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Abstract Some problems of point and interval prediction
in a trend-renewal process (TRP) are considered. TRP’s,
whose realizations depend on a renewal distribution as well
as on a trend function, comprise the non-homogeneous Pois-
son and renewal processes and serve as useful reliability
models for repairable systems. For these processes, some
possible ideas and methods for constructing the predicted
next failure time and the prediction interval for the next fail-
ure time are presented. A method of constructing the pre-
dictors is also presented in the case when the renewal dis-
tribution of a TRP is unknown (and consequently, the likeli-
hood function of this process is unknown). Using the predic-
tion methods proposed, simulations are conducted to com-
pare the predicted times and prediction intervals for a TRP
with completely unknown renewal distribution with the cor-
responding results for the TRP with a Weibull renewal dis-
tribution and power law type trend function. The prediction
methods are also applied to some real data.
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1 Introduction

We consider a class of point and interval prediction prob-
lems for stochastic models determined by the trend-renewal
process (TRP) which is defined to be a time-transformed re-
newal process (RP), where the time transformation is given
by a trend function λ(·). Most commonly used reliability
models for repairable systems, such as non-homogeneous
Poisson process (NHPP) and RP are special cases of the
TRP.

The TRP was introduced and investigated first by Lind-
qvist (1993) and by Lindqvist et al. (1994) (see also
Lindqvist and Doksum 2003 and Lindqvist 2006). Paramet-
ric inference on the parameters of the TRP was considered
in the paper of Lindqvist et al. (2003), where the authors
also proposed corresponding models, called heterogeneous
trend-renewal processes, that extend the TRP to cases in-
volving unobserved heterogeneity.

General approaches to predictive inference are consid-
ered by Barndorff-Nielsen and Cox (1996), Smith (1999)
and Lawless and Fredette (2005). Prediction problems were
considered for some special cases of a TRP. Exact predic-
tion intervals, based on maximum likelihood estimation, for
the kth future observation of the non-homogeneous Poisson
process with power law intensity (the Weibull process) were
derived by Engelhardt and Bain (1978). In the paper of Cal-
abria and Pulcini (1996), prediction limits on the current
system lifetime modeled by power law process have been
derived both in the maximum likelihood and Bayesian con-
text. The prediction problem for the Weibull process with
incomplete observations is considered in the paper of Yu
et al. (2008). Recently, Helmers and Mangku (2012) con-
struct and investigate a (1 − α)-upper prediction bound for
a future observation of a cyclic Poisson process.

In the present paper we take up the problem of point
and interval prediction for the next failure time of a TRP in
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the case when the renewal distribution of the process is un-
known. If the renewal distribution is unknown, then the like-
lihood function of the TRP is unknown and consequently the
ML method of estimating unknown parameters cannot be
used. We present some ideas of predicting the next failure
time and constructing the prediction intervals for the next
failure time in such models. The main idea of prediction
consists in finding at the first step the estimates of unknown
trend parameters by minimizing the sample variance of the
transformed working times (one of the methods of estimat-
ing proposed by Jokiel-Rokita and Magiera (2012) for the
TRP model) and then in exploiting the inverse transforma-
tion of the cumulative trend function of the TRP. The method
proposed allows to predict the next failure time and con-
struct the prediction interval for the next failure time in the
case when the renewal distribution of the process is com-
pletely unknown. Using the prediction methods proposed,
the predicted times and prediction intervals for a TRP with
completely unknown renewal distribution are compared in a
simulation study with the corresponding results for the TRP
with a Weibull renewal distribution and power law type trend
function. The behavior of the predictions proposed is also
examined in the TRP model with a Gompertz renewal dis-
tribution and the same power law type trend function. The
prediction methods are applied to some real data too.

The article is organized as follows. Some methods de-
termining the predicted next failure time are presented in
Sect. 3. Prediction intervals for the next failure time are con-
structed in Sect. 4. The method of constructing the predicted
times and prediction intervals in the case when the form of
the renewal distribution function F is unknown is proposed
in Sects. 3.3 and 4.2, respectively. Using various methods
proposed for determining the predicted next failure time and
the prediction intervals, the performance of the predicted
times and intervals is illustrated in Sect. 5 for simulated TRP
models. The predicted next failure times and the prediction
intervals constructed for a TRP with completely unknown
renewal distribution function F and power law trend func-
tion (power law TRP) are compared with the predictors in
the reference to the TRP models with F corresponding to
the Weibull (Sect. 5.1) and Gompertz (Sect. 5.3) renewal
distributions and the same trend function. In particular, for
the power law process, the results are illustrated in Sect. 5.2
for five prediction intervals constructed by various methods.
In Sect. 6 the results concerning the determination of the
predicted next failure times and the prediction intervals in a
TRP model are applied to some real data. Section 7 contains
concluding remarks.

2 Definitions and preliminaries

Let N(t) denote the number of jumps (failures) in the time
interval (0, t] and let Ti be the time of the ith failure. De-

fine T0 = 0 and denote by Xi = Ti − Ti−1, i = 1,2, . . . , the
time between the failure number i − 1 and the failure num-
ber i (the so called working time or waiting time). In the
context of failure-repair models it is assumed that all repair
times are equal to 0. In practice this corresponds to the situ-
ation, when repair actions are conducted immediately or the
repair times can be neglected with comparison to the times
Xi between the failures. A review of reliability models for
repairable systems is given by Hollander and Sethuraman
(2002).

The observed sequence {Ti, i = 1,2, . . .} of occurrence
times T1, T2, . . . (failure times) forms a point process, and
{N(t), t ≥ 0} is the corresponding counting process. The
two point processes, non-homogeneous Poisson process
(NHPP) and RP are widely investigated in the literature on
reliability to model minimal repairs and perfect repairs (re-
newals), respectively. The process {N(t), t ≥ 0} is an RP if
the random variables X1,X2, . . . are independent and identi-
cally distributed with cumulative distribution function (cdf)
F with F(0) = 0. The RP with the renewal function F will
be denoted by RP(F ). If F is the cdf of the exponential
distribution E (λ), then RP(F ) is a homogeneous Poisson
process with intensity λ, denoted by HPP(λ).

Let λ(t), t ≥ 0, be a nonnegative function, and let Λ(t) =∫ t

0 λ(u)du. The process {N(t), t ≥ 0} is called a TRP with
a renewal distribution function F(t) and a trend function
λ(t) if the time-transformed process Λ(T1),Λ(T2), . . . is an
RP(F ) with the renewal distribution function F , i.e. if the
random variables

Wi = Λ(Ti) − Λ(Ti−1), i = 1,2, . . .

(the so called transformed working times) are i.i.d. with
cdf F . The TRP will be denoted by TRP(F,λ(·)).

If for instance, F(t) = 1 − exp(−t), then the TRP(1 −
exp(−t), λ(·)) becomes the NHPP with intensity function
λ(t), which will be denoted by NHPP(λ(·)). In particular,
if λ(t) = λ(t;α,β) = αβtβ−1, α > 0, β > 0, this process is
called the power law (or the Weibull) process. The process
{N(t), t ≥ 0} is an NHPP(λ(·)) if the time-transformed pro-
cess Λ(T1),Λ(T2), . . . is an HPP(1). Of course, if λ(t) ≡ λ,
then NHPP(λ(·)) is HPP(λ). Let us also remark that in par-
ticular, the TRP(F,1) is the RP(F ).

The class of TRP’s is defined by properties of the se-
quence {Ti, i = 1,2, . . .} and includes the NHPP’s and RP’s.
It also includes modulated power law processes. Equiva-
lently, the corresponding counting process {N(t), t ≥ 0} can
be considered, where N(t) = Ñ(Λ(t)) and {Ñ(t), t ≥ 0}
represents a RP.

Note that the representation TRP(F,λ(·)) is not unique.
For uniqueness it is assumed that the expected value of the
renewal distribution defined by F equals 1.
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For a TRP(F,λ(·)) the conditional intensity function has
the following form

g(t) = z
(
Λ(t) − Λ(TN(t−))

)
λ(t),

where z(t) is the hazard rate corresponding to F : z(t) =
f (t)

1−F(t)
, where f (t) = d

dt
F (t).

By Andersen et al. (1993), see also Lindqvist et al. (2003,
formula 2, ch. 2), the likelihood function of a TRP(F,λ(·))
observed in the interval time [0, τ ] with the realizations
t1, t2, . . . , tN(τ) of the jump (failure) times T1, T2, . . . , TN(τ)

can be expressed in the form

L(τ) =
[

N(τ)∏

i=1

z
(
Λ(ti) − Λ(ti−1)

)
λ(ti)

× exp

(

−
∫ Λ(ti )−Λ(ti−1)

0
z(v)dv

)]

× exp

(

−
∫ Λ(τ)−Λ(tN(τ))

0
z(v)dv

)

(1)

and the log-likelihood function is defined by

�(τ) := lnL(τ)

=
N(τ)∑

i=1

[

ln
(
z
(
Λ(ti) − Λ(ti−1)

)) + ln
(
λ(ti)

)

−
∫ Λ(ti )−Λ(ti−1)

0
z(v)dv

]

−
∫ Λ(τ)−Λ(tN(τ))

0
z(v)dv.

For a random stopping time τ with respect to the filtration
Ft = σ {N(u) : u ≤ t}, this formula follows from the funda-
mental identity of sequential analysis as a consequence of
the optional stopping theorem.

We consider the case when τ = inf{t ≥ 0 : N(t) = n},
i.e., N(τ) = n, τ = Tn, where n is a given number of fail-
ures. This means we suppose that a TRP(F,λ(·)) is ob-
served up to the nth event (failure) appears for the first time,
and the values of the jump times T1, . . . , Tn are recorded. In
other words, we consider the so called failure truncation (or
inverse sequential) procedure. In this case the log-likelihood
function for a TRP(F,λ(·)) takes the form

�̃(n) =
n∑

i=1

[

ln
(
z
(
Λ(ti) − Λ(ti−1)

))

+ ln
(
λ(ti)

) −
∫ Λ(ti )−Λ(ti−1)

0
z(v)dv

]

.

