extended applications of the joint model fitting
framework applied to diffusion weighted imaging and T2
relaxometry, in order to both improve parameter estimation
in these models and generate new parameters that link differ-
ent MR modalities. NiftyFit is intended as a clear and open-
source educational release so that the user may adapt and
develop their own functionality as they require.

Keywords MRI . Relaxometry . Diffusion . Cerebral blood
flow . g-ratio

Introduction

The growth of multi-modal medical imaging datasets, partic-
ularly those acquired using MRI has great potential for the
development of multi-modality derived imaging biomarkers
that combine and summarize two or more types of imaging
data. Recent examples are the combination of diffusion
weighted MRI (DWI) and Arterial Spin labeled MRI (ASL)
as in (Hales and Clark 2013; He et al. 2014; Melbourne et al.
2015), DWI and MR bound pool measurement as in (Stikov
et al. 2011; Melbourne et al. 2014a) and DWI and Dynamic
Contrast Enhanced MRI (DCE) as in (Hamy et al. 2014).
Similarly, familiarity withmodel-fitting allows bespoke acqui-
sitions to be used to assess quantitative imaging parameters in
novel ways (Deoni et al. 2008; Draganski et al. 2011, Vos et al.
2015). Each of these methods allows a measurement and in-
vestigation of a tissue property that was not possible until this
combination was attempted and allows a unified biological
model to be applied. The motivation for the development of
accurate imaging biomarkers is three-fold: to improve sensi-
tivity and specificity in individual diagnosis; assess the effica-
cy of disease modifying therapies in treatment development
and to understand the basic science of normal development,
disease and ageing. To achieve these goals, it is vital to sup-
port the accurate quantification of imaging biomarkers and to
facilitate their future development by providing lightweight,
easy-to-use software free of cumbersome dependencies and
license conflicts. Software of this type should be easy to use
on both the individual case and when applied to large datasets
and provide a base for future independent development so that
the research community can rapidly trial new ideas. A prereq-
uisite for this is that the software be open-source and freely-
available, making use of a unified set of common optimization
routines. The software package described in this work, termed
NiftyFit has been developed to serve this purpose. Multi-
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modal test data is also included as part of the package to
provide a base for future research developments and the fig-
ures used in this work can be generated from this open-source
software and data. Software packages for image analysis exist
for multi-purpose image analysis tasks, such as the FSL pack-
age that includes tools for registration, segmentation and dif-
fusion imaging (Jenkinson et al. 2012) and the SPM software
for volumetric statistical analysis (Friston et al. 2007). Other
specialist packages also exist for instance for registration
(NiftyReg, Modat et al. 2010) and image segmentation
(NiftySeg, Cardoso et al. 2015) but are less common for be-
spoke multi-contrast parametric designs.

The rest of this paper proceeds as follows: BMaterials
& Methods^ section provides a description of the source
code and the image data that forms part of NiftyFit.
This includes a brief description of the core algorithms
used in this work and installation instructions. BExample
Applications and Case Studies^ section describes how
these algorithms are applied to the five imaging modal-
ities presented in this work: arterial spin labeled MRI,
T1 and T2 relaxometry, diffusion MRI and their exten-
sions. BDiscussion and Future Developments^ section
finalises the paper with a brief discussion of future
work.

Materials & Methods

Data Overview

NiftyFit includes a dataset consisting of imaging data from 9
healthy control individuals. The data is provided in nifti
format1 only and each modality has been registered and
resampled into a subject-specific co-ordinate frame using
NiftyReg (Modat et al. 2010), an open-source registration
software package available for download at: http://
sourceforge.net/projects/niftyreg/. This is a registration and
resampling routine based upon using cubic b-splines and
normalized mutual information to realign imaging data. All
resampling uses cubic resampling – although this can occa-
sionally produce unphysical imaging values by under- or
overshooting (such as negative MR signal values), this is
offset by improved interpolation accuracy in high SNR re-
gions. Registration of variable contrast data (either endoge-
nous or exogenous in nature) remains a challenging task,
and so with the exception of an affine T1-weighted to the
non-diffusion weighted image, explicit registration is not
carried out (Melbourne et al. 2007; Ben-Amitay et al.
2012). Registration might be necessary for datasets from real
imaging populations and for well-defined regions of interest.
Masks are provided which have been produced by intensity

thresholding – the motivation in this work is to improve
overall computation time but more advanced brain extraction
techniques could be used if the user has them available. The
simplicity of the multi-dimensional nifti format ensures easy
file manipulation and coding within NiftyFit. Data includes
diffusion weighted imaging (multi-shell data), T2
relaxometry (multi-echo and refocussed data), Arterial Spin
Labelling (Pulsed ASL (PASL) and Pseudo-Continuous
ASL (PCASL)), and inversion recovery data. T1-weighted
imaging data is also provided as an anatomical reference.
Parameter files are provided as plain text for diffusion b-
values and b-vectors, flip angles and TE and TI times.

In the corresponding NiftyFit test data, cases 01-06 are
volunteer data acquired using a 3T Siemens Trio (PASL,
DWI, multi-echo T2, multi-inversion time T1). Subjects A-C
are volunteer subjects acquired from a 3T Philips Achieva
(PCASL and multiply-refocused multi-echo T2). We list the
image contrast types that are available below:

& T1-weighted data is acquired using an MPRAGE acquisi-
tion at 1.1mm isotropic and resampled to DWI space
(Cases1-6, Siemens Trio) or PCASL space (CasesA-B,
Philips Achieva),

& Inversion Recovery data is acquired at up to five inversion
times between 500 and 5000ms at 2.5mm isotropic reso-
lution (Cases1-6, Siemens Trio only),

& Multi-echo T2 relaxometry data is acquired at roughly 21
echo times, finely sampled between 19 and 50ms and
coarsely sampled from 50 to 150ms at 2.5mm isotropic
resolution (Cases1-6, Siemens Trio only),

& Refocussed T2 relaxometry is acquired with an echo time
of 12ms for 32 echoes with a TR of 9 s. Resolution is
0.42 × 0.42 × 3mm (Case C, Philips Achieva only),

& Diffusion Weighted MRI is acquired on 3 shells, 8 direc-
tions at b = 300 s.mm−2, 32 directions at b = 700 s.mm−2

and 72 directions at b = 2000 s.mm−2 with 12 b = 0 vol-
umes. Resolution is 2.5mm isotropic (Cases1-6, Siemens
Trio only),

& PCASL data is acquired for 30 control-label pairs using a
2D EPI read-out with Label Duration of 1650ms and
Post-Labelling delay of 1800ms. Resolution is 2.5 ×
2.5 × 6mm (CasesA-B, Philips Achieva only),

& Pulsed ASL data is acquired for 5 averages using a 3D
GraSE read-out with QUIPSSII pulse time and inversion
time of 800ms and 2000ms respectively at 2.5mm isotro-
pic resolution, resampled into DWI space (Cases1-6,
Siemens Trio only),

Package Overview

NiftyFit is available for download as detailed in the in-
formation sharing statement. The package contains a1 http://nifti.nimh.nih.gov/nifti-1
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selection of routines for model-fitting to different types
of MRI data. Summary details of the fitting procedures
are provided in the associated presentation file. The
software currently fits models to four different types of
MR data (executable in parenthesis):

& Arterial Spin Labeled MRI (fit_asl),
& Single and multi-component T1 relaxometry (fit_qt1),
& Single and multi-component T2 relaxometry (fit_qt2),
& Diffusion Weighted MRI (fit_dwi),
& Diffusion Tensor manipulation routines (fit_tools),
& Basic image maths and manipulation routines (fit_maths).

