
Distance-Aware Selective Online Query Processing Over Large
Distributed Graphs

Xiaofei Zhang1 • Lei Chen2

Received: 8 November 2016 / Accepted: 12 December 2016 / Published online: 18 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Performing online selective queries against

graphs is a challenging problem due to the unbounded

nature of graph queries which leads to poor computation

locality. It becomes even difficult when a graph is too large

to be fit in the memory. Although there have been

emerging efforts on managing large graphs in a distributed

and parallel setting, e.g., Pregel, HaLoop and etc, these

computing frameworks are designed from the perspective

of scalability instead of the query efficiency. In this work,

we present our solution methodology for online selective

graph queries based on the shortest path distance semantic,

which finds various applications in practice. The essential

intuition is to build a distance-aware index for online dis-

tance-based query processing and to eliminate redundant

graph traversal as much as possible. We discuss how the

solution can be applied to two types of research problems,

distance join and vertex set bonding, which are distance-

based graph pattern discovery and finding the structure-

wise bonding of vertices, respectively.

Keywords Graph processing � Shortest path distance �
Graph partition

1 Introduction

The tremendous size of real-world graph data raises series

of challenges in efficient graph management and query

processing. With the generic vertex-centric model [22]

applied to practices, there has been a huge advancement in

large-scale graph analytic tasks, e.g. PageRank, SCC,

subgraph listing and etc. More efficient generic graph

processing frameworks, like the subgraph-centric model

[33, 35], are emerging to accelerate the graph analytic task.

However, online graph query which finds various appli-

cations in real practice does not attract much research

effort, especially the highly selective queries which has an

limited output size. In this work, we study the problem of

answering shortest path distance-based selective graph

queries in a online fashion, such that ad hoc queries of such

type can be answered promptly.

Graph queries using the shortest path or shortest path

distance semantic are widely used in practices. For exam-

ple, one popular way to define the similarity of two vertices

in the network would be the similarity of their distance

vector to a number of pre-selected vertices. Other examples

like influential maximization, or adaptive betweenness

calculation and etc., are all based on the shortest path

semantic. Therefore, effective distance estimation as well

as efficient shortest path retrieving are essential for online

graph queries. However, one fundamental issue is the

unbounded nature of graph queries which often leads to

poor computation locality. For example, to find out the

shortest path(s) from vertex u to v, a naive BFS would

access a large number of vertices in the graph to answer the

query. In an extreme case, if graph G is a social network,

and the distance between u and v is five, a shortest path

query evaluation much likely leads to an entire graph visit

due to the six-separation law [13].

& Xiaofei Zhang

xiaofei.zhang@uwaterloo.ca

Lei Chen

leichen@cse.ust.hk

1 University of Waterloo, Waterloo, Canada

2 Hong Kong University of Science & Technology,

Clear Water Bay, Hong Kong

123

Data Sci. Eng. (2017) 2:2–21

DOI 10.1007/s41019-016-0023-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0023-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0023-z&domain=pdf

Various graph indexing techniques have been proposed

to speed up the query evaluation, like the embedding

technique introduced in GStore [39] for efficient SPARQL

query processing, independent set-based labeling [10], the

distance oracle approach [28] and etc. However, effective

generic index structures for adhoc graph queries are space-

consuming and involve a long setup time. Therefore,

answering online selective graph queries with a combina-

tion of light-weight indices and fast graph exploration

makes it a feasible solution with respect to both time and

space efficiency.

In this work, we study both effective distance estimation

and efficient graph exploration for shortest path discovery.

We apply our methods to two types of online graph quer-

ies: distance join and vertex set bonding, which captures

interesting graph patterns and structure-wise prominent

vertices, respectively. We highlight the contribution of our

work as follows:

• We propose a novel partition strategy for web-scaled

graphs in the shared-nothing distributed environment to

efficiently support the pairwise shortest path

estimation;

• We develop a vertex filtering scheme to effectively

support guided graph exploration, such that the cost on

redundant vertex accessing could be significantly

saved;

• We show how our technique can be applied to two

types of powerful graph queries;

• We discuss our prototype implementation with exten-

sive experiments over both real and synthetic web-

scaled graphs on an in-door cluster.