The problem is to predict the next failure time Tn+1 and to
construct the prediction intervals for Tn+1 on the basis of the
failure times observed up to time Tn.

3 Point prediction in a TRP

3.1 General ideas

Let us consider a TRP(F,λ(·)) with trend function (inten-
sity) λ(t) and renewal distribution F . Recall, that for the
uniqueness of the TRP it is assumed that the renewal distri-
bution defined by F has the expectation value 1. Thus,

E(Wi) = E
(
Λ(Ti) − Λ(Ti−1)

) = 1 (i = 1,2, . . .). (2)

The condition (2) prompts to the following predicted future
time Tn+1:

T̂n+1 = Λ−1(1 + Λ(Tn)
)

(3)

(Jokiel-Rokita and Magiera 2012, Remark 2). Let us note
that the prediction formula given by (3) can be used for the
TRP model regardless of the renewal distribution is known
or it is not known.

If the renewal distribution F is known then the condi-
tional density fTn+1|Tn=tn is known and predicting Tn+1 in a
TRP(F,λ(·)) can be based on the formula

T n+1 =
∫ ∞

tn

tfTn+1|Tn=tn (t)dt, (4)

where

fTn+1|Tn=tn (t) = z
(
Λ(t) − Λ(tn)

)
λ(t)

× exp

{

−
∫ Λ(t)−Λ(tn)

0
z(u)du

}

(5)

is the conditional density function of the random variable
Tn+1, given Tn = tn, where z(·) is the hazard rate function
corresponding to F . The predicted next failure time defined
by (4) is the conditional expectation E(Tn+1|Tn = tn).

The point prediction for a TRP(F,λ(·)) can be also based
on the following known fact.

Fact 1 Let the sequence {Tn,n = 1,2, . . .} of occurrence
times T1, T2, . . . , form a TRP(F,λ(·)) with conditional in-
tensity function g(t) and the cumulative conditional inten-
sity function G(t) = ∫ t

0 g(u)du. Then G(T1), G(T2), . . . , are
the occurrence times of a HPP(1) process.

We then have the following proposition.

Proposition 1 The conditional next failure times T
(i)
n+1,

given Tn, i = 1, . . . ,m, for the TRP(F,λ(·)) with the cumu-
lative conditional intensity function G(t) can be generated
according to the formula

T
(i)
n+1 = G−1(Vi + G(Tn)

)
, (6)
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where Vi, i = 1, . . . ,m, are the independent random vari-
ables simulated from the exponential distribution E (1), and
predict the conditional next failure time Tn+1, given Tn, by

T̃n+1 = 1

m

m∑

i=1

T
(i)
n+1,

which is an approximation of (4).

Remark 1 Using the fact that Λ(Tn+1)−Λ(Tn) is a random
variable with distribution F , one can generate T

(i)
n+1 equiv-

alently according to the formula T
(i)
n+1 = Λ−1(Zi + Λ(Tn)),

where Zi, i = 1, . . . ,m, are the independent random vari-
ables simulated from the distribution F .

In practice, usually the trend function λ(t) and the re-
newal distribution F are not exactly known, and conse-
quently to predict the next failure time Tn+1 formulas (3)
and (4) can not be used. In Sect. 3.2 we consider the problem
of predicting the next failure time Tn+1 in the TRP(F,λ(·))
when the form of trend function λ(t) = λ(t;ϑ) and the form
of the renewal function F(t) = F(t;υ) are known, but ϑ

and υ are unknown parameters. In Sect. 3.3 we consider
the problem of prediction the next failure time Tn+1 in the
TRP(F,λ(·)) assuming that the parametric form of the trend
function λ(t) = λ(t;ϑ) is known, but we make no assump-
tions on the form of the renewal distribution F .

3.2 Point prediction of Tn+1 in a TRP when F is known

If a form of the trend function λ(t) = λ(t;ϑ) and a form of
the renewal function F(t) = F(t;υ) are known, then conse-
quently the form of the likelihood function is known and we
can obtain maximum likelihood estimators (MLE’s) ϑ̂ML

and υ̂ML of the unknown parameters ϑ and υ .
To predict the next failure time Tn+1 one can use formula

(3) with Λ(t; ϑ̂ML) instead of the unknown function Λ. Let
us note that applying this method of prediction does not re-
quire the knowledge of an estimate of the parameter υ .

Another possibility for predicting Tn+1 consists in the
mean prediction defined by formula (4) with f̂Tn+1|Tn=tn (t) =
fTn+1|Tn=tn (t; θ̂ ), where θ̂ = (υ̂ML, ϑ̂ML), instead of the un-
known function fTn+1|Tn=tn (t). Let us notice that applying
this method of prediction requires the knowledge of esti-
mates of both the parameters ϑ and υ .

The prediction based on Proposition 1 also requires the
knowledge of estimates of both the parameters ϑ and υ , and
can be applied in the case when F is known.

3.2.1 Point prediction in the Weibull power law
TRP − WPLP(α,β, γ )

Let us consider the Weibull power law TRP(F,λ(·)) which
is characterized by

λ(t;α,β) = αβtβ−1, α > 0, β > 0, Λ(t;α,β) = αtβ

and

F(x) = F(x;γ ) = 1 − exp
[−(

Γ (1 + 1/γ )x
)γ ]

, γ > 0

(see Lindqvist et al. 2003). The renewal distribution func-
tion F corresponds to the Weibull distribution W e(γ,1/Γ

(1 + 1/γ )) with the parametrization resulting in the expec-
tation 1. The hazard function corresponding to F has the
power form z(x) = (Γ (1 + 1

γ
))γ γ xγ−1. The Weibull power

law TRP(F,λ(·)) defined above will be denoted shortly by
WPLP(α,β, γ ).

In the case γ = 1 the renewal distribution function F

corresponds to the exponential distribution E (1) and the
WPLP(α,β,1) becomes NHPP(λ(t)) with λ(t) = αβtβ−1,
i.e., the so called power law process. We denote this pro-
cess by PLP(α,β). The PLP(α,β) is also called Weibull
NHPP(α,β).

If γ = 1 and β = 1, then the WPLP(α,1,1) is the
TRP(1 − exp(−t), α), i.e., it is the HPP(α).

For the WPLP(α,β, γ ) the conditional density function
defined by (5) takes the following form

fTn+1|Tn=tn (t) = ϕβγ
(
tβ − tβn

)γ−1
tβ−1 exp

[−ϕ
(
tβ − tβn

)γ ]
,

where

ϕ = ϕ(α,γ ) = [
αΓ (1 + 1/γ )

]γ
, (7)

and the corresponding distribution function is

FTn+1|Tn=tn (t) = 1 − exp
[−ϕ

(
tβ − tβn

)γ ]
.

Note that ϕ = α for the PLP(α,β).

The ML estimators For the WPLP(α,β, γ ) the likelihood
function defined by (1) takes the form

L(τ) = L(τ ; θ)

=
N(τ)∏

i=1

ϕβγ t
β−1
i

(
t
β
i − t

β

i−1

)γ−1

× exp

[

−
N(τ)∑

i=1

ϕ
(
t
β
i − t

β

i−1

)γ − ϕ
(
τβ − t

β

N(τ)

)γ

]

,

where τ is any stopping time with respect to {Ft , t ≥ 0} and
θ = (ϕ,β, γ ), where ϕ is given by (7).
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In the failure truncation procedure considered the likeli-
hood function is given by

L̃(n; θ) = (ϕβγ )n
n∏

i=1

t
β−1
i

[
t
β
i − t

β

i−1

]γ−1

× exp

{

−ϕ

n∑

i=1

[
t
β
i − t

β

i−1

]γ
}

,

and the log-likelihood function is

�̃(n; θ) = n(lnϕ + lnβ + lnγ )

+
n∑

i=1

[
(β − 1) ln ti + (γ − 1) ln

(
t
β
i − t

β

i−1

)

− ϕ
[
t
β
i − t

β

i−1

]γ ]
. (8)

We give in Proposition 2 below the formulas determining the
ML estimators of α,β and γ of the WPLP(α,β, γ ) in the
failure truncation procedure. In general case, for any stop-
ping time, such formulas are given in the paper of Jokiel-
Rokita and Magiera (2012).

Proposition 2 The ML estimators ϕ̂ML, β̂ML and γ̂ML of
the parameters ϕ,β and γ in the failure truncation proce-
dure for the WPLP(α,β, γ ) are determined as follows:

ϕ̂ML = n
∑n

i=1[t β̂ML

i − t
β̂ML

i−1 ]γ̂ML

, (9)

where β̂ML and γ̂ML are the solutions of the following sys-
tem of likelihood equations

n

β
+

n∑

i=1

{
[
t
β
i ln ti − t

β

i−1 ln ti−1
]

×
[

γ − 1

t
β
i − t

β

i−1

− ϕ̃γ
(
t
β
i − t

β

i−1

)γ−1
]

+ ln ti

}

= 0, (10)

n

γ
+

n∑

i=1

ln
(
t
β
i − t

β

i−1

)[
1 − ϕ̃

(
t
β
i − t

β

i−1

)γ ] = 0,

where ϕ̃ = ϕ̃(β, γ ) is defined by

ϕ̃ = ϕ̃(β, γ ) = n
∑n

i=1(t
β
i − t

β

i−1)
γ

. (11)

An estimator α̂ of α is evaluated according to the formula

α̂ = ϕ̂1/γ̂

Γ (1 + 1/γ̂ )
, (12)

where ϕ̂ and γ̂ are estimators of ϕ and γ .

