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1 Introduction

Sustainable manufacturing is driven by the insight that the focus on the economic
dimension in current businesses and lifestyles has to be broadened to cover all three
pillars of sustainability: economic development, social development, and environ-
mental protection. In this chapter, we present two state-of-the-art approaches of
mathematical optimisation and how they can be used to solve problems in sus-
tainable manufacturing.

The multi-criteria perspective considers areas of sustainability as independent
functions that are to be optimised however with divergent objectives simultane-
ously. Accordingly, computed outcomes that cannot be improved upon (on at least
one objective without getting worse at another) are considered to be superior to
outcomes that can be improved upon. A decision maker will only be interested in
the first set of outcomes in order to be able to form an educated opinion with respect
to his/her sustainability goal.

The system dynamics perspective on the other hand focuses on the
time-dependent (or dynamic) aspects of systems that are influenced by sustainable
manufacturing practices. If, for instance, a production technology was identified
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that cannot be improved in either of the sustainability dimensions, the question then
arises as to how this technology can be used in an optimal way using only limited
resources. How can the impact on society and economy be steered in the direction
of allowing the technology to be as beneficial as possible?

2 Multi-criteria Optimisation

Mathematical optimisation and mathematical programming is concerned with
finding good solutions from a set of available alternatives. The abstract nature of
mathematical optimisation allows the user to model a wide range of different
problems and different objectives using the same theoretical insights and practical
tools. Problems in sustainability and sustainable manufacturing have in common
that there is not only one objective to be considered but several conflicting ones.
This is mathematically reflected by considering several objective functions simul-
taneously. The set of available alternatives and the structure of the considered
objective functions can generally be modelled in different ways. The focus in the
following section is put on the well-studied and fruitful field of linear optimisation
involving linear objective functions and linear constraints allowing the user to
model as well as to efficiently solve a wide range of quantitative problems.

2.1 Multi-criteria Problem Formulation

In a general multi-criteria linear optimisation problem, one is given a set of k cost
vectors c1; . . .; ck 2 R

n and seeks to minimize all linear cost functions
ci � x ¼

Pn
j¼1 cijxj, for i ¼ 1; . . .; k; simultaneously over all n-dimensional vectors

x ¼ ðx1; . . .; xnÞ subject to a set of linear inequality and integer constraints. In
particular, let M be some finite index set and suppose that for every i 2 M, we are
given an n-dimensional vector ai and a scalar bi. Let N1, N2 and N3 be subsets of
f1; . . .; ng that indicate which variables xj are constrained to be non-negative,
binary or integer, respectively. We then consider the problem

minðc1 � x; . . .; ck � xÞ
s:t: ai � x� bi; i 2 M;

xj � 0; j 2 N1;

xj 2 f0; 1g; j 2 N2;

xj 2 Z; j 2 N3:

ð1Þ

240 S. Schenker et al.



The variables x1; . . .; xn are called decision variables and a vector x satisfying all
of the constraints is called a feasible solution. The set of all feasible solutions is
called feasible set and will be denoted by X . The image y ¼ ðc1 � x; . . .; ck � xÞ of a
feasible solution x is called a feasible point and the set of all feasible points is called
objective set and will be denoted by Y. If N1 coincides with f1; . . .; ng (implying
N2 ¼ N3 ¼ ;), then (1) is considered a linear programming problem. If N2 ¼
f1; . . .; ng or N3 ¼ f1; . . .; ng, then we refer to (1) as a binary or integer pro-
gramming problem, respectively. In case of ;(N1(f1; . . .; ng, (1) is considered a
mixed-integer programming problem. The earliest investigations of multicriteria
mathematical optimisation go back to the 1950s when the simplex method coined
by Dantzig opened up a wide range of applications and prepared the ground for the
huge success of linear programming (Dantzig 1963). If k ¼ 1, then we refer to (1)
as a single-objective problem and the notion of optimality is unambiguous. For a
multi-criteria optimisation problem (with number of objectives k� 2) we cannot
expect to find a solution that optimizes all objectives simultaneously leading to
several possible notions of optimality in the multi-criteria case (Ehrgott 2005).
A widely accepted (and in the following considered) one is the notion of efficiency.
A solution x� 2 X is considered efficient if there is no other solution x 2 X that
achieves objective values at least as good with a strictly better value in at least one
objective, i.e., there is no x 2 X with ci � x� ci � x� for i ¼ 1; . . .; n and ci � x\ci � x�
for at least one i 2 f1; . . .; ng. The image of an efficient solution is called non-
dominated. The challenge for a multi-criteria optimisation problem is then to
compute all different non-dominated points (Figs. 1 and 2).
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Fig. 1 Feasible space of a
bi-criteria integer
maximization problem and
corresponding set in objective
space with non-dominated
points (red)
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Fig. 2 Feasible space of a
bi-criteria linear maximization
problem and corresponding
set in objective space with
non-dominated points (red)
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2.2 Manufacturing and Scheduling