The rest of this paper is organized as follows: we first

formally define the problem in Sect. 2, then we introduce

our partition-based distance estimation index in Sect. 3 and

guided graph exploration in Sect. 4, respectively. We show

how our proposed technique can be applied to accelerate

the evaluation of two types of queries in Sect. 5. We report

all experiments in Sect. 6 and briefly review the related

works in Sect. 7, followed by Sect. 8 which concludes the

paper.

2 Problem Definition

In this section, we first clarify the problem definition and

notations used in this paper. For comprehensiveness, we

present an overview of our solution before diving into the

any technical details.

Given graph G ¼ hV ;Ei;E � V � V , a path from vertex

u to v is a sequence P of edges: eðx0; x1Þ,...,eðxi�1; xiÞ,
where eðxi; xjÞ 2 E and x0 ¼ u; xi ¼ v. Intuitively, the

shortest path from u to v, denoted as SP(u, v), is the edge

sequence of the minimum length. The shortest path dis-

tance, denoted as d(u, v), is the length of a shortest path.

Although one may pre-compute all pairwise shortest path

distance by brute-force and materialize all the results, the

space cost would be at least Oðn2Þ, which is prohibited in

practical usage. On the contrary, we would like to find a

quality guaranteed pairwise distance estimation with as less

space cost as possible.

Definition 1 (Distance estimation) Given a pairwise

distance query QDðu; vÞ, returning d̂ðu; vÞ in O(1) time

using at most O(c|V|) storage, having

d̂ðu; vÞ� ð1þ �Þdðu; vÞ

where � 2 ð0; 1Þ; c is a constant factor.

As shown in the definition, all pairwise shortest

path distance should be estimated in constant time

with quality guarantees. The fundamental challenge is

to minimize the space consumption as much as pos-

sible. Clearly, if we let � be 0, then the problem can

only be solved by pre-compute all pairwise distances.

Thus, the problem essentially asks for the space lower

bound of a parameter-adjustable solution for distance

estimation.

Although finding the shortest path is a well established

problem, we define the optimal shortest path computing

problem under an exploration semantic as follows:

Definition 2 (Graph exploration strategy) Given graph

G ¼ hV;Ei, a vertex u is explored only if 9eðu; vÞ 2 E and

v is explored.

Definition 3 (Atomic graph exploration cost) Given

vertex u 2 V , the atomic graph exploration cost of u is

jfeðu; �Þgj, where {eðu; �Þ} denotes the set of edges going

out from u.

Definition 4 (Optimal shortest path computing) Given a

pairwise shortest path query QSPðu; vÞ, let V be a set of

vertices to access to answer the query in an exploration

manner, then the optimal goal is arg
V
min

P
jeðv;�jÞj, where

v 2 V.

Intuitively, the optimal shortest path computing is to

locate the minimum set of vertices to access in order to

answer the query. Unfortunately, the exploration based

path computing has been proven to be untractable in terms

of the number of vertex access. Thus, we shall study

effective heuristics that eliminate redundant vertex access

as much as possible.

The solution we introduced for these two problems are

somehow correlated. We first introduce a partition-based

distance estimation index, which effectively estimates

d(u, v) in constant time. Essentially, we partition the graph

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 3

123

into a set of subgraph pairs, such that vertices that are far

away enough from each other would be grouped into dif-

ferent partitions. Thus, we can use the distance between

partitions to estimate the true pairwise distance. Based on

the lightening fast yet accurate (with error guarantee) dis-

tance estimation, we can perform a guided graph explo-

ration. Moreover, we introduce the landmark-based guided

graph exploration and probe-based graph exploration

which requires much less space overhead.

3 Partition-Based Distance Index

Being a crucial criteria of online queries, the latency of

query processing should be reduced as much as possible.

To address this efficiency issue, we partition graph G based

on its summary graph extracted from the Delaunay trian-

gulation of a set of selected vertices. A Well-Separated-

Subgraph Decomposition method is employed to guarantee

a distance-aware partition. Since the partition task is

beyond the capability of a single stand-alone server, we

first randomly partition G to all computing nodes and

compute the summary graph in a distributed manner. As

the summary graph is small, a partition schema can be

derived in one server. Afterward, a re-partition of G is

performed among all computing nodes.