The predicted next failure time Basing on formula (3) we
obtain the formula for the predicted next failure time.

Proposition 3 The point predictor of Tn+1 in the WPLP(α,

β, γ ) model based on the ML estimates α̂ML, β̂ML and γ̂ML

in the failure truncation procedure is determined by

T̂ ML
n+1 =

(
1

α̂ML

+ T β̂ML
n

)1/β̂ML

, (13)

where

α̂ML = ϕ̂
1/γ̂ML

ML

Γ (1 + 1/γ̂ML)
.

Let us notice that in the case of the WPLP(α,β, γ ) formula
(6) takes the form

T
(i)
n+1 =

[
V

1/γ

i

αΓ (1 + 1/γ )
+ T β

n

]1/β

,

where Vi , i = 1, . . . ,m, are the random numbers from the
distribution E (1). Thus we have the following proposition.

Proposition 4 The conditional next failure time Tn+1, given
Tn, for the WPLP(α,β, γ ) can be predicted by

T̃n+1 = 1

m

m∑

i=1

T
(i)
n+1 = 1

m

m∑

i=1

(
V

1/γ

i

αΓ (1 + 1/γ )
+ T β

n

)1/β

or, equivalently, by

T̃n+1 = 1

m

m∑

i=1

T
(i)
n+1 = 1

m

m∑

i=1

(
Z

1/γ

i + T β
n

)1/β
, (14)

where Zi , i = 1, . . . ,m, are the random numbers from the
distribution E (ϕ).

If the parameters α,β and γ of the WPLP(α,β, γ ) model
are not known, then basing on Proposition 4 we can predict
the next failure time Tn+1 by

T̃ ML
n+1 = 1

m

m∑

i=1

(
Ẑ

1/γ̂ML

i + T β̂ML
n

)1/β̂ML, (15)

where Ẑi , i = 1, . . . ,m, are the random numbers from the
distribution E (ϕ̂ML).

Let us notice that T̃ ML
n+1 is an approximation of T

ML

n+1 =
∫ ∞
tn

t f̂Tn+1|Tn=tn (t)dt .

3.2.2 Point prediction in the PLP(α,β)

For the WPLP(α,β,1), i.e. for the PLP(α,β), the ML es-
timators of α and β can be explicitly determined (see e.g.
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Rigdon and Basu 2000, pp. 136–137). The ML estimators
of α and β for this process are defined by

α̂PL
ML = n

T
β̂PL

ML
n

,

(16)

β̂PL
ML = n

(

ln
T n

n∏n
i=1 Ti

)−1

= n

(
n−1∑

i=1

ln
Tn

Ti

)−1

.

By Proposition 3, using formula (16) we obtain the follow-
ing form of the predicted next failure time for the PLP(α,β)

T̂ PL
n+1 =

(
1

α̂PL
ML

+ T
β̂PL

ML
n

)1/β̂PL
ML = Tn

(

1 + 1

n

)1/β̂PL
ML

. (17)

In the case of PLP(α,β) we have from Proposition 4 the
following form of the conditional predicted next failure time

T̃ PL
n+1 = 1

m

m∑

i=1

(
Ẑi + T

β̂PL
ML

n

)1/β̂PL
ML, (18)

where Ẑi , i = 1, . . . ,m, are the random numbers from the
distribution E (̂αPL

ML).

3.2.3 Point prediction in the HPP(α)

For the HPP(α) the ML estimator of α is

α̂P
ML = n

Tn

(19)

and the predicted next failure time is determined by

T̂ P
n+1 = Tn

(

1 + 1

n

)

or

T̃ P
n+1 = 1

m

m∑

i=1

(Ẑi + Tn),

where Ẑi , i = 1, . . . ,m, are the random numbers from the
distribution E (̂αP

ML).

3.3 Point prediction of Tn+1 in a TRP when F is unknown

If a form of the renewal distribution function F of a
TRP(F,λ(·)) is unknown, we cannot determine the ML esti-
mators of the process parameters θ and use them in formulas
(3) or (4) to determine the predictors of Tn+1. However, in
this case to estimate a parameter ϑ of a trend function one
can use one of the three methods proposed by Jokiel-Rokita
and Magiera (2012): the least squares method, the method of
moments and the constrained least squares (CLS) method.
The investigations carried out for the WPLP(α,β, γ ) in their
paper have demonstrated the advantage of the CLS method
over the other methods for most cases of possible range of

the process parameters. In the CLS method we define the
sum of squares

S2
LS(ϑ) =

N(τ)∑

i=1

(Wi − 1)2

=
N(τ)∑

i=1

[
Λ(ti;ϑ) − Λ(ti−1;ϑ) − 1

]2
, (20)

where ti are the realizations of random variables Ti , i =
1, . . . ,N(τ), up to time τ , and Λ(t0) := 0. The problem is
to find

ϑ̂CLS = arg min
ϑ∈C(τ)

S2
LS(ϑ),

where the restriction set is

C(τ) = {
ϑ : Λ(tN(τ);ϑ) = N(τ)

}
.

Remark that

W := 1

N(τ)

N(τ)∑

i=1

Wi

= 1

N(τ)

N(τ)∑

i=1

[
Λ(ti;ϑ) − Λ(ti−1;ϑ)

]

= Λ(tN(τ);ϑ)

N(τ)
.

The variables Wi = Λ(Ti) − Λ(Ti−1) are the observations
from the distribution with the expected value 1. Thus the
CLS method consists of deriving such estimate ϑ̂CLS of the
unknown parameter ϑ (of the trend function) which mini-
mizes the sum of squares of deviations of the random vari-
ables Wi from the expected value 1 (equivalently, which
minimizes the sample variance) under the constraint that the
sample mean W equals the theoretical expected value of the
distribution defined by F .

Let us notice that in the case when F is unknown we can
predict the next failure time Tn+1 using formula (3) only
with Λ = Λ(t; ϑ̂CLS).

As an example let us consider a TRP(F,λ(·)), where
λ(t) = αβtβ−1, α > 0, β > 0, and the renewal distribution
function F is not specified. We will call this process the
power law TRP and denote it by PTRP(α,β).

To derive the CLS estimates of the parameters α and β

of the PTRP(α,β) one can use the following proposition
(Jokiel-Rokita and Magiera 2012).

Proposition 5 The CLS estimators α̂CLS and β̂CLS of α and
β in the PTRP(α,β) observed in the interval time [0, τ ] are
determined by

α̂CLS = N(τ)

t
β̂CLS

N(τ)
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and

β̂CLS = arg min
β∈R+

S2
CLS(β),

where

S2
CLS(β) = 1

t
2β

N(τ)

N(τ)∑

i=1

(
t
β
i − t

β

i−1

)2
.

For the PTRP(α,β) we have Λ(Ti) = Λ(Ti;α,β) =
αT

β
i , and using the method defined by (3) we have the fol-

lowing proposition for the predicted next failure time.

Proposition 6 The predicted next failure time obtained by
the CLS method in the PTRP(α,β) model is given by

T̂ CLS
n+1 = (

α̂−1
CLS + T β̂CLS

n

)1/β̂CLS . (21)

In the CLS method, the failure truncation procedure will

be applied in which α̂CLS = n/t
β̂CLS
n and S2

CLS(β) =
(1/t

2β
n )

∑n
i=1(t

β
i − t

β

i−1)
2.

4 Interval prediction in a TRP

In a TRP(F,λ(·)) with cumulative intensity function Λ(t) =∫ t

0 λ(u)du and renewal distribution function F the trans-
formed working times Wi = Λ(Ti)−Λ(Ti−1), i = 1,2, . . . ,
have the distribution defined by F ; equivalently, G(Ti) −
G(Ti−1), i = 1,2, . . . , have the distribution E (1). Then the
prediction interval for Tn+1 can be determined from the con-
dition

P
(
qF (ε1) ≤ Wn+1 ≤ qF (1 − ε2)

)

= P
(
qF (ε1) ≤ Λ(Tn+1) − Λ(Tn) ≤ qF (1 − ε2)

) = 1 − ε

or, equivalently, from the condition

P
(
q(ε1) ≤ G(Tn+1) − G(Tn) ≤ q(1 − ε2)

) = 1 − ε,

where ε = ε1 + ε2, qF (ε) denotes the quantile of order ε of
the distribution defined by F , q(ε) is the quantile of order ε

of the distribution E (1), i.e. q(ε) = − ln(1 − ε), and 1 − ε

is the given coverage probability (ε ∈ (0,1)). Thus we have
the following proposition.

Proposition 7 In a TRP(F,λ(·)) the lower and upper
bounds TL and TU , respectively, of the prediction interval
for the next failure time Tn+1 are given by

TL = Λ−1(Λ(Tn) + qF (ε1)
)
,

TU = Λ−1(Λ(Tn) + qF (1 − ε2)
)
.

Equivalently, the prediction interval is defined by

TL = G−1(G(Tn) − ln(1 − ε1)
)
,

TU = G−1(G(Tn) − ln ε2
)
.

In particular, in the PTRP(α,β),

P

((

T β
n + 1

α
qF (ε1)

)1/β

≤ Tn+1 ≤
(

T β
n + 1

α
qF (1 − ε2)

)1/β)

= 1 − ε.

In the WPLP(α,β, γ ) we can obtain the exact form of
the quantiles qF (ε1) and qF (1 − ε2) (F has the Weibull dis-
tribution W e(γ,1/Γ (1 + 1/γ )) ≡ W e(γ,α/ϕ1/γ )) and the
lower and upper bounds TL and TU are defined by

TL =
[

T β
n +

(
1

ϕ
ln

1

1 − ε1

)1/γ ]1/β

,

(22)

TU =
[

T β
n +

(
1

ϕ
ln

1

ε2

)1/γ ]1/β

,

where ϕ is given by (7).
In the case when the renewal distribution F is unknown,

we propose to estimate the unknown quantiles qF (ε1) and
qF (1−ε2) by the sample quantiles q̂(ε1) and q̂(1−ε2) from
the sample (W1, . . . ,Wn). Thus the estimated lower and up-
per bounds, T̂L and T̂U , are given by

T̂L = Λ−1(Λ(Tn) + q̂(ε1)
)
,

T̂U = Λ−1(Λ(Tn) + q̂(1 − ε2)
)
.