Production problems, scheduling problems and similar decision problems are a
fruitful domain for (mixed) integer programming. Binary variables might represent
on-off decisions and linear or integer variables, respectively, might represent pro-
duction quantities. In the following we will shortly present how multi-criteria
integer programming could be used to model a scheduling problem that accounts
for production costs, electricity consumption and worker satisfaction. Lets ½M� ¼
f1; . . .;Mg be a finite set representing a set of different machines and let ½J� ¼
f1; . . .; Jg be a finite set representing a set of jobs. We will consider a time horizon
for the entire production process and let s and e be the start and end time of it.
Introduce variables xjmt 2 f0; 1g where j 2 ½J�, m 2 ½M� and t 2 fs; . . .; eg. We set
xjmt ¼ 1 if and only if starting time of job j on machine m is set to t. In order to
model the constraint that every job needs to run on every machine before end time
e, let durðmÞ the duration on machine m, i.e., the time that a job spends on machine
m. Then,

Xe�durðmÞ

t¼s

xjmt ¼ 1 8j 2 ½J� ^ 8m 2 ½M� ð2Þ

models the above fulfilment constraint. Furthermore, the constraint that job j is only
allowed to run on machine mþ 1 if it is finished on machine m can be modelled via

Xe

t¼s

t � xjmt þ durðmÞ�
Xe

t¼s

t � xjmþ 1t8j 2 J ^ 8m 2 ½M � 1� ð3Þ

Furthermore, it is very reasonable to assume that a new job can only be started
on machine m if the previous job on machine m was finished. This constraint could
be modelled via

Xe

t¼s

t � xjmt þ durðmÞ�
Xe

t¼s

t � xjþ 1mt8j 2 ½J � 1� ^ 8m 2 ½M� ð4Þ

2.3 Solving Multi-criteria Optimisation Problems

For the single-objective case there are several commercial solvers and software
packages (CPLEX 2016; Xpress 2016; Gurobi 2016) and non-commercial ones
(Achterberg 2009). One could have expected that the exponential growth in com-
puting power and the even larger algorithmic speed-ups in mixed integer pro-
gramming during the last decade (Bixby 2002) would automatically lead to
multi-criteria extensions. But the situation is contrary: none of the available
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commercial solvers supports multi-criteria problems and there are only a few,
recently developed non-commercial solvers available: BENSOLVE (Löhne and
Weiing 2014) and inner (Csirmaz 2016) handle multi-criteria linear programming
problems, SYMPHONY (Ladanyi et al. 2016) supports bi-criteria mixed integer
problems and PolySCIP (Schenker et al. 2016) supports multi-criteria linear and
integer problems.

PolySCIP reads problems of the above form (1) via its MOP file format which is
based on the widely used MPS file format (MPS-Format 2016) and allows the user
to model constraints like (2), (3), (4) easily via an algebraic modelling language
(Koch 2004). It can handle an arbitrary number of objectives and thousands of
variables and constraints (Fig. 3).

3 System Dynamics Optimisation

In this book, many technologies and approaches developed in the context of sus-
tainable manufacturing are discussed. In this section, we will consider the global
environment in which these technologies must be disseminated and implemented,
in order to realise their positive potential.