This process includes three steps, selecting a subset of

vertices V 0 from G, building the Voronoi diagrams

VorðGV 0 Þ and extracting a graph which is the correspond-

ing Delaunay triangulation of V 0, i.e., DTðGV 0 Þ.
Step 1. Selecting V 0. We adopt the betweenness

approximation method proposed in a series of work

[2, 4, 21] to sample V 0. The cardinality of V 0, however, is
considered as a customizable parameter in our solution. It

would be great to have a larger jV 0j, but it would be inef-

ficient to compute the partition of DTðGV 0 Þ in the main

memory. Therefore, we make jV 0j reasonably large as long

as a OðjV 0j2Þ matrix can be completely loaded in a server’s

main memory.

Step 2. Computing Vor ðGV 0 Þ The pseudo-code given in

Algorithm 1 illustrate the computation of Vor ðGV 0 Þ.
Notice that there could be many different ways to handle

conflicts, i.e., a vertex can be of equal distance to dif-

ferent reference points. In our solution, we specifically

assign a conflicting vertex to the reference point with a

smaller id value.

Step 3. Constructing DTðGV 0 Þ:DTðGV 0 Þ can be easily

constructed after Vor ðGV 0 Þ is obtained. DTðGV 0 Þ is a

weighted undirected graph. There is an edge between u; v 2
V 0 iffu and v reside in two adjacent Voronoi cells in Vor

ðGV 0 Þ. And the weight of this edge is diamðuÞ þ diamðvÞ,
where diamð�Þ denotes the graph diameter.

3.1 c-WSSD Partition

To partition a graph in a distance-aware fashion, we

actually employ a two-layer hierarchical partition method.

The bottom layer is constructed with the identification of

numbers of distance-preserving Voronoi cells. The top

layer is to partition the Delaunay graph DTðGV 0 Þ, which is

a summary of the bottom layer. Different from most

existing graph partition techniques that aim at reducing

cross partition cuts, we would like to have any pairwise

distance query be evaluated as quickly as possible. The

4 X. Zhang, L. Chen

123

intuitions are simple: 1) the vertices that are far away from

each other should be partitioned into different subgraphs;

2) the vertices that are close to each other should be located

in the same or adjacent subgraphs. For clear illustration

purpose, we first introduce the concept of Well-Separated-

Subgraph Decomposition, which serves as a partition

constraint for DTðGV 0 Þ.

Definition 5 (c-WSSD) Let S be a connected graph of n

vertices. Let F ¼ fðA;BÞ : A � S;B � Sg be a collection

of pairs of subgraphs of S. For any constant c	 1, we call

F a c-Well Separated Subgraph Decomposition, c-WSSD

in short, if the following conditions are satisfied:

1. For any x; y 2 S, there exists a unique pair (A, B) 2 F
such that x 2 A and y 2 B.

2. dðA;BÞ	 c�MaxfdiamðAÞ; diamðBÞg.

In the definition, diam(A) refers to the diameter of

subgraph A; d(A, B) denotes the shortest path distance

between two subgraphs A and B. We reason the c-WSSD

graph partition from two aspects. First, such a definition is

query oriented. As stated in the first condition, given any

two vertices from DTðGV 0 Þ, the distance constraint can be

examined on just one machine that holds the corresponding

pair of graph partitions. Second, it restricts the distance

between partitions to ensure a straightforward query con-

straint verification. The second condition given in c-WSSD

is to guarantee that two clusters of vertices from G are far

apart from each other. As we elaborate later in this section,

a c-WSSD graph partition ensures an error-bounded

immediate pairwise distance estimation.

We solve the c-WSSD construction problem by

employing a comparison-based binary tree traversing pro-

cedure presented in Algorithm 2. To be specific, let Rð�Þ
denote the minimal spanning tree structure of a given

subgraph; u, v denote subgraphs of DTðGV 0 Þ; lu and lv
denote the diameter value of R(u) and R(v), respectively.

To elaborate, we first compute RðDTðGV 0 ÞÞ and assign it as

the root of a binary tree T. T is constructed as follows. For

each non-leaf internal (or root) node u � V 0, we split it into
two children by removing the edge on which the center of

R(u) resides. Binary tree T is built along with the subgraph

pair extraction process. An internal node u splits only if

certain conditions hold, as shown in the if...then clauses of

Algorithm 2.