Another way of obtaining the prediction interval I =
[tL, tU ] for Tn+1, given Tn = tn, is to solve the equations

∫ tL

tn

fTn+1|Tn=tn (t)dt = ε1,

(23)∫ tU

tn

fTn+1|Tn=tn (t)dt = 1 − ε2,

with respect to tL and tU , where ε1 + ε2 = ε, i.e. tL and
tU are quantiles of order ε1 and 1 − ε2 of the distribution
defined by the density fTn+1|Tn=tn (t) given by (5).

4.1 Interval prediction in a TRP when F is known

If a form of the trend function λ(t) = λ(t;ϑ) and a form of
the renewal function F(t) = F(t;υ) are known, then con-
sequently the form of the likelihood function is known and
we can obtain ML estimators ϑ̂ML and υ̂ML of the unknown
parameters ϑ and υ , respectively. Thus, by Proposition 7 we
have the following result.
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Proposition 8 The estimated lower and upper bounds T̂L

and T̂U , respectively, of the prediction interval for the next
failure time Tn+1 in a TRP(F,λ(·)) are given by

T̂ ML
L = Λ̂−1(Λ̂(Tn) + qF̂ (ε1)

)
,

T̂ ML
U = Λ̂−1(Λ̂(Tn) + qF̂ (1 − ε2)

)
,

where Λ̂(t) = Λ(t; ϑ̂ML) and F̂ (t) = F(t; υ̂ML).

We can also obtain the estimated conditional lower and
upper bounds for the next failure time Tn+1 by solving equa-
tions (23) with respect to tL and tU for f̂Tn+1|Tn=tn (t) =
fTn+1|Tn=tn (t; θ̂ ), where θ̂ = (υ̂ML, ϑ̂ML), instead of the un-
known function fTn+1|Tn=tn (t).

4.1.1 Interval prediction in the WPLP(α,β, γ )

Basing on formula (22) for the lower and upper bounds for
the next failure time Tn+1 in the WPLP(α,β, γ ) model with
known parameters α, β and γ , we have the following propo-
sition for the WPLP(α,β, γ ) with the unknown parameters.

Proposition 9 The estimated lower and upper bounds T̂L

and T̂U , respectively, of the prediction interval for the next
failure time Tn+1 in the WPLP(α,β, γ ) are given by

T̂ ML
L =

[

T β̂ML
n +

(
1

ϕ̂ML

ln
1

1 − ε1

)1/γ̂ML
]1/β̂ML

,

T̂ ML
U =

[

T β̂ML
n +

(
1

ϕ̂ML

ln
1

ε2

)1/γ̂ML
]1/β̂ML

,

(24)

where ϕ̂ML, β̂ML, γ̂ML are estimators of the parameters
ϕ, β, γ , and they are defined in Proposition 2.

4.1.2 Interval prediction in the PLP(α,β)

It follows from Proposition 9 that for the PLP(α,β) which is
the WPLP(α,β,1) the estimated prediction interval for the
next failure time Tn+1 and based on the ML estimators is
determined by

T̂ PL
L =

(

T
β̂PL

ML
n + 1

α̂PL
ML

ln
1

1 − ε1

)1/β̂PL
ML

= Tn

(

1 + 1

n
ln

1

1 − ε1

)1/β̂PL
ML

,

(25)

T̂ PL
U =

(

T
β̂PL

ML
n + 1

α̂PL
ML

ln
1

ε2

)1/β̂PL
ML

= Tn

(

1 + 1

n
ln

1

ε2

)1/β̂PL
ML

,

where α̂PL
ML and β̂PL

ML are defined by (16).
For the PLP(α,β) the transformed working times Wi =

Λ(Ti) − Λ(Ti−1) = α(T
β
i − T

β

i−1) are exponentially dis-
tributed E (1). In the case when the parameter β is known,
introducing the pivotal function

Q = n
2Wn+1

2
∑n

i=1 Wi

= n

[
Λ(Tn+1)

Λ(Tn)
− 1

]

= n

(
T

β

n+1

T
β
n

− 1

)

,

which has Fisher’s F -distribution with (2,2n) degrees of
freedom, one can determine the prediction interval for Tn+1

from the condition

P
(
F2,2n(ε1) ≤ Q ≤ F2,2n(1 − ε2)

) = 1 − ε,

where F2,2n(q) is the quantile of order q of Fisher’s
F -distribution F (2,2n) with (2,2n) degrees of freedom,
i.e., F2,2n(q) = n[(1 − q)−1/n − 1]. The lower and upper
bounds of the confidence interval for Tn+1 are then deter-
mined by the inequalities

n
[
(1 − ε1)

−1/n − 1
] ≤ n

(
T

β

n+1

T
β
n

− 1

)

≤ n
(
ε
−1/n

2 − 1
)
,

i.e.,

Tn(1 − ε1)
−1/nβ ≤ Tn+1 ≤ Tnε

−1/nβ

2 . (26)

If the parameter β is unknown, one can consider the es-
timated prediction interval obtained by substituting the pa-
rameter β by its ML estimate into formula (26). This is a
very satisfactory way when n is sufficiently large, because it
can be shown that both Q and

Q̂ = n

(
T

β̂PL
ML

n+1

T
β̂PL

ML
n

− 1

)

have the same exponential E (1) limit distribution. Thus we
have the following proposition.

Proposition 10 The estimated lower and upper bounds,
based on the ML estimator of β , T̆ PL

L and T̆ PL
U , of the pre-

diction interval Ĭ PL for the next failure time Tn+1 in the
PLP(α,β) are given by

T̆ PL
L = Tn(1 − ε1)

−1/nβ̂PL
ML,

(27)

T̆ PL
U = Tnε

−1/nβ̂PL
ML

2 ,

where β̂PL
ML is defined by (16).

Engelhardt and Bain (1978) gave the prediction interval
for the kth future failure time Tn+k, k = 1,2 . . . , by consid-
ering the pivotal function when β is unknown, namely by
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considering the pivotal function based on Tn and the ML es-
timator of β . It follows from their result for k = 1 that the
random variable

Y = (n − 1)β̂PL
ML ln

Tn+1

Tn

,

where β̂PL
ML is the ML estimator of β defined by (16), has

the distribution function defined by P(Y ≤ y) = 1 − (1 +
y/(n − 1))−(n−1). Taking Y as a pivotal function for Tn+1,
we have P(qε1 ≤ Y ≤ q1−ε2) = 1 − ε, i.e.,

P

(

Tn exp

(
qε1

(n − 1)β̂PL
ML

)

≤ Tn+1 ≤ Tn exp

(
q1−ε2

(n − 1)β̂PL
ML

))

= 1 − ε,

where qε denotes the quantile of order ε of the distribu-
tion of the random variable Y , i.e., qε satisfies the condition
1 − (1 + qε/(n − 1))−(n−1) = ε. Thus, the prediction inter-
val Î EB based on the idea of Engelhardt and Bain (1978) is
defined by

T̂ EB
L = Tn exp

{
1

β̂PL
ML

[
(1 − ε1)

−1/(n−1) − 1
]
}

,

T̂ EB
U = Tn exp

{
1

β̂PL
ML

[
ε
−1/(n−1)

2 − 1
]
}

.

(28)

Remark 2 Let us notice that the statistic Q̂ can be written in
the form

Q̂ = n

[

exp

(
Y

n − 1

)

− 1

]

.

Thus, Q̂ is a pivotal function equivalent to Y . The distribu-
tion function of Q̂ is given by

FQ̂(x) = 1 −
[

1 + ln

(
x

n
+ 1

)]−(n−1)

.

Taking in Proposition 10 the exact quantiles of the distribu-
tion determined by FQ̂ instead of quantiles of the F (2,2n)

distribution we obtain the prediction interval with the lower
and upper bounds given by formula (28).

In the simulation study of Sect. 5.2 we compare the ex-
act prediction interval Î EB with the prediction interval Ĭ PL

defined in Proposition 10.

4.1.3 Interval prediction in the HPP(α)

For the HPP(α) which is the WPLP(α,1,1) one obtains
from Proposition 9 the following form of the estimated

lower and upper bounds, T̂ P
L and T̂ P

U , of the prediction in-
terval for the next failure time Tn+1

T̂ P
L = Tn

(

1 + 1

n
ln

1

1 − ε1

)

, T̂ P
U = Tn

(

1 + 1

n
ln

1

ε2

)

.

In view of formula (26) with β = 1 we have the following
corollary which gives the form of exact prediction intervals
for Tn+1.

Corollary 1 The lower and upper bounds, TL and TU , of
the prediction interval for the next failure time Tn+1 in the
HPP(α) are given by

T̆ P
L = Tn(1 − ε1)

−1/n, T̆ P
U = Tnε

−1/n

2 .

4.2 Interval prediction in a TRP when F is unknown

Denote Ŵ = (Ŵ1, . . . , Ŵn), where Ŵi, i = 1, . . . , n, are es-
timators of the transformed working times Wi , i.e., Ŵi =
Λ(Ti; ϑ̂) − Λ(Ti−1; ϑ̂), i = 1, . . . , n.

If the form of F in a TRP(F,λ(·)) is unknown, to de-
termine the estimated lower and upper bounds for Tn+1 we
propose to use sample quantiles of Ŵ with ϑ̂ = ϑ̂CLS in-
stead of unknown quantiles qF . Namely, one can use the
following proposition.