The software is organised as illustrated in Fig. 1.
High-level executables allow fitting to mono-modal data
types based around the themes above. These depend on
non-object oriented code with the exception of DWI
fitting routines that are object orientated. General fitting
routines such as ordinary least squares are organised in
a separate library so that they can be included within
any new executable. A new fitting routine would, for
example, have its own executable that would expect a
particular data type and which would contain within it a
bespoke fitting strategy that would call the lower level
least-squares fitting routines explicit in the fitting li-
brary. If the user wishes to add a new generic fitting
routine it can be added to the relevant library and the
addition of a switch to the new fitting method in the
main executable should be straightforward.

Underlying Input/Output Framework

NiftyFit provides some standardisation of its input and output
across the individual modality fitting methods. Standard nifti
image inputs are:

& -source; the input data which expects a 4D nifti file
organised with the dependent variable (e.g. time, echo
time or diffusion weighting) along the fourth dimension,

& -mask; a 3D mask file (optional, but recommended),
& -init; a 4D initialisation parameter file in which the param-

eters are organised along the fourth dimension in the same
order as the NiftyFit parameter output. These provide an
initialisation for non-linear least squares. Currently param-
eter initialisation only applies to non-linear fitting
routines,

& -slice; select a single slice to run the model-fitting on,
& -voxel; select a single voxel to run the model-fitting on,
& Input and output help text is displayed when running each

command with no inputs.

Variables can be submitted either directly on the command
line (e.g. -TEs in fit_qt2) or within a text file organised as a
tab-delimited row vector (as in fit_dwi for -bvec and -bval),
although this is variable if command line entries are not ex-
pected to be practical. Standard nifti image outputs are:

& -mcmap; a multi-parameter map with parameters
organised along the 4th dimension. This file contains all

Fig. 1 Schematic illustrating the
organisation of the NiftyFit code
and the inter-relationships
between high-level executables,
common libraries and derived
parameter types

Neuroinform (2016) 14:319–337 321



the information required to build a synthetic version of the
data (when using the input experimental variables),

& -resmap; a 3D volume of the per-voxel model-fit residuals,
& -error; a 4D volume of the independent, identically distrib-

uted (I.I.D.) parameter errors organised with variances
followed by covariances,

& -syn; a 4D volume of data simulated from the fitted pa-
rameters and input variables.

Parameter Fitting Routines

All of the fitting methods in NiftyFit are built around common
matrix solving techniques (these are available in Eigen http://
eigen.tuxfamily.org). Solutions of the least squares problem
are found using the pseudo-inverse of the system matrix and
variations of this fitting routine: weighted Least Squares (LS);
Non-Negative LS and non-linear least squares (NNLS), each
make use of this framework.

Linear Least Squares The LS problem seeks the solution to
the equationAb = ywhere in general b and y are best described
by column vectors and A by a matrix. Making use of the
matrix pseudo-inverse of A, (ATA)− 1AT, yields the least-
squares solution (Eq. 1).

b ¼ ATA
� �−1

ATy ð1Þ

and,

b ¼ ATWA
� �−1

ATWy ð2Þ

for weighted least squares, where the weight matrix is often
diagonal and formed by the individual measurement preci-
sions. This method is used for single-compartment model
fitting for all imaging modalities: arterial spin labeled MRI,
T1 and T2 relaxometry, diffusion MRI.

Non-linear Least Squares In order to generalise this solving
routine to non-linear problems, the assumption is often made
that the solution is locally linear in the parameters and thus a
LS-based routine can be contrived using the Jacobian matrix
(Eq. 3).

Ai j ¼ δ f x; bð Þ
δbj

� �
i

ð3Þ

The local residual at data point i of n is given by Eq. 4 for
an arbitrary function f that is a function of the fixed parameter
xi and n parameters in bj that we wish to estimate.

Δyi ¼ yi− f xi; bð Þ ð4Þ

The update equation is then given by the solution of Eq. 5,

AΔb ¼ Δy ð5Þ
Δb ¼ ATA

� �−1
ATΔy ð6Þ

btþ1 ¼ bt þ ATA
� �−1

ATΔy ð7Þ

where the matrix A is the matrix of first-order derivatives of f
by the parameters b. The update Δb is applied to the current
parameter estimates b and the algorithm iterates until some
convergence is reached: either the residual falls to a low level
or a maximum number of iterations is reached. Using higher
order gradient terms in the parameter update estimation is
uncommon due to the computational cost of forming the
Hessian matrix, although improvements in precision might
be expected when close to a solution. Convergence for this
routine is occasionally slow. To this end a heuristic update
technique was devised by Levenberg and Marquardt
(Levenberg 1944; Marquardt 1963), leading to the epony-
mous algorithm. In this case the update steps are given by:

btþ1 ¼ bt þ ATAþ λdiag ATA
� �� �−1

ATΔy ð8Þ

Where the value of λ is chosen to interpolate between gradient
descent and Gauss-Newton nonlinear least squares. In
NiftyFit, the value and rate, r, of decrease of λ are set empir-
ically using the -lm option where λ is reduced after each iter-
ation by λt + 1 = λt/r. Convergence of the least squares algo-
rithm is guided by the total residual, Eq. 9,

R ¼
X m

i
yi− f xi; bð Þð Þ2 ð9Þ

and if this does not change appreciably the algorithm is
stopped. Alternatively the algorithm runs for -maxit iterations.
This method is used for model fitting of T1 and T2
relaxometry when a parameter initialisation is used, and for
the non-linear models in the diffusion-weighted imaging
section.

Example Applications and Case Studies

Example Applications

Single Inversion Time Arterial Spin Labeled MRI

Fitting of Cerebral Blood Flow (CBF) maps to ASL data fol-
lows the simple derived forms stated in the ISMRM Perfusion
Study group recommendations on ASL acquisition for PASL
(Eq. 13) and PCASL (Eq. 12) (Petersen et al. 2006; Alsop
et al. 2014). Both of these models are derivations of the
Buxton model (Buxton et al. 1998) under specific experimen-
tal conditions. The CBF value is quantified under a number of
fairly liberal assumptions and presented in conventional units
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of ml/100 g/min. Acquisition proceeds by acquiring a number
of pairs of control, SC, and label, SL, data. These pairs are
averaged to generate single voxel values for the control and
label signal. In addition a normalisation is needed and this can
be estimated by, for instance, acquiring a proton-density
weighted image, SPD, or acquiring a number of inversion or
saturation recovery images at varying inversion time and
fitting a T1 recovery curve (for more details see the next sec-
tion on T1 relaxometry).