Essentially, Algorithm 2 constructs the c-WSSD by

traversing T with the help of a queue Q. We first ini-

tialize Q to store the ordered pair (Troot; Troot), where

Troot ¼ RðGV 0 ÞÞ. Then we incrementally grow T in a

BFS-traversal manner, during which process we compare

and discover qualified ordered subgraph pairs and have

them be stored in F . We shall first prove the correctness

of Algorithm 2 and then explain its running time

complexity.

Lemma 1 F constructed with Algorithm 2 is c-WSSD.

Proof Take any two vertices x; y 2 DTðGV 0 Þ, since Q

contains (Troot; Troot) initially, the traversal algorithm must

eventually put a pair of nodes (u, v) into Q such that

RðuÞ \ RðvÞ ¼ ;; x 2 u, and y 2 v. Afterward, the traversal

algorithm expends upon (u, v) and finally put a pair (u0; v0)
into F such that x 2 Rðu0Þ and y 2 Rðv0Þ. Notice that (u0; v0)
is inserted into Q exactly once in the algorithm. This

guarantees that x and y are not covered by another pair in

F . Thus, F satisfies the first constraint of c-WSSD’s def-

inition. Moreover, it is clear that if (u, v)2 F ; dðRðuÞ;
RðvÞÞ 	 c �MaxfdiamðRðuÞÞ; diam ðRðvÞÞg. Thus, F
satisfies the second constraint given in the definition. h

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 5

123

Lemma 2 The cardinality of F , i.e. jF j, is OðjV 0jÞ.

Proof It suffices to prove that given any internal node u, there

are atmostO(1) nodes v0 such that (u; v0) appears inQ. Suppose
that (u; v0) appears in Q. It holds if (u; v0)=(r, r). Otherwise,
(u; v0) was put into Q because we split the parent of u or the

parent of v0.Without loss of generality, assume that we split the

parent v of v0. Thus, lv 	 lu and dðRðuÞ;RðvÞÞ\c

�Maxflu; lvg. In other words,R(v) lies inside a spanning treeR
with the same center of R(u) and length equal to 4c� lv. Then

there are no more than 16c2 disjoint binary tree segments of

width lv insideR, each of whichmay generate two children that

appearwith u inQ. Hence, u appearswith atmost 32c2 nodes in

Q. h

Since each pair inF must appear inQ too, jF j ¼ OðnÞ. It
takes Oðn log nÞ time to construct T ðV 0Þ. Then the traversal
algorithm runs inOðm log mÞ, wherem is the total number of

pairs that appear in Q. Lemma 2 has already shown that

m ¼ OðnÞ. Therefore, Algorithm 2 constructsF inOðnlognÞ
time (n ¼ jV 0j). To achieve the (1þ �) approximation of the

pairwise shortest path distance, given 0\�\1, we make F
an error-bounded partition ofDTðGV 0 Þ bymaking c ¼ 2ð1þ�Þ

� .

Then we can have the following result:

Lemma 3 Given any two vertices x; y 2 DTðGV 0 Þ, the

shortest path distance approximation between x, y is at

most (1þ �Þdðx; yÞ.

Proof Let (u, v) be the pair in F such that x 2 u and

y 2 v. Let path ab; a 2 u and b 2 v, be the shortest path

between u and v. Thus, dðx; yÞ	 dðRðuÞ;RðvÞÞ	
2ð1þ�Þ

� �Maxflu; lvg	 2ð1þ�Þ
� �Maxfdða; xÞ; dðb; yÞg. One

can inductively assume that a path connecting a and x in u

whose length is at most ð1þ �Þdða; xÞ� �
2
dðx; yÞ. The

same inductive assumption holds for b and y in v. Thus, the

path distance from x to y is at most

dða;bÞ þ ð1þ �Þdða; xÞ þ ð1þ �Þdðb; yÞ
� dðx; yÞ þ ð2þ �Þdða; xÞ þ ð2þ �Þdðb; yÞ
� dðx; yÞ þ �dðx; yÞ: ð1Þ

h

It is worth pointing out that the partition strategy illus-

trated above also significantly reduces the computation

overhead across different storage nodes. Although the c-

WSSD computation is sequential and handled centrally, the

data re-partition can be easily conducted in parallel.