The economy, the environment, and the society constitute complex entities and
can be seen as finely balanced networks of mutual dependencies. Almost all
components influence each other that have either supporting or weakening effects.
Such dynamical systems can demonstrate counterintuitive behaviour. However, in
order to bring about a change from the conventional production paradigm in the
direction of a paradigm of sustainability, it is essential to appreciate the complex
interdependencies of the systems involved.

We observe that the transition, i.e., the setup of many value creation modules
and networks, constitutes a dynamic process over time that will span several years
or decades. During this period, an array of interactions between the stakeholders
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Fig. 3 Front of
non-dominated points for a
bi-criteria bicycle
manufacturing problem
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need to be taken into account. Moreover, the transition does not take place by itself.
It will only happen by means of deliberate influence on the system. A bundle of
individual measures are necessary in this process.

To this end, the system dynamics (SD) approach provides the appropriate
framework. It is an approach for the modelling and simulation of dynamical sys-
tems with a long history rooted in the understanding and teaching of dynamical
systems in general, as well as in the field of sustainability.

After introducing system dynamics as a tool for simulation, we will formulate
optimal control problems based on system dynamics models.

3.1 System Dynamics

In this section, we will introduce system dynamics as a modelling methodology as
well as the most important modelling rules and characteristics of system dynamics
models.

System dynamics was introduced by Jay Forrester in the 1950s as a method of
describing and simulating time-dependent effects of complex influence networks
with feedback loops (Forrester 1961). Such networks are characterized by
non-linear, often surprising behaviour. In fact, a forecast of their future develop-
ment, and thus their control, represents a difficult mathematical problem.

One of the strengths of the system dynamics approach lies in its visual repre-
sentation of complex systems. This visual approach is essential in the system
dynamics modelling process, and simplifies access for beginners and users who
lack experience with systems of differential equations.

The main objects of system dynamics models are stocks and flows. The stocks
contain the state information of the system. By convention, each stock has two
flows, one flowing into the stock, and one flowing out of the stock. Figures 4 and 5
show visual representations of a stock and a flow respectively. As a third com-
ponent, auxiliary variables are often introduced to structure a diagram. Lastly, the
existence of functional dependencies between stocks, flows and variables is indi-
cated by arrows. Figure 6 shows an example.

Using this visual representation, a systematic modelling process could be
structured as follows:

• Definition of the modelling goal,
• Definition of the system limits,
• Definition of the system components,
• Definition of the direct relations between system components and the type of

causal links (positive or negative),
• Design of an influence diagram to summarize components and their relations,

Fig. 4 Visual representation
of a stock
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• Creation of a system dynamics diagram with stocks for each of the system
components as well as flows for each stock,

• Assignment of units and valid ranges to the values of stocks and flows,
• Definition of the functional relations between stocks and flows,
• Introduction of variables to simplify the relations if possible,
• Completion of the system dynamics diagram by adding variables and arrows for

relations,

The result of this process is a complete system dynamics model. In the next
section, we will discuss numerical methods for simulating a system dynamics
model as it develops over time.

Although it is possible to find general solutions analytically for some models,
this is generally neither possible nor required. A range of numerical simulation
techniques exist that provide quickly accurate simulations. One class of such
simulation techniques are the Runge-Kutta schemes (Runge 1895; Kutta 1901)
which we will use in this chapter.

3.2 Optimal Control of System Dynamics Models

As we discussed in the previous sections, in its basic form, SD aims at describing
and simulating influence networks. This is an important step in pursuit of under-
standing the mutual dependencies. In addition to obtaining a mere understanding
however, what we would like to do is to intervene in the network, bring it to a
desired stable state, or get as close as possible to that state.

In system dynamics, the points of the system which can be influenced by a
conscious decision of an actor are modeled using the concept of policies.