Pseudo-continuous ASL ASL CBF maps can be estimated
using pseudo-continuous ASL. In this case the relevant equa-
tion is:

CBF ¼ 6000λ
2α

ePLD=T1blood

T1blood 1−e−τ=T1bloodð Þ
SC−SLð Þ
SPD

ml=100g=min½ �

ð10Þ
where λ is the plasma/tissue partition coefficient, PLD the
post-labelling delay between end of bolus and start of imag-
ing, T1blood the blood T1 value, α the labelling efficiency and
τ the labelling pulse duration.

Pulsed ASL ASL CBF maps can also be estimated for using
pulsed ASL. In this case the relevant equation is:

CBF ¼ 6000λ
2α

eTI2=T1blood

TI1

SC−SLð Þ
SPD

ml=100g=min½ � ð11Þ

with TI2 and TI1 representing the times of the imaging inver-
sion (similar to PLD for PCASL) and the time of the bolus
clipping saturation pulse (QUIPSS-II) respectively.

Other fit_asl FeaturesNiftyFit for ASL contains a number of
additional features: if multiple control and label pairs are sub-
mitted as the input, the method can estimate outliers by calcu-
lating a z-score on the intensity distributions in the images,
this can be done on the raw image intensities, or based on the
pairwise difference image (the -out option). This allows im-
ages corrupted by hardware artefacts to be filtered. However
this method does not correct for motion artefacts that should
be pre-corrected by a suitable strategy. Improved blood T1
values could be estimated using a function derived from pop-
ulation studies (Lu et al. 2004; Zhang et al. 2013).

In addition, partial volume correction options are available
in 2D and 3D (Asllani et al. 2008). This method fits a least
squares estimate to the CBF values within a local 2D or 3D
kernel based on the assumption that the local grey and white
matter CBFs are constant. This method should be used with
caution since it pre-supposes an accurate grey and white mat-
ter segmentation and registration and does not provide quan-
titative results since the size of the partial volume kernel can
be chosen arbitrarily. It may however provide an alternative

CBF estimate that is in some way corrected for features such
as greymatter atrophy. It should also be noted that this method
is quite different in intention to the partial volume correction
methods employed for Positron Emission Tomography
(Thomas et al. 2011).

Single and Multi-component T1 Relaxometry

Inversion and Saturation Recovery To estimate a single-
voxel T1 value, NiftyFit uses non-linear LS to find the two
parameters [S0, T1] in Eqs. 12 and 13, for either saturation
recovery (Ssr) or inversion recovery (Sir), given known values
of the multiple inversion times TI. Estimation of these param-
eters is useful for instance, for quantification of Cerebral
Blood Flow maps in ASL data. These are special cases of a
more general inversion recovery equation.

Ssr TIð Þ ¼ S0 1−e−TI=T1
� �

ð12Þ

Sir TIð Þ ¼ S0 1−2e−TI=T1 þ e−TR=T1
� �

ð13Þ

Other fit_qt1 Features Multi-component T1 estimation can
also be attempted using NiftyFit. In this case the goal is to
estimate the volume fractions {vi} associated with a set of
predefined T1s with ∑i vi = 1 (Equation 14 for saturation re-
covery and Eq. 15 for inversion recovery). The solution in this
case is linear and proceeds using non-negative LS and will
return the output volume fractions via the -comp and -mcmap
output options. Necessary inputs in this case are the number of
expected tissue components (-nc) followed by the pre-defined
tissue T1s, given as either command line values (-T1s) or in a
text file (-T1list).

Ssr v;TIð Þ ¼ S0
X

i
vi 1−e−TI=T1
� �

ð14Þ

Sir v;TIð Þ ¼ S0
X

i
vi 1−2e−TI=T1 þ e−TR=T1
� �

ð15Þ

Single and Multi-component T2 Relaxometry

The T2 relaxometry in NiftyFit offers non-negative LS and
non-linear LS routines for single- and multi-echo data. A
single-component T2 estimate can be made by NLS fitting
to Eq. 18 for a range of TEs in order to estimate [S0, T2]
(Whittall et al. 1997).

S TEð Þ ¼ S0e
−TE=T2 ð16Þ

Similarly, multi-component T2 estimation can be carried
out to estimate the volume fractions vi associated with a set
of predefined T2s: [{vi}, S0] where ∑iv(i) = 1. The solution is
found either using non-negative LS, or if a component
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initialisation is provided, using non-linear least squares.

S TE; T2f gð Þ ¼ S0
X

i
vie

−TE=T2i ð17Þ

The experimental TEs can be entered in three ways, direct-
ly via the command line using the -TEs option, via a simple
text file using the -TElist option, or, if the echo times are
equally spaced by using the -TE option which contains the
echo spacing (e.g. -TE 12).

The EPG Algorithm If the T2 estimation experiment is car-
ried out with repeated refocusing, as opposed to separate ex-
periments with varying TE above (case16-qt2.nii.gz is an ex-
ample dataset), then the signal modelling can become suscep-
tible to errors due to B1 inhomogeneity. Multi-spin echo T2
decay generally assumes a train of perfect refocusing pulses
that implies a perfectly homogenous B1 field (giving rise to
Eq. 17). In practice this condition is not met as the scanner
with the consequence that stimulated echoes are produced
along the echo train. However, these may be modelled using
the Extended Phase Graph (EPG) algorithm (Prasloski et al.
2012; Lebel and Wilman 2010) in such a way that the local
refocusing angle, α, can be estimated by simulating the histo-
ry of previous imperfect refocusing pulses Eq. 18). This algo-
rithm simultaneously estimates the B1 inhomogeneity on a
per-pixel basis (Fig. 11g).

S TE; T2f g;αð Þ ¼ S0
X

n
viEPG TE; T2i;αð Þ ð18Þ

Although superficially complex (literally), the matrices that
form part of the general EPG algorithm can be coded quite
efficiently. This is because, although the general solution is
complex, because the initial signal is pure real, the signal
components oscillate between pure real and pure imaginary
values, thus no complex number routines are actually re-
quired. T2 relaxometry using the EPG algorithm can be car-
ried out using the -epg option and the resulting B1 map is
output using the -b1map flag and the output is provided in
radians, 0 ≤ α ≤ π.

Diffusion Weighted MRI

DiffusionWeighted MRI is now a staple of most MR imaging
protocols and generates significant research output. The flex-
ibility of the imaging technique means that it is highly ame-
nable to new imaging challenges. Examples in this section of
the paper are drawn frommulti b-value, multi-direction data at
b-values of [0, 300, 700, 2000]s. mm− 2 and some example im-
ages are shown in Fig. 11. The DWI routines within NiftyFit
have been developed to allow the same model-fitting frame-
work used in the other imaging modalities to be applied with-
out bias. The incorporation of tensor and multi-compartment
model fitting allows joint model-fitting to be carried out and

we present some applications of how to do this in the follow-
ing sections.