4 Guided Graph Exploration

In addition to fast and accurate pairwise distance estima-

tion, finding the exact pairwise shortest path efficiently, in

terms of minimizing the redundant edge visit, raises a

grand challenge as well. In this section, we study a land-

mark-based guided graph exploration strategy.

4.1 Landmark Selection

Although the technique presented in Sect. 3 gives error-

bounded distance estimation in O(1) time, the storage cost

of subgraph pair index depends on the underlying graph

topology structure. If a graph is extremely dense, the

constant factor c could be over 100 which makes it an

infeasible solution. Therefore, we consider a more generic

strategy to estimate pairwise distance, which is sufficient to

perform guided graph exploration.

Selecting landmarks or reference points to facilitate the

shortest path distance computation has been adopted in

many works [26, 28, 29]. Existing landmark selection cri-

teria are quite biased according to different graph structures

and applications. In our solution, we select landmarks not

only based on the consideration of graph partition and

pairwise shortest distance estimation, but an evenly cov-

erage property is desired. To elaborate, we find that given

two vertices s and t, the landmark best serves jpstj1 com-

putation is the one closest to pst. Therefore, we define a set

of landmarks of evenly coverage as follows:

Definition 6 (d-evenly coverage) Given a graph

G = hV ;Ei, a set of landmarks, O ¼ fo1; o2; . . .; odg, is
said to be an evenly coverage of G, iff 8v 2 V ; 9oi 2 O

such that jpvoi j � d, where d is a customizable parameter.

According to the definition, an interesting question is

how to decide an evenly coverage O of a given graph G.

Intuitively, if d is small, the cardinality of O, denoted with

parameter d would be large. As a matter of fact, it is easy to

derive that in an extreme case, d needs to be at least as

large as n�1
2d . On the other hand, at most 3 landmarks are

sufficient if the diameter of G is smaller or equal to 2d. In
practice, we would like to select the minimal number of

landmarks that satisfy a d-evenly coverage of G in order to

save index space and computation costs. Algorithm 3 gives

a deterministic solution of finding the minimal d, which

also helps decide the selection of landmark vertices.

In the first line of Algorithm 3, Gdiam denotes the

diameter of G. We consider Gdiam as a given input as it can

be easily computed following the super step based message

passing model. Apparently, the above algorithm is to

recursively partition G into a set of small graphs with

diameter smaller than 2d, and report the center vertices of

these small graphs as landmarks. Let the level of recursions

is h, then the total number of landmarks is d ¼ 2h. The

computation cost of Algorithm 3 is O(h|G|), because on

1 For the rest of this paper, we use jpstj and d(s, t) interchangeably,

they both denote the shortest path distance from s to t.

6 X. Zhang, L. Chen

123

each level of recursion the entire graph is traversed. We

can save the computation cost using a random algorithm

given in Algorithm 4. It is worth pointing out that Algo-

rithm 4 does not need Gdiam to be pre-computed. On the

other hand, as shown on line 3 of the algorithm, we ran-

domly select a path (simply using graph exploration) of

length 2d at each iteration and filter out all vertices that

could be evenly covered in d-hops from the middle vertex

of this selected path, until all vertices from G are covered.

Lemma 4 Algorithm 4 runs at the complexity of O(|G|)

and returns an evenly coverage of G with at most 3� 2h�1

landmarks.

Proof Consider an uncovered subgraph g with a diameter

falls in (2d; 4d
, it takes two landmarks to evenly cover g

according to Algorithm 3. However, according to Algo-

rithm 4, a subgraph g0 2 g could be selected, leaving the

remaining part to be sufficiently covered by at most 2

landmarks. Therefore, it takes three landmarks to cover any

two adjacent small graphs after partition in Algorithm 3.

Therefore, Algorithm 4 reports at most 3
2
� 2h ¼ 3� 2h�1

landmarks.

With the set of landmarks O determined, we are able to

associate each vertex a label vector denoting its distance to

all landmarks. Let l(v) be a d-dimensional vector, where

lðvÞi denotes v’s distance to landmark oi. Starting from the

d landmarks, with one time graph exploration, every

l(v) can be determined.