Proposition 11 The estimated lower and upper bounds T̂L

and T̂U , respectively, of the prediction interval for the next
failure time Tn+1 in a TRP(F,λ(·)) with unknown renewal
distribution function F are given by

T̂L = Λ̂−1(Λ̂(Tn) + qn(Ŵ ; ε1)
)
,

T̂U = Λ̂−1(Λ̂(Tn) + qn(Ŵ ;1 − ε2)
)
,

where Λ̂(t) = Λ(t; ϑ̂) and qn(Ŵ ; ε) denotes the sample
quantile of order ε of Ŵ .

To obtain an estimate ϑ̂ of the unknown trend parameter
ϑ one can apply the CLS method.

In particular, for the PTRP(α,β) model we have the fol-
lowing corollary.

Corollary 2 The estimated lower and upper bounds, T̂ CLS
L

and T̂ CLS
U , of the prediction interval Î CLS for the next fail-

ure time Tn+1 in the PTRP(α,β) are given by

T̂ CLS
L =

(

T β̂CLS
n + 1

α̂CLS

qn(Ŵ ; ε1)

)1/β̂CLS

,

T̂ CLS
U =

(

T β̂CLS
n + 1

α̂CLS

qn(Ŵ ;1 − ε2)

)1/β̂CLS

,

(29)

where qn(Ŵ ; ε) denotes the sample quantile of order ε of

Ŵ = (Ŵ1, . . . , Ŵn), where Ŵi = α̂CLST
β̂CLS

i − α̂CLST
β̂CLS

i−1 ,

i = 1, . . . , n.
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5 Simulation study

The main purpose of the simulation study is to exam-
ine how much the predicted next failure times and the
prediction intervals constructed by the CLS method for a
TRP(F,λ(·)) model with an unknown distribution func-
tion F differ from the predictors constructed by the ML
method in the TRP(F,λ(·)) with known F and the same
trend function λ(·). As a reference TRP(F,λ(·)) model, the
WPLP(α,β, γ ) is taken into account. The CLS estimates
α̂CLS and β̂CLS of the parameters α and β , and consequently
the resulting predictors for the corresponding PTRP(α,β)

are evaluated on the basis of the realizations of the generated
WPLP(α,β, γ ) supposing that we do know nothing about
the renewal distribution function F , i.e., that we observe the
PTRP(α,β).

Each sample of the WPLP(α,β, γ ) is generated up to a
fixed number n + 1 of jumps is reached. For each chosen
combination of the parameters α,β and γ the samples of
size k of the realizations are generated. In the case γ = 1 and
in the case β = 1, γ = 1 the realizations of the PLP(α,β)

and HPP(α) are obtained, respectively.
The ‘real’ last failure time Tn and all the predictors are

evaluated as the means from the k estimates, such that each
of these estimates was derived on the basis of the individual
realization up to nth jump (failure) of the process consid-
ered. Analogously, the ‘real’ next failure time Tn+1 denotes
the mean resulting from the same k repetitions of the real-
izations involving the (n + 1)-th jump time. The simulation
study was carried out for n = 100 and k = 200.

The accuracy of a predictor, say η̂ of η, is measured
by the relative error (RE) which is defined by RE( η̂ ) =
( η̂ − η)/η, and by the variability of a predictor η̂ which is
determined by the root mean squared error RMSE( η̂ ) =√

(sd( η̂ ))2 + (mean( η̂ ) − η)2, where sd stands for the
standard deviation. In tables the abbreviations r̂e = re( η̂ )

and ŝe = se( η̂ ) is used for the RE( η̂ ) and RMSE( η̂ ) er-
rors, respectively. The relative errors of predictors are given
in percentages.

All the prediction intervals are evaluated for ε1 = ε2 =
0.025, i.e. the 95 % prediction intervals are presented, as-
suming the confidence level CL = 95 %.

5.1 The WPLP model

The WPLP(α,β, γ ) process is generated according to the
following formula for the jump times:

Ti =
[

T
β

i−1 + 1

αΓ (1 + 1/γ )

(

ln
1

1 − Ui

)1/γ ]1/β

,

i = 1,2, . . . , (30)

T0 = 0, where Ui are random numbers from uniform distri-
bution U (0,1).

The computer program was developed using Mathemat-
ica 8.04 package.

The CLS estimates α̂CLS and β̂CLS in the PTRP(α,β)

model are evaluated on the basis of Proposition 5 and using
a constrained global optimization (CGO) method. The ML
estimates α̂ML, β̂ML and γ̂ML in the WPLP(α,β, γ ) model
are evaluated by finding at first the estimates β̂ML and γ̂ML

as the solution to the optimization problem

(β̂ML, γ̂ML) = arg max
(β,γ )

�̃
(
n; (ϕ,β, γ )

)
,

by using the CGO procedure, where �̃(n; (ϕ,β, γ )) is the
log-likelihood function given by (8) with ϕ = ϕ̃(β, γ ) de-
fined by (11). The ML estimate α̂ML of α is then evaluated
using formula (12) with ϕ̂ defined by (9). In the computer
program, to solve the optimization problems the procedure
NMaximize of Mathematica package is implemented. We
do not attach the tables with values of the parameter esti-
mates for the models considered. The estimators in WPLP
and PTRP models were investigated by Jokiel-Rokita and
Magiera (2012).

Tables 1, 2, 3, and 4 provide the values related to the
predictors in the WPLP(α,β, γ ) model in comparison to a
PTRP(α,β) (the TRP with unknown F ) for the number of
failures n = 100.

Tables 1 and 2 contain the values of the predicted next
failure times and their errors in the WPLP(α,β, γ ) and
PTRP(α,β) models compared. The predictor T̂ CLS

n+1 in the
PTRP(α,β) model, given by formula (21), is compared with
the predicted next failure times T̃n+1, T̂

ML
n+1 , T̃ ML

n+1 , given by
formulas (14), (13) and (15), respectively, obtained by the
other ideas described in the paper and using the ML esti-
mators for the WPLP(α,β, γ ). The prediction T̃n+1 means
the conditional theoretical predicted next failure time in the
WPLP(α,β, γ ) evaluated by formula (14) for theoretical
values of α,β and γ . The random numbers Zi, i = 1, . . . ,m,
are generated from the distribution E ((αΓ (1 + 1/γ ))γ ) for
each realization of the process. There are m = 1000 simula-
tions used for computing the predictions T̃n+1 and T̃ ML

n+1 .
In Tables 3 and 4 there are presented the prediction in-

tervals I = [TL,TU ], Î ML = [T̂ ML
L , T̂ ML

U ] and Î CLS =
[T̂ CLS

L , T̂ CLS
U ], given by formulas (22), (24) and (29), re-

spectively, for the WPLP(α,β, γ ) and the PTRP(α,β) mod-
els. The lengths of the prediction intervals I , Î ML and
Î CLS , denoted by L = L(I), L̂ML = L(Î ML) and L̂CLS =
L(Î CLS), respectively, are also given and coverage frequen-
cies of these intervals are included for comparison with the
CL.

The prediction interval Î CLS is compared with the theo-
retical prediction interval I (for α,β, γ known) and with the
prediction interval Î ML. The coverage frequencies, denoted

by C = CF(I), Ĉ
ML = CF(Î ML) and Ĉ

CLS = CF(Î CLS),
corresponding to the prediction intervals I , Î ML and Î CLS ,
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Table 1 The predicted
(n + 1)-th failure times T̃n+1,

T̂ ML
n+1 and T̃ ML

n+1 for the

WPLP(α,β, γ ), and the
predicted next failure time

T̂ CLS
n+1 for the PTRP(α,β)

No. α β γ Tn Tn+1 T̃n+1 T̂ ML
n+1 T̃ ML

n+1 T̂ CLS
n+1

1 20 0.8 0.8 7.5423 7.6333 7.6361 7.6341 7.6346 7.6395

2 15 1 0.8 6.6837 6.7412 6.7502 6.7493 6.7491 6.7546

3 5 2 0.8 4.4539 4.4746 4.4763 4.4757 4.4756 4.4766

4 1 3 0.8 4.6414 4.6599 4.6567 4.6570 4.6569 4.6577

5 0.5 4 0.8 3.7517 3.7615 3.7611 3.7612 3.7611 3.7615

6 20 0.8 1 7.4586 7.5558 7.5522 7.5521 7.5524 7.5552

7 5 2 1 4.4724 4.4981 4.4947 4.4946 4.4946 4.4953

8 1 3 1 4.6490 4.6646 4.6644 4.6650 4.6649 4.6648

9 0.5 4 1 3.7658 3.7755 3.7752 3.7755 3.7755 3.7755

10 20 1 1 4.9506 4.9988 5.0006 4.9998 4.9998 5.0019

11 5 1 1 20.0940 20.3100 20.2941 20.2936 20.2942 20.2988

12 0.5 1 1 202.4071 204.4756 204.4057 204.4796 204.4779 204.4725

13 20 0.8 2 7.5203 7.6171 7.6140 7.6153 7.6153 7.6140

14 15 1 2 6.6851 6.7508 6.7518 6.7522 6.7522 6.7514

15 5 2 2 4.4549 4.4777 4.4773 4.4773 4.4773 4.4770

16 1 3 2 4.6473 4.6633 4.6627 4.6629 4.6630 4.6627

17 0.5 4 2 3.7580 3.7673 3.7674 3.7675 3.7675 3.7673

18 20 0.8 4 7.4573 7.5497 7.5507 7.5519 7.5520 7.5497

19 15 1 4 6.6542 6.7220 6.7208 6.7215 6.7214 6.7199

20 5 2 4 4.4637 4.4857 4.4861 4.4863 4.4863 4.4858

21 1 3 4 4.6394 4.6548 4.6548 4.6549 4.6549 4.6546

22 0.5 4 4 3.7609 3.7704 3.7703 3.7704 3.7704 3.7702

Table 2 The RE’s and RMSE’s
of the predicted next failure
times in the WPLP(α,β, γ )