A number of methods are available for analysis of this data
and some of these models are available in NiftyFit. In the most
general case, fitting a mono-exponential isotropic decay is
carried out using either log-linear or non-linear least squares
to estimate the two parameters (a magnitude parameter S0 and
rate parameter diffusion coefficient d) in Eq. 19 [S0, d]:

S bð Þ ¼ S0e
−bd ð19Þ

Diffusion Tensor Fitting In the presence of multiple direction
sampling (at least six directions, each direction described as a
vector r), the Diffusion Tensor Imaging model (DTI) can be
fitted (Le Bihan et al. 2001) (Eq. 20). The DTImodel proceeds
by LS fitting to the log of the signal. The resulting 3 × 3 sym-
metric matrix system, D, of diffusivities can then be
diagonalised to estimate a principal diffusion direction
(PDD) and set of diffusion eigenvalues from which parame-
ters such as the mean diffusivity (MD) and the fractional an-
isotropy (FA) can be calculated. Using the NiftyFit -mcmap
will produce a parameter map with the tensor elements follow-
ed by the S0 (signal magnitude) estimate: [D, S0]. This could
be useful for instance within an iterative model-fitting driven
registration scheme.

S b; rð Þ ¼ S0e
−brTDr ð20Þ

Neurite Orientation and Density Distribution Fitting
Multi-compartment model fitting of DWI can also be carried
out with the Neurite Orientation and Density Distribution
model (NODDI (Zhang et al. 2012)). The method as imple-
mented here has a number of differences to the original algo-
rithm proposed in Zhang et al. 2012. These include 1) the
parameters are initialised using the diffusion tensor scheme,
2) the integration over theWatson distribution is carried out by
a finite sampling scheme rather than analytically and 3) the
noise model is Gaussian which empirically assumes a high
SNR, which although is likely to provide a reasonable func-
tion for χ2 minimisation, may not give such good estimates
for parameter precisions. The implementation of NODDI used
in NiftyFit is designed for ease of adaptation and for code
transparency.

The method uses a mixture of analytical derivatives for
estimation of the volume fractions and PDD and a finite dif-
ference scheme for estimation of the orientation dispersion
index γ. The diffusion model combines three signal compo-
nents as a function of b-value, b, and gradient direction, r,
from an isotropic space and a coupled intra- & extra- cellular
space (Eqs. 21, 22, and 23). After constraining parallel (to the
principal diffusion direction), d‖, and isotropic, diso, diffusiv-
ities, four parameters remain to be estimated: an isotropic
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diffusion volume fraction, viso; an intra-cellular volume frac-
tion, vin (the remaining extra-cellular volume fraction is given
by vex = 1 − vin − viso); the oblateness of the fitted Watson dis-
tribution, 0 ≤ γ ≤ 1 (higher values tend towards a spheroid
shape), used to infer white matter fibre dispersion, and the
principal diffusion direction μ. Both μ and γ may be used to
generate an extra-cellular component diffusion tensor D* for
which there is an analytical equivalent of the expression:
D*(μ, γ) = ∫Ωf(n|μ, γ)D(n)dn when f(n) is a Watson distribu-
tion integrated over spherical space. InNiftyFit, representation
of the PDD is in spherical polar coordinates, p(θ, ϕ), which
allows this to be estimated simultaneously alongside the scalar
parameters [vin, viso, γ, S0, θ, ϕ]

S b; rð Þ ¼ S0 vinAin þ vexAex þ visoe
−bdo

� � ð21Þ

Ain ¼
Z

Ω
f nð Þe

−bd������ r⋅nð Þ

dn ð22Þ

Aex ¼ e−brD
*r ð23Þ

Example Application: Modified NODDI Fitting

The example described in this section demonstrates the
possibility of combining traditionally separate model-
fitting algorithms within a unified model. This can be
used to enhance the fitting of existing parameters, or in
the case of the following section, derive new model
parameters from existing data.

The multi-compartment diffusion fitting routine above can
be enhanced by the inclusion of T2 relaxometry data. In this
case we give the algorithm additional information to fit the viso
volume fraction. This is intrinsically acceptable (with caveats
discussed below) because we expect the T2 relaxation time of
the viso volume fraction to become long if it has a diffusivity of
3 × 10−3mm2s−1. We modify

S b; rð Þ ¼ S0 vinAin þ vexAex þ visoe
−bdiso

	 
 ð24Þ

To become

S b; r;TEð Þ ¼ S0 vinAin þ vexAexð Þe−TE=T2wm þ visoe
−bdisoe−TE=T2iso

h i
ð25Þ

and we simplify this analysis by only varying the TE of the b0
images, in which case the equation simplifies in the absence of
diffusion-weighting to become the two-component T2
relaxometry fit discussed in the T2 relaxometry section with
fixed T2 values of T2wm and T2iso. With Eq. 25 it is possible
to see how the multi-compartment diffusion signal overlaps
with a simplified multi-component T2 model (Melbourne
et al. 2015).

Example Application: g-Ratio Estimation in Adult Controls

Combined fitting routines can be used to estimate novel im-
aging biomarkers as in Melbourne et al. 2014a. This section
will recreate this analysis of the g-ratio as an example of using
NiftyFit for multi-modal multi-parametric model-fitting. The
g-ratio can bemeasured directly in vitro and more recently can
be estimated as an emergent bulk property on MRI. The g-
ratio is an interesting number as it relates to axonal conduction
velocity and electrostatic energetic efficiency and it represents
the ratio of internal axonal diameter to the total nerve diameter
(axon+myelin) (Chomiak and Hu 2009).

We start by imagining a set n of parallel axons (see Fig. 2).
These axons are long cylinders with an internal axon radius of
rin and an external myelin+axonal radius of rout. Using the cy-
lindrical geometry, the intra-axonal space is given by
vin ′ = n2πrin

2 s|| and the myelin volume by vmwf = n2π(rout
2 − rin2 )s||

where s
||
is a fixed axonal length. Simply taking the ratio of vmwf/

vin ′ yields an expression for the g-ratio,Γ (Equation 26) in terms
of the myelin volume vmwf and the intra-axonal volume vin ′.

Γ ¼ vmw f

vin0
þ 1

� �−1
2

ð26Þ

Using only DWI or multi-component relaxometry is insuf-
ficient to estimate both vin ′ and vmwf. To reconcile these two
modalities we make use of a four-compartment tissue model
(Alexander et al. 2010).

Stotal ¼ vmw f S1 þ vin
0S2 þ vexS3 þ visoS4 ð27Þ

The last three compartments of Eq. 27 are measurable
using a multi-compartment diffusion model (Zhang et al.
2012). The model allows for the estimation of the signal from
multiple compartments, specifically the intra-axonal volume
fraction associated with highly directional structure, vin. The
remaining model compartment for S1 describes signal associ-
ated, in white matter, primarily with myelin and can be esti-
mated by T2 relaxometry. Finally, because the diffusion signal
model contains no signal from S1 it is necessary to multiply
the estimates of vin, vex and viso from the diffusion measure-
ment by (1 − vmwf) and hence, vin ′ = vin(1 − vmwf).

Estimation of the g-ratio can be carried out usingNiftyFit as
either a two-step process or a single step joint optimisation.