Fig. 5 Visual representation
of a flow. The origin of the
flow is outside of the limits of
the system, as indicated by the
cloud symbol. The arrow is
decorated by an hourglass to
indicate time dependency

Stock

Flow

VariableFig. 6 Visual representation
of a small model with one
stock, one flow and one
variable. The value of the
flow depends on the value of
the variable, which in turn
depends on the value of the
stock
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Policies constitute a basic and important concept of system dynamics modelling.
A policy is a function in some variables that describes the rates of flow in a system
and hence the dynamic behaviour of the model (Richardson and Pugh 1981). Thus,
a policy is a decision rule which specifies how a decision-maker processes available
information from model variables (Sterman 2000). Questions regularly arise con-
cerning whether a given policy can be improved, or even what a “good” policy
“actually constitutes or entails. In this context, the need for efficient computational
methods for policy analysis as well as policy improvement and design has been
recognized in system dynamics, see, e.g., Yücel and Barlas (2011), Keloharju and
Wolstenholme (1988), and is an active field of research.

When developing a simulation model, the modelling step of “policy formulation
and evaluation” also compares the performance of two or more candidate policies
(Sterman 2000). When two simulations with different policies lead to different
system behaviors, one has to evaluate which of the two simulations is more suitable
or “better” for a given model purpose. To answer this question, one needs to define
an objective function so that the higher the value of the objective function for a
given simulation, the more favorable or “better” the policy (Dangereld and Roberts
1996). Once an objective function is defined, several approaches to computer-aided
policy improvement are at one’s disposal.

Direct parameter policy design starts with the definition of an analytic, para-
metrized, and usually nonlinear policy function (Keloharju and Wolstenholme
1989). The parameters of this function are set to starting values, and for each
parameter, a range of valid values is defined. These parameters constitute then the
free variables of the optimisation problem, i.e., the variables which can be varied
freely in pursuit of an optimal solution. Consequently, the goal of the policy
improvement is to find a set of parameter values within the given range that
improves the value of the objective function. The solution space in this case is
reduced by the a priori definition of the shape of the policy function. The solution
found by the optimisation algorithm depends strongly on this definition and
therefore on the expectations of the modeler. If a software package offers parameter
optimisation capabilities, it is usually possible to attempt producing the solution of
such direct parameter policy design problems.

Table function policy design is one possible way to generalizing direct parameter
policy design, by defining a parametrized table function instead of an analytic
function (Keloharju and Wolstenholme 1989). In this case, the modeler has to
define the number of data points of the table function and two intervals that define
the range of valid values of the data points on the x- and y-axis. This approach
removes the modeler’s expectations of the shape of the policy from the optimisation
process. However, the possible policies are reduced to the space of the piecewise
linear functions with the selected number of points. If the data points are then
required to have a pre-defined distance on the y-axis, the possible solutions are
reduced further, but at the same time, the number of parameters and thus the
number of free variables decreases. As in the previous case, the goal of the policy
improvement is to find parameter values (i.e., data points of the table function), that
improve the value of the objective function. A software package that supports table
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function policy design is found with the Powersim Studio plug-in SOPS (Moxnes
and Krakenes 2005).

In both cases, the modeler has to define the functional dependencies of the policy
function. This choice is closely related to the concept of bounded rationality
(MoreCroft 1985; Simon 1984) models.

A policy function, i.e., a decision rule, is a model about what information cues
an actor employs in order to make decisions in a given system. If this actor has only
a limited view of the system, then the policy will only depend on the variables and
information that are available to this particular actor (Sterman 2000). An improved
policy will enable this actor to make better decisions based on the limited infor-
mation available to him/her. Recent work has focused on improving policies for
such actors, using, for instance, co-evolutionary analysis (Liu et al. 2012).

In this paper, we will consider a different kind of actor. Our actor has a global
view of the model, i.e., he or she has information on all the state variables at all
times within the simulation time horizon.

Modeling the policy of an actor with such a comprehensive level of awareness
with the application of conventional approaches to policy analysis constitutes a
difficult endeavor. One option would be to define a table function for each state, that
depends only on that state. A mixed policy function that depends on all states, can
then be defined as a sum of these functions (Keloharju and Wolstenholme 1989).