model

No. α β γ r̃e r̂eML r̃eML r̂eCLS s̃e ŝeML s̃eML ŝeCLS

1 20 0.8 0.8 1.1 1.1 1.1 1.1 1.1615 1.1719 1.1722 1.1750

2 15 1 0.8 0.8 0.8 0.8 0.8 0.8297 0.8376 0.8374 0.8379

3 5 2 0.8 0.4 0.4 0.4 0.4 0.3037 0.3066 0.3066 0.3066

4 1 3 0.8 0.3 0.3 0.3 0.3 0.1961 0.1980 0.1980 0.1979

5 0.5 4 0.8 0.2 0.2 0.2 0.2 0.1209 0.1222 0.1221 0.1222

6 20 0.8 1 1. 1.0 1.0 1.0 0.9091 0.9177 0.9178 0.9171

7 5 2 1 0.4 0.4 0.4 0.4 0.2299 0.2322 0.2322 0.2322

8 1 3 1 0.3 0.3 0.3 0.3 0.1452 0.1467 0.1467 0.1467

9 0.5 4 1 0.2 0.2 0.2 0.2 0.0954 0.0964 0.0964 0.0964

10 20 1 1 0.7 0.7 0.7 0.7 0.4815 0.4859 0.4859 0.4851

11 5 1 1 0.7 0.7 0.7 0.7 1.9795 1.9981 1.9982 1.9975

12 0.5 1 1 0.7 0.7 0.7 0.7 20.9157 21.1381 21.1450 21.1298

13 20 0.8 2 0.5 0.5 0.5 0.5 0.5128 0.5183 0.5184 0.5180

14 15 1 2 0.4 0.4 0.4 0.4 0.3582 0.3615 0.3615 0.3614

15 5 2 2 0.2 0.2 0.2 0.2 0.1144 0.1155 0.1155 0.1155

16 1 3 2 0.1 0.1 0.1 0.1 0.0839 0.0847 0.0847 0.0847

17 0.5 4 2 0.1 0.1 0.1 0.1 0.0510 0.0514 0.0514 0.0514

18 20 0.8 4 0.3 0.3 0.3 0.3 0.2783 0.2812 0.2812 0.2811

19 15 1 4 0.2 0.2 0.2 0.2 0.1875 0.1895 0.1894 0.1894

20 5 2 4 0.1 0.1 0.1 0.1 0.0666 0.0673 0.0673 0.0673

21 1 3 4 0.01 0.01 0.01 0.01 0.0432 0.0436 0.0436 0.0436

22 0.5 4 4 0.01 0.01 0.01 0.01 0.0260 0.0262 0.0262 0.0262
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Table 3 The theoretical
conditional prediction intervals
I = [TL,TU ], the prediction
intervals Î ML = [T̂ ML

L , T̂ ML
U ]

and the coverage frequencies
CF(I), CF(Î ML) for the
WPLP(α,β, γ )

No. α β γ TL TU L T̂ ML
L T̂ ML

U L̂ML C Ĉ
ML

1 20 0.8 0.8 7.5431 7.9663 0.4232 7.5434 7.9455 0.4021 97.0 97.0

2 15 1 0.8 6.6843 6.9845 0.3002 6.6844 6.9735 0.2891 95.0 94.5

3 5 2 0.8 4.4541 4.5545 0.1004 4.4541 4.5498 0.0956 96.5 95.0

4 1 3 0.8 4.6415 4.7105 0.0690 4.6415 4.7104 0.0688 92.5 93.5

5 0.5 4 0.8 3.7518 3.7939 0.0422 3.7518 3.7932 0.0414 92.5 93.0

6 20 0.8 1 7.4609 7.8043 0.3434 7.4615 7.7926 0.3311 92.0 91.5

7 5 2 1 4.4729 4.5543 0.0814 4.4730 4.5516 0.0786 92.5 91.5

8 1 3 1 4.6494 4.7054 0.0560 4.6495 4.7063 0.0568 95.0 95.0

9 0.5 4 1 3.7661 3.8000 0.0340 3.7661 3.8007 0.0345 98.0 96.0

10 20 1 1 4.9518 5.1350 0.1832 4.9520 5.1277 0.1757 95.5 94.5

11 5 1 1 20.0990 20.8318 0.7327 20.1001 20.8091 0.7091 95.5 92.0

12 0.5 1 1 202.4578 209.7849 7.3271 202.4621 210.0582 7.5961 94.5 94.5

13 20 0.8 2 7.5371 7.7236 0.1865 7.5396 7.7184 0.1788 95.5 95.0

14 15 1 2 6.6971 6.8296 0.1325 6.6985 6.8257 0.1271 94.0 92.5

15 5 2 2 4.4589 4.5033 0.0444 4.4592 4.5025 0.0432 97.5 97.0

16 1 3 2 4.6501 4.6806 0.0305 4.6502 4.6807 0.0305 95.5 95.5

17 0.5 4 2 3.7597 3.7783 0.0186 3.7597 3.7786 0.0188 96.5 95.5

18 20 0.8 4 7.4984 7.6003 0.1020 7.5024 7.5970 0.0946 96.0 94.5

19 15 1 4 6.6835 6.7561 0.0726 6.6860 6.7539 0.0678 93.0 92.0

20 5 2 4 4.4736 4.4978 0.0243 4.4742 4.4974 0.0232 94.0 92.5

21 1 3 4 4.6462 4.6629 0.0168 4.6463 4.6629 0.0165 96.5 95.0

22 0.5 4 4 3.7650 3.7752 0.0102 3.7651 3.7753 0.0102 95.5 95.0

respectively, are evaluated as the frequency of appearing the
next failure time Tn+1 in the prediction intervals, are exam-
ined too.

The cases 6–9 and 10–12 of Tables 1–4 correspond to the
PLP and to the HPP model, respectively.

Remarks on the simulation results It follows from Ta-
bles 1–4 that the predicted next failure times and the pre-
diction intervals constructed by the CLS method for a
TRP(F,λ(·)) model with an unknown distribution function
F differ very slightly from the predictors constructed by the
ML method in the TRP(F,λ(·)) with known F and the same
trend function λ(·). This indicates that in the TRP model
considered the lack of knowledge of the renewal distribu-
tion has an acceptable vague influence on the accuracy of
determining all the predictors of the next failure time Tn+1

as well as on the accuracy of all the prediction intervals
for this future breakdown time. The predictors based on the
CLS estimators have practically the same errors (RE’s per-
centages and RMSE’s) as those based on the ML estimators
in the model with known F (see Table 2).

The values of Table 4 show that in determining the pre-
diction intervals the CLS method applied to the TRP with
unknown renewal distribution function F provides very sat-
isfactory results.

For any fixed γ all the errors of the predictors in the
WPLP and PTRP models decrease for greater values of β

and smaller values of α.
For a given number n of failures, the RMSE’s of all

the parameter estimators in the WPLP(α,β, γ ), and con-
sequently of all the predictors become significantly smaller
as the parameter γ increases because the variability of the
WPLP realizations evidently decreases as γ increases ac-
cording to the variance formula of the renewal distribution
(see a remark in the paper of Jokiel-Rokita and Magiera
2012). Therefore, for the same pairs of (α,β) the RE per-
centages and the RMSE’s of the predicted times become sig-
nificantly smaller for greater γ (see Table 2).

5.2 The PLP model

Tables 5–9 provide the values connected with the predictors
for the PLP(α,β) special reference model for which the ML
predictors were evaluated by using explicit formulas (16) for
the ML estimators of the parameters α,β .

The point predictors T̃n+1, T̂ PL
n+1, T̃ PL

n+1 and T̂ CLS
n+1 are cal-

culated from formulas (14), (17), (18) and (21), respectively.
There are five prediction intervals considered: I =

[TL,TU ], Î PL = [T̂ PL
L , T̂ PL

U ], Ĭ PL = [T̆ PL
L , T̆ PL

U ], Î EB =
[T̂ EB

L , T̂ EB
U ] and Î CLS = [T̂ CLS

L , T̂ CLS
U ], defined by (22)

(for γ = 1, ϕ = α), (25), (27), (28) and (29), respectively.
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The lengths L, L̂PL, L̆PL, L̂EB of the prediction inter-
vals I , Î PL, Ĭ PL, Î EB and the coverage frequencies CF(I),
CF(Î PL), CF(Ĭ PL) and CF(Î EB) for the PLP(α,β) are
given in Table 8.

The prediction intervals Î CLS = [T̂ CLS
L , T̂ CLS

U ] for the
PLP(α,β), obtained by the CLS method, and their coverage
frequencies CF(Î CLS) are presented in Table 9.