Case Studies

Figures generated by the algorithms described in the preced-
ing section are presented here for PCASL, Pulsed ASL, T1
and T2 relaxometry and DWI. Results from the combined
fitting routines for the two applications described above are
also shown.When included, processing speed data refer to the
results of calculations performed on an Intel 3.5 Ghz i7 Mac
with 32Gb DDR RAM.

Neuroinform (2016) 14:319–337 325



Single Inversion Time Arterial Spin Labeled MRI

For PCASL, using the command:

generates the images in Fig. 3 drawn from the esti-
mated CBF map. Briefly, the major parameters entered
are the blood T1 value, the post labelling delay (PLD),
the slice-wise delay (-dPLD using 2D EPI) and the
labelling pulse duration (all assumed to be in units of
ms).

Using the following commands will generate CBF maps
for PASL data where briefly, the major parameters entered are
the blood T1 value, and the two labelling times for the first
(labelling) and second inversion (imaging). In this case the
images are acquired using 3D GraSE so there is no slicewise
delay time.

Figure 4 shows how the results of a tissue class segmenta-
tion may be used to carry out partial volume correction in
PASL data.

Average runtimes for ASL fitting are typically less than 1 s.

Single Component T1 Relaxometry

The command below generates both a T1 estimate and an M0
map. The M0 estimate can be used to normalise an ASL CBF

Fig. 2 Illustration of emergent g-ratio estimation in MRI. a uniform
parallel axons in cross-section demonstrating intra-axonal, myelin, CSF
and extra-axonal spaces. b equivalent single axon model of multiple

identical axons. c 3D volume sketch of 3D axon. A g-ratio may be
measured in this instance from knowledge of the intra-axonal and myelin
spaces (see text)
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map as described above. An example of fitting is shown in
Fig. 5 for three-timepoint saturation recovery.

Average runtime across the six datasets for single-
component T2 is 30 ± 5 s.

Single and Multi-component T2 Relaxometry

T2 relaxometry can be carried out with the following com-
mand to estimate a single-component T2 map,

Figure 6 shows the results obtained by the above command.
Echos at four times are shown, although the T2map is fitted to all
19 echoes. Average runtime across the six datasets is 2 ± 1 s.

The single component estimated T21 should be approxi-
mately equal to the grand mean T2, �T2 ¼ ∑iv ið ÞT2i when
using a command such as:

Multi-component T2 estimation can be carried out to pro-
duce a multi-component map. The mcmap.nii.gz output con-
tains the volume fractions and the baseline signal magnitude
estimate S0. The following command generates an output that

broadly speaking contains two dominant volumes, a tissue
component at about 50ms and a fluid component at 150ms,
this maximum T2 relaxation time is perhaps best chosen by
taking a regional CSF average from the single component fit.

Figure 7 demonstrates the equivalence of the result when
attempting to fit a multi-component exponential fit to this

data. The NNLS algorithm generates a sparse solution of
which there are two substantial components (shown) broadly
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separating tissue and non-tissue classes. Average runtime
across the six datasets for estimation of eight components is
3 ± 1 s.

Estimation of more than two-components from this
data is difficult due to the range of T2s used. In this
case a tissue prior might provide a suitable mechanism
of constraining the fit with known anatomical informa-
tion (Melbourne et al. 2013). Here we can use a prior
derived from a segmentation (see Fig. 8) that provides
voxelwise prior estimates for an additional volume frac-
tion, namely the short T2 myelin water fraction (see
Fig. 9). The myelin water fraction is defined as the

sum of the volume fractions for T2’s less than 50ms
(this threshold can be set within NiftyFit using the -

mwfthreshold option): MWF ¼ ∑T2i<50ms
i¼0 vi.

The roundabout terminology’Myelin Water Fraction’
refers to the fact that this is not a direct measurement
of myelin, but more a measurement of water that is
presumed to have interacted with the myelin space over
the course of the experiment, and thus have experienced
T2 shortening. There is evidence that the MWF is line-
arly related to the myelin content in regions of white
matter (Laule et al. 2006). Fitting a MWF proceeds
using the following command:

Average runtime across the six datasets when using an
initialization is 25 ± 4 s.

Figure 10 provides an example of using the EPG
algorithm to simultaneously correct for B1 field inho-
mogeneity during the multi-compartment T2 fitting.
The influence of B1 inhomogeneity in repeatedly-
refocused data is most clearly seen in the short T2
component. Runtime when using the EPG algorithm
is 199 s, compared to 27 s when using the standard
multi-exponential algorithm for a three-component fit.

Diffusion Weighted Imaging

Data in this section consists of several b-values and re-
peated instances at b values of [300, 700, 2000]s. mm− 2

(Fig. 11). Of particular note is the higher diffusivity found
by the non-linear least squares algorithm in regions of
CSF partial volume (Fig. 12). Differences in these regions
are driven by the log-transformation on the signal and
noise properties, particularly at high b-value where the
Gaussian noise model breaks down.

Example fitting of diffusion tensor data is shown in Fig. 13
where we use the eigenvalues of the diffusion matrix D to
form the mean diffusivity (the average of the eigenvalues, note
this is subtly different to the diffusivity estimated in Eq. 19).
The fractional anisotropy which represents the normalised av-
erage deviation of the eigenvalues from this mean value and
the Principle Diffusion Direction (PDD) defined in the direc-
tion of the first eigenvector. Average runtime across the six
datasets for DTI estimation is 4 ± 2 s.

The individual tensor components are illustrated in
Fig. 14. This figure represents the output of the -
mcmap option for DTI and enables the signal to be
reconstructed using Eq. 20.

When using NODDI fitting, the -nod flag is used and out-
put is assigned to the –mcmap output. An example of the
output of this implementation is shown in Fig. 15.
Occasionally the fitting procedure is sensitive to noise and
results in erroneous fitting values. The effect of these voxels
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can be reduced by data or parameter smoothing. Average
runtime across the six datasets for NODDI is 3609 ± 1357 s.

Modified Diffusion Weighted Imaging

The following command uses the additional variable -TE
(with an additional text file) to modify the fitting.

Results are shown in Fig. 16. It should be noted that
the interpretation of the difference in viso estimates is
complicated slightly by the different treatment of perfu-
sion effects. If these can be neglected, improved model-
fitting performance can be achieved; conversely, if these
effects cannot be neglected this methodology opens the
door to more elaborate models of MR measurement
(Melbourne et al. 2015).

g-ratio Estimation

Two-Step Estimation Estimation of the g-ratio can be carried
out using a two-step process:

The g-ratio can be estimated using an external pro-
gram to extract the first parameter estimate of case01-
mcmap.nii.gz which represented the intra-axonal space

vin and the first parameter est imate of the T2
relaxometry result case01-t2comp.nii.gz which repre-
sents vmwf.
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T h e v o x e l w i s e e s t i m a t e Γ ¼
vmw f = 1−vmw f

� �
vin

� �þ 1
� �−12 is the estimated g-ratio at
each voxel position. At the subject level, this estimate
is quite noisy and the measurement may benefit from a
region of interest-based approach.