One conventional approach to System Dynamics optimisation is based on
“optimisation by repeated simulation” (Liu et al. 2012). This has the advantage, that
any model which can be simulated, can also be optimized, since there are no
requirements on the properties of the model equations. However, approaches using
repeated simulation suffer from the “curse of dimensionality” Bellman (2003)
dynamic, where the significant dimension is that of the space of free variables. An
additional free variable adds a dimension to the optimisation algorithm’s search
space. Solving optimisation problems with a large number of free variables there-
fore quickly becomes impractical. As a consequence, the degrees of freedom in a
mixed policy function situation, are limited from a practical perspective, in the case
of an optimisation of the policy by repeated simulation being attempted.

We present a different approach and in so doing, directly optimize the values of
the policy function. This is equivalent to defining the policy as a time-dependent
table function with one data point for each time step of the time horizon. In the
context of physical systems, this kind of problem is known as an “optimal control
problem” Betts (2011). With this approach no assumptions on the properties of the
policy function are made a priori. It is only necessary to select the “free variables”.
In a conventional approach, these “free variables” would contain the values of the
policy functions. For each of these variables, a range of valid values must be
defined. It is then the task of the optimisation process, to find the optimal value for
each free variable at each time.

The resulting optimisation problem based on a system dynamics model can be
written as follows:
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max cðx; y; zÞ;
s.t. _x ¼ f ðx; y; zÞ;

y ¼ gðx; y; zÞ;
xð0Þ 2 X0

State variables: x ¼ xðtÞ 2 R
n

Algebraic variables: y ¼ yðtÞ 2 R
m;

Control variables: z ¼ zðtÞ 2 R
s:

Time horizon: t 2 ½ti; tf �

In order to solve such a problem, we differentiate between two approaches:

3.2.1 Local Approach

In the local approach, the goal is to find a locally optimal solution. Local optimality
means, that in a small neighborhood around the given solution, there is no solution
with a better objective value. For this approach, standard methods exist for
dynamical systems, which reliably deliver local solutions for small and moderately
sized problems. The task at hand is to reformulate and adapt a system dynamics
model, so that these methods can be used. Work on the local optimisation of system
dynamics models can be found for instance in Vierhaus et al. (2014). In this
chapter, we will focus only on the global approach.

3.2.2 Global Approach

In the global approach, the goal is to find a solution, and in addition to prove its
global optimality. This means that no feasible solutions of the problem with a better
objective function value exist. Hence, the global solution approach has two steps:
Find an optimal solution and prove that no better solution exists.

Both of these approaches can prove successful using techniques from mathe-
matical optimisation.

In the next section, we will show how modern optimisation techniques can be
used in the global approach to system dynamics optimisation. The basis is the
formulation of an optimisation problem, based on the control problem introduced in
Sect. 3.2. As mentioned before, the simulation of a system dynamics model using
numerical methods is well-established. This simulation is based on a
time-discretisation of the model, which we will also use for our optimisation
problems.

In order to discretise the model, we introduce a fixed time step of length Dt. We
then consider the equations of (Sect. 3.2) no longer at any t 2 ½0; T �, but only at nt
points in time defined by t ¼ j � Dt; j 2 f0; 1; . . .; nt � 1g. The derivatives
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appearing in (Sect. 3.2) need to be replaced by an appropriate discretisation scheme,
for example a Runge-Kutta scheme. The resulting system can then be written as
follows:

maxcðx0; . . .; xnt�1; y0; . . .; ynt�1; z0; . . .; znt�1Þ; ð5aÞ

s.t.xjþ 1 ¼ f ðxj; yj; zjÞ; j 2 0; 1; . . .; nt � 2 ð5bÞ

yj ¼ gðxj; yj; zjÞ; j 2 0; 1; . . .; nt � 1 ð5cÞ

x0 2 X0 ð5dÞ

State Variables: xj 2 R
n ð5fÞ

Algebraic Variables: yj 2 R
m; ð5gÞ

Control Variables: zj 2 R
s: ð5hÞ

This system now has the standard form of an optimisation problem, similar to the
one introduced in (1). In contrast to (1), we now only have a single objective
function. On the other hand, we have nonlinear equality constraints in place of
linear inequality constraints.