Remarks on the simulation results The values of Ta-
bles 8 and 9 demonstrate that all the coverage frequen-
cies CF(Î PL), CF(Ĭ PL), CF(Î EB) and CF(Î CLS) for the
PLP(α,β) are very close to the theoretical coverage fre-
quency CF(I), but it is seen from Table 8 that for all the

Table 4 The prediction intervals Î CLS = [T̂ CLS
L , T̂ CLS

U ] for the

PTRP(α,β) and their coverage frequencies CF(Î CLS)

No. α β T̂ CLS
L T̂ CLS

U L̂CLS Ĉ
CLS

1 20 0.8 7.5435 7.9880 0.4445 95.0

2 15 1 6.6845 7.0067 0.3222 92.5

3 5 2 4.4542 4.5535 0.0993 93.0

4 1 3 4.6415 4.7142 0.0727 92.0

5 0.5 4 3.7518 3.7952 0.0434 92.5

6 20 0.8 7.4614 7.8049 0.3435 92.0

7 5 2 4.4731 4.5549 0.0818 91.5

8 1 3 4.6495 4.7062 0.0567 92.0

9 0.5 4 3.7661 3.8006 0.0344 95.0

10 20 1 4.9521 5.1366 0.1845 94.0

11 5 1 20.1001 20.8375 0.7374 94.0

12 0.5 1 202.4644 210.0066 7.5422 95.0

13 20 0.8 7.5386 7.7202 0.1817 94.0

14 15 1 6.6976 6.8269 0.1292 93.0

15 5 2 4.4590 4.5025 0.0435 96.0

16 1 3 4.6501 4.6801 0.0300 94.5

17 0.5 4 3.7597 3.7782 0.0185 94.5

18 20 0.8 7.4982 7.5980 0.0997 95.5

19 15 1 6.6834 6.7543 0.0709 94.0

20 5 2 4.4737 4.4973 0.0236 92.5

21 1 3 4.6462 4.6624 0.0162 94.5

22 0.5 4 3.7651 3.7750 0.010 93.0

cases of α and β of the PLP(α,β) the lengths of the pre-
diction intervals can be evidently ordered L̂CLS < L̂EB

and for all the cases of α and β of the PLP(α,β) (except
β = 1, α = 0.5): L̂PL < L < L̆PL < L̂EB .

The value of Tables 7, 8, and 9 show that the prediction
interval Î CLS (obtained by the CLS method) corresponds
numerically very close to the prediction interval Ĭ PL (based
on the approximated F (2,2n) distribution).

Comparing the values of the predictors in the cases 6–12
of Tables 1–4 with the corresponding values in Tables 5–9
we infer that the methods used for constructing the predicted
next failure times and the prediction intervals, and based on
the CLS estimators in a TRP model with unknown distribu-
tion function F (the PTRP(α,β) model), provide the results
which in a very satisfactory way match the predictions for
the PLP(α,β) as well as for the HPP(α) model with param-
eter estimators of α and β obtained on the basis of exact
formulas.

5.3 The GMPLP model

We have considered also the TRP(F,λ(·)) with the same
power law trend function λ(t) and with the renewal distribu-
tion function

F(x) = F(x;η) = 1 − exp
{[

1 − exp
(
x exp(η)Γ (0, η)

)]
η
}
,

η > 0,

where Γ (a, z) = ∫ ∞
z

ua−1 exp(−u)du denotes the incom-
plete gamma function. The renewal distribution function F

corresponds to the Gompertz distribution Gom(exp(η)Γ (0,

η), η) with the parametrization resulting in the expectation
1. The hazard function corresponding to F has the exponen-
tial form z(x) = ηΓ (0, η) exp[exp(η)Γ (0, η)x +η]. We call
this process the Gompertz power law process and denote it
by GMPLP(α,β,η).

The GMPLP(α,β,η) is generated according to the fol-
lowing formula for the jump times:

Ti =
[

T
β

i−1 + 1

α exp(η)Γ (0, η)
ln

[

1 − 1

η
ln(1 − Ui)

]]1/β

,

i = 1,2, . . . ,

Table 5 The predicted
(n + 1)-th failure times T̃n+1,
T̂ PL

n+1 and T̃ PL
n+1 for the

PLP(α,β), and the predicted
next failure time T̂ CLS

n+1 for the
PTRP(α,β)

No. α β Tn Tn+1 T̃n+1 T̂ PL
n+1 T̃ PL

n+1 T̂ CLS
n+1

1 20 0.8 7.5669 7.6599 7.6606 7.6604 7.6606 7.6641

2 5 2 4.4776 4.5009 4.4998 4.4998 4.4997 4.5008

3 1 3 4.6343 4.6498 4.6498 4.6496 4.6495 4.6502

4 0.5 4 3.7712 3.7791 3.7805 3.7805 3.7805 3.7807

5 20 1 5.0529 5.0999 5.1030 5.1027 5.1026 5.1044

6 5 1 20.0221 20.2327 20.2227 20.2198 20.2199 20.2270

7 0.5 1 199.2511 201.2377 201.2468 201.1987 201.2037 201.2564
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Table 6 The RE’s and RMSE’s
of the predicted next failure
times in the PLP(α,β) model

No. α β r̃e r̂ePL r̃ePL r̂eCLS s̃e ŝePL s̃ePL ŝeCLS

1 20 0.8 0.9 1. 0.9 1. 0.9036 0.9127 0.9128 0.9143

2 5 2 0.4 0.4 0.4 0.4 0.2251 0.2271 0.2270 0.2271

3 1 3 0.2 0.2 0.2 0.2 0.1549 0.1565 0.1565 0.1565

4 0.5 4 0.2 0.2 0.2 0.2 0.0911 0.0919 0.0919 0.0920

5 20 1 0.8 0.8 0.8 0.8 0.4945 0.4993 0.4994 0.4992

6 5 1 0.7 0.7 0.7 0.8 2.0050 2.0235 2.0238 2.0237

7 0.5 1 0.7 0.7 0.7 0.7 21.0196 21.2525 21.2566 21.2664

Table 7 The theoretical
conditional prediction intervals
I = [TL,TU ], the prediction

intervals Î PL = [T̂ PL
L , T̂ PL

U ],
Ĭ PL = [T̆ PL

L , T̆ PL
U ] and

Î EB = [T̂ EB
L , T̂ EB

U ] for the
PLP(α,β)

No. α β TL TU T̂ PL
L T̂ PL

U T̆ PL
L T̆ PL

U T̂ EB
L T̂ EB

U

1 20 0.8 7.5693 7.9174 7.5693 7.9130 7.5693 7.9195 7.5693 7.9301

2 5 2 4.4782 4.5594 4.4782 4.5589 4.4782 4.5604 4.4782 4.5629

3 1 3 4.6347 4.6906 4.6347 4.6901 4.6347 4.6911 4.6347 4.6928

4 0.5 4 3.7714 3.8055 3.7714 3.8052 3.7714 3.8058 3.7714 3.8068

5 20 1 5.0542 5.2393 5.0542 5.2366 5.0542 5.2401 5.0542 5.2456

6 5 1 20.0272 20.7607 20.0271 20.7512 20.0271 20.7648 20.0272 20.7869

7 0.5 1 199.3015 206.6012 199.3004 206.4344 199.3004 206.5685 199.3009 206.7859

Table 8 The lengths L, L̂PL,
L̆PL, L̂EB of the prediction

intervals I , Î PL, Ĭ PL, Î EB and
the coverage frequencies CF(I),

CF(Î PL), CF(Ĭ PL) and

CF(Î EB) for the PLP(α,β)

No. α β L L̂PL L̆PL L̂EB C Ĉ
PL

C̆
PL

Ĉ
EB

1 20 0.8 0.3481 0.3437 0.3502 0.3607 92.0 91.0 91.0 91.5

2 5 2 0.0813 0.0808 0.0823 0.0847 93.0 92.5 93.0 93.5

3 1 3 0.0559 0.0554 0.0564 0.0581 93.0 93.5 93.5 94.0

4 0.5 4 0.0341 0.0338 0.0344 0.0354 96.0 96.0 96.0 96.5

5 20 1 0.1851 0.1825 0.1859 0.1914 95.5 95.5 96.0 96.0

6 5 1 0.7335 0.7241 0.7377 0.7597 96.5 96.0 96.0 96.0

7 0.5 1 7.2997 7.1340 7.2681 7.4850 93.0 93.0 93.5 93.5

Table 9 The prediction intervals Î CLS = [T̂ CLS
L , T̂ CLS

U ] for the

PLP(α,β) and their coverage frequencies CF(Î CLS)

No. α β T̂ CLS
L T̂ CLS

U L̂CLS Ĉ
CLS

1 20 0.8 7.5698 7.9173 0.3475 92.5

2 5 2 4.4782 4.5609 0.0827 93.5

3 1 3 4.6348 4.6914 0.0566 93.5

4 0.5 4 3.7715 3.8053 0.0338 96.0

5 20 1 5.0545 5.2404 0.1860 94.0

6 5 1 20.0283 20.7619 0.7336 94.5

7 0.5 1 199.3133 206.5426 7.2293 93.0

T0 = 0, where Ui are random numbers from uniform distri-
bution U (0,1).

The GMPLP(α,β,η) is generated and the CLS predic-
tions T̂ CLS

n+1 and Î CLS = [T̂ CLS
L , T̂ CLS

U ] are evaluated as
those for the PTRP(α,β) (in which no knowledge of F is
required). On the basis of the same data generated, the ML

predictions T̂ MLW
n+1 and Î MLW = [T̂ MLW

L , T̂ MLW
U ] are eval-

uated regarding the GMPLP(α,β,η) realization as that of
the WPLP(α,β,η) one. We examine, whether in this case
one can expect that the CLS predictions should be more
accurate than the ML ones. The predictions T̂ MLW

n+1 , T̂ CLS
n+1 ,

Î MLW and Î CLS are given in Tables 10 and 11.

Remarks on the simulation results We observe that if we
apply the ML method, under the WPLP(α,β,η) assump-
tion, to simulated data from the GMPLP(α,β,η) the vast
majority of the cases gives more accurate results by the CLS
method: the coverage frequencies are almost the same but
the interval lengths are smaller in all the cases of parame-
ters.