Joint Model Fitting The MRI data described above can
be cast as a coupled optimisation since both models
share common parameters, specifically Γ and viso. We

can define the independent parameters of the DWI
signal model and the T2 relaxometry as θa and θb
respectively with the shared parameters as θab Thus,
the signal model for the multi-component DWI can be
summarised as Sa = f(θa = {Sa0, vin, γ, θ, ϕ}, θab = {Γ, v-

iso}) and the (adult) multi-compartment T2 sequence
as Sb = f(θb = {Sb0, vmwf, vtissue}, θab = {Γ, viso}). The
application specific command below carries out joint
fitting.

Output of these two algorithms is provided in Fig. 17.
Since the estimates of viso made from diffusion imaging

data and T2 relaxometry are made with different signal to
noise ratios, the relative contributions of both types of data
should be weighted. Specifically, the influence of the
diffusion-weighted imaging on the viso estimates should be
down-weighted relative to the T2 relaxometry estimate since
they are likely to contributemore noise. As the first instance of
a combined fitting routine, this example is illustrative. The
method has a few limitations and these include the relatively
noisy vmwf estimate and a DWI model that considers only a
single fibre direction. These represent future avenues for im-
provement and possible jumping off points to develop this
software further and in a more specific fashion.

Table 1 contains white matter parameter values estimated
from the DWI and T2 data from subjects 1–6. Myelin water
fractions are estimated from T2 data, intra-axonal volume
fractions from DWI data and g-ratio estimates calculated from
independent DWI and T2 measurements or via coupled
fitting. Standard FA and single component T2 measurements
are also included. White matter values are provided using the
white matter segmentations layers from the corresponding
segmentations. The contribution of the coupled fit appears
modest for these white matter average parameter values. The
values for white matter g-ratio can be compared with direct

Fig. 3 PCASL CBF images for case A (left) and case B (right). a T1-
weighted image, b T1 weighted image overlaid with CBF map, c T1-
weighted image, d T1 weighted image overlaid with CBF map. Missing
voxels are thresholded to a value of zero, negative values are possible in
regions of low perfusion, although they are likely to be the result of noise
and motion
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histological measurements such as those in Stikov et al. 2015.
Here the authors used slightly different techniques for estimat-
ing the axonal and myelin contributions, the authors found

variation in the g-ratio along the length of the corpus callosum
and state MRI values ranging between 0.63 in the genu and up
to 0.79 in the callosal mid-body which match well to the

Fig. 4 PASL CBF images for
case01 with different partial-
volume correction schemes for a
anatomical image, b white matter
segmentation, c grey matter
segmentation, d CBF map
generated using a separate M0
map estimation (see T1
relaxometry section) e partial
volume correction using (Asllani
et al. 2008) in 2d with a 3 × 3
kernel. All CBF maps overlaid on
T1- weighted image

Fig. 5 Saturation recovery T1 map generation (case02, slice 28)

Fig. 6 Example multi-echo T2-weighted acquisitions with four different echo times (a–d) and an estimated T2 map (e)
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Fig. 7 Comparison of single and multi-exponential T2 fitting. Two substantial components are found at approximately 42ms and 150ms and combined
(d) these approximate the single-component T2 (a)

Fig. 8 Example priors used to
constrain a three-exponential fit to
the data to attempt to extract an
estimate of the myelin water
fraction

Fig. 9 Using the priors in Fig. 7 allows estimation of a short T2 component (a, f) which may be used to approximate the myelin water fraction
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Fig. 10 Comparison of a multi-
compartment fit with (top row) and
without (middle row) the EPG
algorithm (case C). Differences
(bottom row) are of note in the
posterior right section of the short-
component image which has
higher component intensity when
using the EPG algorithm. This
region corresponds to a region of
B1 inhomogeneity estimated by the
EPG algorithm and displayed in G

Fig. 11 Example diffusion
weighted images at b values of 0,
300, 700 and 2000 s. mm− 2. Note
the non-zero weighted images are
scaled slightly differently to the
b0 image and there is an arbitrary
diffusion direction associated
with each image

Fig. 12 Comparison of log-linear and non-linear least squares fitting of the two parameter model in Eq. 19. Note the dark voxels in the lateral ventricles
are regions in which the least squares fit has failed in regions of low SNR
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Fig. 13 Diffusion Tensor fitting to estimate the mean diffusivity (MD), the fractional anisotropy (FA) and the Principle Diffusion Direction (PDD -
overlaid as an unsigned vector)

Fig. 14 Fitted diffusion tensor components and initial signal level S0

Fig. 15 DWI parameter map comparison of DTI and NODDI
parameters. a–d) represent DTI parameter estimates: a FA b colour-
coded FA (red = ML, green = AP, blue = SI), c) the MD and d) S0. e–

i) NODDI fitted parameters for e the intra-axonal volume fraction vin, f
changes to the PDD, g the estimated isotropic volume fraction viso, h the
estimated tissue orientation dispersion index, ODI and i the S0
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corresponding histological measurements. Since the corpus
callosum consists of highly packed fibres with a well-
defined orientation, the values found in this region should be
lower, on average, than the general white matter that has more
varied orientation and different neurological optimisation re-
quirements, both of which act to increase the g-ratio measure-
ment. Excepting errors due to modeling error, image noise,
and errors when associating histology with in vivo measure-
ment, the values in Table 1 are within the plausible range,
although the vmwf estimates are consistently lower than in
Stikov et al. 2015. An analysis of the propagation of error
through the respective vin and vmwf estimates will help inform

on the potential utility of g-ratio measurement over and above
these mono-modal imaging modalities and it may be that a
consistent measurement of the g-ratio is more valuable than an
accurate one. It is also likely that the combined measurement
will have a different sensitivity characteristics than the sepa-
rate measurements of axonal and myelin density.

Discussion and Future Developments

This work has presented NiftyFit as a platform for develop-
ment in multi-modal multi-parametric MR neuroimaging.

Fig. 16 DWI NODDI parameter map comparison between standard and extended fitting. For isotropic volume fraction viso, intra-axonal volume
fraction vin and the estimated tissue orientation dispersion index, ODI. Differences can be observed between regions of high viso

Fig. 17 g-ratio estimation using
two-step and joint estimation
methods. a/d) joint vin estimate.
b/e) two-step g-ratio estimate and
c/f) coupled estimate of g-ratio
parameter. Images B/E/C/F
smoothed using the fit_maths -
smo option
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Initial functionality has been demonstrated in ASL, DWI, and
T1 and T2 relaxometry data. The method and results have
been deliberately presented in a simple and pedagogic fashion
to maximize the potential of the source code and data for
educational and extensible purposes. The figures generated
in this work are as reproducible as possible provided that the
user has access to image display software. Future extensions
are planned to include the Incoherent Vascular Incoherent
Motion (IVIM, (Vos et al. 2015)) diffusion model, SPGR-
based T1 relaxometry, BOLD imaging and pharmacokinetic
modelling for Dynamic Contrast Enhanced MRI (Orton et al.
2008). Additionally, functionality for Bayesian fitting will be
included based upon previous work (Chappell et al. 2009;
Orton et al. 2014), although this must be used with caution
in modalities when non-Gaussian noise becomes significant
such as high-b-value DWI. Although all examples in this
work are applied to neuroimaging, many of the techniques
can be applied to imaging data from other regions of interest,
for instance the liver or kidney. Early versions of this work
have already supported publications by the authors, including
(Melbourne et al. 2014a; Hamy et al. 2014) and (Melbourne
et al. 2014b; Melbourne et al. 2015). Recent applications of
sparse mathematics to model fitting (Daduccia et al. 2015)
provide an alternative to non-linear and non-negative least
squares and can be adapted to some of the other modalities
described here. Some of the techniques developed in this work
can be re-configured so that they are able to operate on graph-
ical processing units. Software libraries already exist for GPU
based linear algebra and the ability to incorporate these within
NiftyFit and to run parallel operations on voxels from large
datasets would lead to significant performance enhancement.