3.3 MINLP Approach

After the discretization of the system dynamics optimisation problem, it is possible
to attempt to solve it with existing solvers. Since we are interested in global
solutions, the algorithm used should be able to provide a certificate of global
optimality. One group of solvers that can provide this certificate are the
branch-and-cut solvers that were introduced in Sect. 2.3 This approach has been
successfully applied in the solution of Mixed Integer Linear Programs as well as
MINLPs from a range of applications [for example, see Defterli et al. (2011),
Borndörfer et al. (2013), Humpola and Fügenschuh (2013)]. Solving a control
problem derived from a discretised dynamical system with a standard
branch-and-cut solver is, however, in many cases unsuccessful, since the solver
does not take into account the special structure of the MINLP that arises from the
discretization, and from the handling of non-smooth functions via integer variables.
Without considering this structure, even finding a single feasible solution can
exceed a reasonable time budget of several hours or even days.

In the remainder of this section, we will present the concept of a tailored solver
for system dynamics optimisation problems. Like PolySCIP, this concept has been
implemented in the framework of the modern MINLP solver SCIP and results can
be found in Fügenschuh and Vierhaus (2013a, b), Vierhaus et al. (2014),
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Fügenschuh et al. (2013). A diagram describing the improved solution process is
shown in Fig. 6.

3.3.1 Transcription

The first step is the reading and transcription of the system dynamics model and the
optimisation parameters. Once the model and the optimisation parameters have
been read, the optimisation model is processed in two ways. An equivalent MINLP
is, then set up. This includes the time discretisation. At the same time, expressions
for the function _xðtÞ are derived from the model (Fig. 7).

3.3.2 Optimisation Based Reachability Analysis

To improve on the dual side of the algorithm, an Optimisation Based Reachability
Analysis (OBRT) is performed for every problem. This analysis computes bounds
for the possible states of the system using the dynamic behaviour and the initial
values x0 as input.

3.3.3 Primal Heuristic

In the interest of producing quickly feasible solutions, we implemented a simple
heuristic that reduces the control problem to a simulation problem by fixing the

Control problem

MINLPExpressions for ẋ

Presolve with OBRA

At each branching
on state or control

(x(t), z(t))

Apply bounds to MINLP

Compute SB bounds starting at t

Discretise, reformulate

Use local bounds as enclosure

Branch and cut loop

Fig. 7 Concept of a global solver for system dynamics optimization problems
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control variables to their lower (or in a second run upper) bounds. If there are no
path constraints, this process will always yield a feasible solution.

3.3.4 Bound Propagation Based on Differential Inequalities

To improve the bounds within the branch-and-cut process, we compute differential
inequalities as outlined in Scott and Barton (2013). This involves the solution of an
auxiliary simulation problem using the expressions for _x derived in the reading of
the problem.

3.3.5 System Dynamics SCIP

The concepts mentioned above have been implemented as the solver System
Dynamics SCIP (SD-SCIP). Like polyscip, SD-SCIP is an extension of the modern
MINLP solver SCIP and is publicly available (Füegenschuh and Vierhaus 2013a,
b).

4 Conclusion

This chapter introduced the framework of multi-criteria optimization and system
dynamics optimisation together with different modelling techniques. It showed that
mathematical optimisation is a useful tool for modelling a wide variety of problems
from the sustainability context. The two solvers presented PolySCIP (Schenker
et al. 2016) and SD-SCIP (Fuegenschuh and Vierhaus 2013a, b) were specifically
developed with applications from sustainability in mind. They can be used as
decision support instruments for a wide range of problems, from scheduling,
manufacturing and production to planning subsidies and taxes and exploring
dynamical pathways into the future. Both tools are publicly available and present an
opportunity for the sustainability community to benefit from recent advances in
mathematical optimisation.
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