The simulation study shows that if the ML method does
not match the TRP model considered, then the CLS method
can give more accurate predictions. For example, if we apply
the ML method under the WPLP assumption to data from a
PTRP which is not a WPLP, then we can expect more accu-
rate predictions by the CLS method.
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Table 10 The predicted next

failure times T̂ CLS
n+1 and T̂ MLW

n+1
on the basis of the
GMPLP(α,β,η)

No. α β η Tn Tn+1 T̂ MLW
n+1 T̂ CLS

n+1 r̂eMLW r̂eCLS ŝeMLW ŝeCLS

1 20 0.8 0.8 7.4901 7.5823 7.5833 7.5837 0.7 0.7 0.6521 0.6522

2 15 1 0.8 6.6805 6.7543 6.7472 6.7474 0.6 0.6 0.4313 0.4313

3 5 2 0.8 4.4684 4.4922 4.4907 4.4907 0.3 0.3 0.1488 0.1487

4 1 3 0.8 4.6334 4.6480 4.6489 4.6488 0.2 0.2 0.1013 0.1012

5 0.5 4 0.8 3.7587 3.7677 3.7682 3.7681 0.1 0.1 0.0682 0.0682

6 20 0.8 1 7.5155 7.6056 7.6091 7.6101 0.7 0.7 0.6407 0.6404

7 5 2 1 4.4710 4.4937 4.4931 4.4931 0.3 0.3 0.1510 0.1509

8 1 3 1 4.6475 4.6642 4.6631 4.6630 0.2 0.2 0.1091 0.1091

9 0.5 4 1 3.7696 3.7785 3.7793 3.7791 0.2 0.2 0.0629 0.0628

10 20 1 1 4.9627 5.0140 5.0123 5.0128 0.6 0.6 0.3644 0.3641

11 5 1 1 20.1798 20.3834 20.3831 20.3835 0.6 0.6 1.4349 1.4350

12 0.5 1 1 199.6895 201.7255 201.7105 201.6809 0.6 0.6 14.7458 14.7413

13 20 0.8 2 7.4841 7.5793 7.5774 7.5790 0.8 0.8 0.7038 0.7037

14 15 1 2 6.6700 6.7365 6.7356 6.7366 0.6 0.6 0.5253 0.5258

15 5 2 2 4.4530 4.4760 4.4751 4.4753 0.3 0.3 0.1890 0.1889

16 1 3 2 4.6343 4.6494 4.6499 4.6498 0.2 0.2 0.1173 0.1173

17 0.5 4 2 3.7521 3.7613 3.7617 3.7616 0.2 0.2 0.0782 0.0782

Table 11 The prediction
intervals
Î MLW = [T̂ MLW

L , T̂ MLW
U ] and

Î CLS = [T̂ CLS
L , T̂ CLS

U ] on the

basis of the GMPLP(α,β,η)

No. α β η T̂ MLW
L T̂ MLW

U L̂MLW T̂ CLS
L T̂ CLS

U L̂CLS Ĉ
MLW

Ĉ
CLS

1 20 0.8 0.8 7.4987 7.7422 0.2436 7.4950 7.7201 0.2251 93.5 94.5

2 15 1 0.8 6.6867 6.8602 0.1735 6.6843 6.8444 0.1601 94.5 95.0

3 5 2 0.8 4.4703 4.5294 0.0591 4.4695 4.5236 0.0540 96.0 95.0

4 1 3 0.8 4.6347 4.6761 0.0414 4.6343 4.6717 0.0374 93.0 95.0

5 0.5 4 0.8 3.7595 3.7848 0.0252 3.7592 3.7816 0.0224 90.5 91.5

6 20 0.8 1 7.5233 7.7756 0.2523 7.5202 7.7546 0.2344 95.5 95.0

7 5 2 1 4.4727 4.5332 0.0605 4.4721 4.5270 0.0549 95.5 94.0

8 1 3 1 4.6487 4.6915 0.0427 4.6483 4.6871 0.0388 95.0 94.0

9 0.5 4 1 3.7703 3.7970 0.0267 3.7701 3.7935 0.0235 95.0 92.0

10 20 1 1 4.9667 5.1016 0.1349 4.9653 5.0914 0.1261 93.5 94.5

11 5 1 1 20.1961 20.7515 0.5554 20.1906 20.6997 0.5091 95.0 94.5

12 0.5 1 1 199.8389 205.4885 5.6496 199.7926 204.7931 5.0005 93.5 96.0

13 20 0.8 2 7.4898 7.7673 0.2775 7.4879 7.7536 0.2657 95.5 96.0

14 15 1 2 6.6739 6.8692 0.1953 6.6728 6.8585 0.1857 96.0 95.0

15 5 2 2 4.4543 4.5203 0.0661 4.4539 4.5167 0.0628 94.5 93.0

16 1 3 2 4.6352 4.6822 0.0471 4.6350 4.6782 0.0432 93.5 94.5

17 0.5 4 2 3.7526 3.7815 0.0289 3.7525 3.7786 0.0261 96.5 95.0

6 Application to some real data set

In this section we consider the problem of point and interval
prediction for some real data of failure times, namely for the
data set contained in the paper of Lindqvist et al. (2003),
and which is given here in Table 12. These data contain 41
failure times of a gas compressor with time censoring at time
7571 (days). Although the data have been observed under
the time truncation procedure, we however assume that we
only know the first n = 40 failure times of the data set and

want to find the point and interval predictions for the next
failure time.

Supposing that the set of failure times of Table 12 forms
a TRP belonging to the class of WPLP(α,β, γ ), the ML es-
timates α̂ML, β̂ML and γ̂ML of α,β and γ have been evalu-
ated (on the basis of the previous n = 40 failure times) and
presented in Table 13. On the other hand, if no assumptions
are made on the renewal distribution function F , the esti-
mates α̂CLS and β̂CLS of α and β are given as the parame-
ters of the PTRP(α,β). Consequently, all the predictions for
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Table 12 The real data
1 4 305 330 651 856 996 1016 1155 1520 1597 1729

1758 1852 2070 2073 2093 2213 3197 3555 3558 3724 3768 4103

4124 4170 4270 4336 4416 4492 4534 4578 4762 5474 5573 5577

5715 6424 6692 6830 6999

Table 13 The ML estimates of
α, β , γ and the CLS estimates
of α, β with their relative errors

α̂ML β̂ML γ̂ML α̂CLS β̂CLS re(̂αCLS ) re(β̂CLS ) SSML SSCLS

0.04900 0.76011 0.83068 0.02586 0.82950 47.227 9.130 57.41755 54.02231

Table 14 The real time Tn, the next real time Tn+1 and the predicted
times of Tn+1 with their relative errors

Tn Tn+1 T̂ ML
n+1 T̃ ML

n+1 T̂ CLS
n+1 re(T̂ ML

n+1 ) re(T̃ ML
n+1 ) re(T̂ CLS

n+1 )

6830 6999 7054 7056 7041 0.788 0.810 0.595

Table 15 The prediction intervals for Tn+1 based on the ML method
and on the CLS method for various confidence levels CL

CL T̂ ML
L T̂ ML

U L̂ML T̂ CLS
L T̂ CLS

U L̂CLS

98 6830 8129 1299 6833 8000 1167

95 6832 7820 988 6833 7585 752

90 6835 7598 763 6833 7560 727

80 6843 7388 545 6835 7338 503

Tn+1 are evaluated on the basis of only the first n = 40 fail-
ure times and then the predictors of T41 are compared with
the observed real last value.

In Table 13 the relative errors re(̂αCLS) = |̂αCLS −
α̂ML|/α̂ML and re(β̂CLS) = |β̂CLS − β̂ML|/β̂ML are given
too. For comparison, in Table 13 there are also given the
sum of squares SSCLS := S2

LS(̂αCLS, β̂CLS) and SSML :=
S2

LS(̂αML, β̂ML), where S2
LS(ϑ) is defined by (20).

The predicted next failure times T̂ ML
n+1 , T̃ ML

n+1 , T̂ CLS
n+1 and

the prediction intervals Î ML, Î CLS for various confidence
level (CL) percentages are given in Tables 14 and 15, respec-
tively. The predictions T̂ ML

n+1 , T̃ ML
n+1 , T̂ CLS

n+1 , Î ML and Î CLS

are evaluated according to formulas (13), (15), (21), (24) and
(29), respectively. In Table 14 the percentages of the relative
errors re(T̂n+1) = (T̂n+1 − Tn+1)/Tn+1 are given too.

Remarks on the results of the analysis In analyzing the real
data of Table 12 we observe in Table 13 a significant relative
difference between the estimates α̂ML and α̂CLS for a WPLP
model and for a PTRP model, respectively, whereas the rela-
tive difference between the estimates β̂ML and β̂CLS for the
respective models is rather small. However, let us note that
the sum of squares SSCLS is somewhat smaller then SSML.

As the results of Table 13 show, the real data of the
first n = 40 failure times could be treated as a realization
of the WPLP(̂αML, β̂ML, γ̂ML) with α̂ML = 0.049, β̂ML =
0.76011 and γ̂ML = 0.83068 or as a realization of the
PTRP(̂αCLS, β̂CLS) with α̂CLS = 0.02586 and β̂CLS =
0.8295. In both cases, the estimates of β are almost the
same.

The percentages of the relative errors of the predicted
next failure times are very small (Table 14). However, the
CLS method applied to the data set considered forecasts the
next failure time Tn+1 more accurate: the value T̂ CLS

n+1 is
closer to the real value Tn+1 than the other predictions T̂ ML

n+1
and T̃ ML

n+1 . The lengths of the prediction intervals Î CLS are
shorter than the corresponding Î ML ones.

7 Concluding remarks

According to our knowledge the problem of prediction in a
TRP has not been engaged a good deal of the literature. In
this paper we presented new methods of the prediction for
the next failure time in a TRP(F,λ(·)) model in the case
when its renewal distribution defined by F is completely
unknown. On the basis of the remarks of Sects. 5.1–5.3 we
recommend the CLS method for constructing the point and
interval predictions in the case of the PTRP(α,β) model.

Besides the methods of interval prediction presented in
Sect. 4 one can also consider the method associated with
Proposition 4 simulating a large number of T

(i)
n+1 and taking

the sample quantiles of order ε1 and 1 − ε2 of the simulated
values.

It would be worth to examine the use of the CLS method
in constructing the predictions also in the TRP models which
are not the PTRP, i.e. which have other than power law type
trend function. Considering the time truncation procedure
would be also desirable.
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