The intention with this release is to provide a simple, ped-
agogic code base that remains useful to future researchers, so
that it may be modified, improved and extended, as the user
requires. Key to this is the simultaneous release of software
and imaging data with which to reproduce the figures in this
work and allow the reader to explore the types of data intended
for analysis. As a framework for future multi-modal multi-
parametric model-fitting, this simplicity and unification of

fitting routines is likely to offer much potential for future, as
yet unanticipated, MR biomarker developments.
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CMIC/NiftyFit-Release.

Acknowledgments We would like to acknowledge the MRC (MR/
J01107X/1), the National Institute for Health Research (NIHR), the
EPSRC (EP/H046410/1) and the National Institute for Health Research
University College London Hospitals Biomedical Research Centre
(NIHR BRC UCLH/UCL High Impact Initiative- BW.mn.BRC10269).
This work is supported by the EPSRC-funded UCL Centre for Doctoral
Training in Medical Imaging (EP/L016478/1).

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Alexander, D. C., Hubbard, P. L., Hall, M. G., Moore, E. A., Ptito, M.,
Parker, G. J. M., & Dyrby, T. B. (2010). Orientationally invariant
indices of axon diameter and density from diffusion MRI.
NeuroImage, 52(4), 1374–1389.

Alsop, D. C., Detre, J. A., Golay, X., Gnther, M., Hen-drikse, J.,
Hernandez-Garcia, L., Lu, H., Macintosh, B. J., Parkes, L. M.,
Smits, M., van Osch, M. J. P., Wang, D. J. J., Wong, E. C., &
Zaharchuk, G. (2014). Recommended implementation of arterial
spin-labeled perfusion MRI for clinical applications: a consensus of
the ISMRM perfusion study group and the European consortium for
ASL in dementia.Magnetic Resonance in Medicine, 73(1), 102–116.

Asllani, I., Borogovac, A., & Brown, T. R. (2008). Regression algorithm
correcting for partial volume effects in arterial spin labeling MRI.
Magnetic Resonance in Medicine, 60(6), 1362–1371.

Ben-Amitay, S., Jones, D. K., & Assaf, Y. (2012). Motion correction and
registration of high b-value diffusion weighted images. Magnetic
Resonance in Medicine, 67(6), 1694–1702.

Table 1 Average white matter parameter estimates for cases 1–6 from DWI and T2 relaxometry

Volume Independent fitting Coupled fitting

Case (mm3) FA T2 (ms) Vin Vmwf g-ratio Vin Vmwf g-ratio

1 495,583 0.423 71.808 0.514 0.141 0.864 0.526 0.176 0.887

2 422,227 0.439 70.021 0.498 0.137 0.869 0.509 0.134 0.868

3 390,378 0.431 70.712 0.518 0.147 0.862 0.530 0.143 0.855

4 433,189 0.413 70.115 0.516 0.159 0.848 0.530 0.155 0.841

5 464,354 0.409 66.101 0.502 0.162 0.845 0.515 0.158 0.841

6 431,296 0.351 69.848 0.470 0.163 0.835 0.482 0.159 0.831

FA and T2 are estimated from standard DTI and single-component relaxometry whilst vin, vmwf are estimated fromNODDI andmulti-component relaxometry

336 Neuroinform (2016) 14:319–337

https://cmiclab.cs.ucl.ac.uk/CMIC/NiftyFit-Release
https://cmiclab.cs.ucl.ac.uk/CMIC/NiftyFit-Release


Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S., &
Edelman, R. R. (1998). A general kinetic model for quantitative
perfusion imaging with arterial spin labeling. Magnetic Resonance
in Medicine, 40(3), 383–396.

Cardoso, M. J., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert,
D., & Ourselin, S. (2015). Geodesic information flows: spatially-
variant graphs and their application to segmentation and fusion.
IEEE Transactions on Medical Imaging, 34(9), 1976–1988.

Chappell, M. A., Groves, A., Whitcher, B., & Woolrich, M. (2009).
Variational Bayesian inference for a nonlinear forward model.
IEEE Transactions on Signal Processing, 57(1), 223–236.

Chomiak, T., &Hu, B. (2009).What is the optimal value of the g-ratio for
myelinated fibers in the rat CNS?A theoretical approach.PLoSOne,
4(11), e7754.

Daduccia, A., Canales-Rodrguez, E. J., Zhang, H., Dyrby, T. B.,
Alexander, D. C., & Thirana, J. P. (2015). Accelerated microstruc-
ture imaging via convex optimization (AMICO) from diffusionMRI
data. NeuroImage, 105, 32–44.

Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., & Jones, D. K. (2008).
Gleaning multicomponent T1 and T2 information from steady-state
imaging data.Magnetic Resonance in Medicine, 60(6), 1372–1387.

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R. S. J.,
Helms, G., & Weiskopf, N. (2011). Regional specificity of MRI
contrast parameter changes in normal ageing revealed by voxel-
based quantification (VBQ). NeuroImage, 55(4), 1423–1434.

Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., & Penny, W.D.
(2007). Statistical parametric mapping: The analysis of functional
brain images. Academic.

Hales, P. W., & Clark, C. A. (2013). Combined arterial spin labeling and
diffusion-weighted imaging for noninvasive estimation of capillary
volume fraction and permeability-surface product in the human brain.
Journal of Cerebral Blood Flow and Metabolism, 33(1), 67–75.

Hamy, V., Dikaios, N., Cleary, J., Hawkes, D., Punwani, S., Shipley, R.,
Ourselin, S., Atkinson, D., & Melbourne, A. (2014). Multi-modal
pharmacokinetic modelling for DCE-MRI: using diffusion weighted
imaging to constrain the local arterial input function. In SPIE
Medical Imaging. 90340R.

He, X., Aghayev, A., Gumus, S., & Ty Bae, K. (2014). Estimation of
single-kidney glomerular filtration rate without exogenous contrast
agent. Magnetic Resonance in Medicine, 71(1), 257–266.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., &
Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.

Laule, C., Leung, E., Li, D., Traboulsee, A., Patya, D., MacKay, A., &
Moore, G. (2006). Myelin water imaging in multiple sclerosis: quanti-
tative correlations with histopathology.Multiple Sclerosis, 12, 747–753.

Le Bihan, D.,Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S.,Molko, N.,
& Chabriat, H. (2001). Diffusion tensor imaging: concepts and applica-
tions. Journal of Magnetic Resonance Imaging, 13(4), 534–546.

Lebel, R. M., & Wilman, A. H. (2010). Transverse relaxometry with
stimulated echo compensation. Magnetic Resonance in Medicine,
64(4), 1005–1014.

Levenberg, K. (1944). A method for the solution of certain non-linear
problems in least squares. Quarterly of Applied Mathematics, 2,
164–168.

Lu, H., Clingman, C., Golay, X., & van Zijl, P. C.M. (2004). Determining
the longitudinal relaxation time (T1) of blood at 3.0 tesla.Magnetic
Resonance in Medicine, 52(3), 679–682.

Marquardt, D. (1963). An algorithm for least-squares es- timation of
nonlinear parameters. SIAM Journal on Applied Mathematics,
11(2), 431–441.

Melbourne, A., Atkinson, D., White, M. J., Collins, D., Leach, M., &
Hawkes, D. (2007). Registration of dynamic contrast-enhanced
MRI using a progressive principal component registration (PPCR).
Physics in Medicine and Biology, 52, 5147–5156.

Melbourne, A., Eaton-Rosen, Z., Bainbridge, A., Kendall, G. S.,
Cardoso, M. J., Robertson, N. J., Marlow, N., & Ourselin, S.

(2013). Measurement of myelin in the preterm brain: multi-
compartment diffusion imaging and multi-component T2
relaxometry. In MICCAI, 8150, pp. 336–344.

Melbourne,A., Eaton-Rosen, Z., Vita, E.D., Bain- bridge,A., Cardoso,M. J.,
Price, D., Cady, E., Kendall, G. S., Robertson, N. J., Marlow, N., &
Ourselin, S. (2014a). Multi-modal measurement of the myelin-to-axon
diameter g-ratio in preterm-born neonates and adult controls. In
MICCAI, 8674, pp. 268–275. Lecture Notes in Computer Science.

Melbourne, A., Lehmann, M., Modat, M., Cardoso, M., Ahmed, R.,
Thomas, D., Vita, E. D., Dickson, J., Warren, J., Mahoney, C.,
Bomanji, J., Hutton, B., Fox, N., Golay, X., Ourselin, S., &
Schott, J. (2014b). Stratification of dementia sub-types using arterial
spin labeled MRI. Alzheimer’s & Dementia, 10(4), P414–P415.

Melbourne, A., Eaton-Rosen, Z., Owen, D., Cardoso, J., Beckmann, J.,
Atkinson, D., Marlow, N., & Ourselin, S. (2015).Measuring cortical
neurite-dispersion and perfusion in preterm-born adolescents using
multi-modal MRI. In MICCAI, 9351, pp. 72–79, Lecture Notes in
Computer Science.

Modat, M., Ridgway, G., Taylor, Z., Lehmann, M., Barnes, J., Hawkes,
D., Fox, N., & Ourselin, S. (2010). Fast free-form deformation using
graphics processing units. Computer Methods and Programs in
Biomedicine.

Orton, M. R., d’Arcy, J. A., Walker-Samuel, S., Hawkes, D. J., Atkinson,
D., Collins, D. J., & Leach, M. O. (2008). Computationally efficient
vascular input functionmodels for quantitative kinetic modelling using
DCE-MRI. Physics in Medicine and Biology, 53(5), 1225–1239.

Orton, M. R., Collins, D. J., Koh, D., & Leach, M. O. (2014). Improved
intravoxel incoherent motion analysis of diffusionweighted imaging
by data driven Bayesian modeling. Magnetic Resonance in
Medicine, 71, 411–420.

Petersen, E. T., Zimine, I., Ho, Y.-C. L., & Golay, X. (2006). Non-invasive
measurement of perfusion: a critical review of arterial spin labelling
techniques. British Journal of Radiology, 79(944), 688–701.

Prasloski, T., Maedler, B., Xiang, Q.-S., MacKay, A., & Jones, C. (2012).
Applications of stimulated echo correction to multicomponent T2
analysis. Magnetic Resonance in Medicine, 67(6), 1803–1814.

Stikov, N., Perry, L. M., Mezer, A., Rykhlevskaia, E., Wan-dell, B. A.,
Pauly, J. M., & Dougherty, R. F. (2011). Bound pool fractions com-
plement diffusion measures to describe white matter micro andmac-
rostructure. NeuroImage, 54(2), 1112–1121.

Stikov, N., Campbell, J. S. W., Stroha, T., Lavelée, M., Frey, S., Novek, J.,
Nuara, S., Ho, M. K., Bedella, B. J., Dougherty, R. F., Leppert, I. R.,
Boudreau, M., Narayanan, S., Duvald, T., Cohen-Adad, J., Picarde, P.,
Gasecka, A., Côté, D., & Pike, G. B. (2015). In vivo histology of the
myelin g-ratio with magnetic resonance imaging. NeuroImage, 118,
397–405.

Thomas, B., Erlandsson, K., Modat, M., Thurfjell, L., Vandenberghe, R.,
Ourselin, S., & Hutton, B. (2011). The importance of appropriate
partial volume correction for PET quantification in Alzheimer’s dis-
ease. European Journal of Nuclear Medicine and Molecular
Imaging, 38(6), 1104–1119.

Vos, S. B., Melbourne, A., Zhang, H., Duncan, J. S., & Ourselin, S.
(2015). The effect of white matter perfusion on diffusionMRI based
microstructural tissue models. ISMRM Abstract number 475.

Whittall, K. P., MacKay, A. L., Graeb, D. A., Nugent, R. A., Li, D. K., &
Paty, D. W. (1997). In vivo measurement of T2 distributions and
water contents in normal human brain. Magnetic Resonance in
Medicine, 37(1), 34–43.

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C.
(2012). NODDI: practical in vivo neurite orientation dispersion and
density imaging of the human brain.NeuroImage, 61(4), 1000–1016.

Zhang, X., Petersen, E. T., Ghariq, E., Vis, J. B. D., Webb, A. G.,
Teeuwisse, W. M., Hendrikse, J., & van Osch, M. J. P. (2013).
In vivo blood T1 measurements at 1.5T, 3T, and 7T. Magnetic
Resonance in Medicine, 70, 1082–1086.

Neuroinform (2016) 14:319–337 337


	NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data
	Abstract
	Introduction
	Materials & Methods
	Data Overview
	Package Overview
	Underlying Input/Output Framework
	Parameter Fitting Routines


	Example Applications and Case Studies
	Example Applications
	Single Inversion Time Arterial Spin Labeled MRI
	Single and Multi-component T1 Relaxometry
	Single and Multi-component T2 Relaxometry
	Diffusion Weighted MRI
	Example Application: Modified NODDI Fitting
	Example Application: g-Ratio Estimation in Adult Controls

	Case Studies
	Single Inversion Time Arterial Spin Labeled MRI
	Single Component T1 Relaxometry
	Single and Multi-component T2 Relaxometry
	Diffusion Weighted Imaging
	Modified Diffusion Weighted Imaging
	g-ratio Estimation


	Discussion and Future Developments
	Information Sharing Statement
	References