Associating each vertex with a d dimensional vector

ideally trades off space cost to empower filtering on graph

exploration. However, in real-world scenarios, d could be

very large if d is set to a small value, which could impose

infeasible space overhead for graph storage. As a matter of

fact, given a vertex u and a landmark o, their shortest path

distance can be denoted as jpuo0 j þ jpo0oj � r, where jpuo0 j is
the distance from u to its nearest landmark o0. As dist(o; o0)
can be pre-computed during preprocessing, then only the

adjusted value r needs to be stored. Note that the employed

graph partition strategy potentially promises a locality-

based landmark clustering. It results in the value locality of

r in u’s label, where a simple value-based compression

technique can be applied to reduce the total space cost

significantly.

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 7

123

4.2 Guided Graph Exploration

To explore the shortest path from s to t, at least jpstj super
steps are necessary using a vertex-centric model. Starting

from s, a naive graph exploration method like BFS would

access all vertices within a distance of jpstj to s. Thus, we

would like to investigate a guided graph exploration

approach to significantly reduce the redundant vertex

access.

Our design is simple and straightforward. Let vk resides

on the shortest path between s and t. Assume jpstj is given,
vk is a k-hop vertex from s, then according to the cosine

law, the distance from vk to a landmark oi is solely deter-

mined on lðsÞi; lðtÞi and k. And such a condition must be

hold between every landmark and vk, which could greatly

help filtering out possible candidates for future examina-

tion. Plus, as vk’s label has been computed during the

preprocessing phase, it is easy to verify whether vk exists.

If negative, it only shows that the assumption on jpstj is
wrong.

Given vertex s and t, we can simply bound the jpstj using
the triangle inequality. It is easy to verify that

jpstj 2 ½MaxðjlðsÞi � lðtÞijÞ;MinðjlðsÞi þ lðtÞijÞ
, where

1� i� d. For comprehensive presentation, the notation

jpstj 2 ½LBðjpstjÞ;UBðjpstjÞ
 is employed for the rest of this

paper. An observation on the determination of jpstj is that
an assumption of jpstj is correct iff 8k 2 ½1; jpstjÞ9vk, such
that 8oi 2 O; lðvkÞi is valid according to the cosine law.

Based on this observation, given a range of possible jpstj, a
brute-force solution is to check all possible values of jpstj in
an ascending order and report the first valid result as the

correct jpstj, as described in Algorithm 5. Note that the loop

given on line 3 indicates an iterative exploration process. In

each iteration, we identify a set of valid vertices to be

explored according Observation 1. The benefit of Algo-

rithm 5 is that we can get exact pst as a side product.

However, the worst case happens when some landmark

resides on pst, meaning we get correct jpstj only after

checking all the possible values.

Apparently, Algorithm 5 is efficient only for the sce-

narios where jpstj is very close to its lower bound. In the

worst case, it takes Oðjpstj2Þ iterations to find pst. There-

fore, we would like to propose another algorithm which has

strict performance guarantees on all possible conditions.

The intuition is that by starting from a set of vertices

possibly residing on pst, which must be a superset of pst, we

perform a guided exploration that iteratively prunes all

candidates that do not belong to pst.

Lemma 5 Given vertices s and t, a vertex v possibly

resides on pst if MaxfjlðvÞi � lðsÞij þ jlðvÞi � lðtÞijg
�UBðjpstjÞ, where 1� i� d.

Proof Let vertices u and v be directly adjacent to each

other. Then MaxfjlðvÞi � lðuÞijg ¼ 1, where 1� i� d,

because jumping from u to v, the distances between u and

all landmarks alter by at most one. Therefore, given any

two vertices u and v;MaxfjlðvÞi � lðuÞijg indicates a lower

bound of the pairwise shortest path distance between them.

Thus, if the sum of lower bounds of a vertex v’s distance to

s and t is greater than an upper bound of jpstj, denoted as

UBðjpstjÞ, then v must not reside on pst. h

Although Lemma 5 indicates a filter on the possible

vertices to explore, the cost to examine the entire graph set

remains unacceptable. We could rule out some candidate

vertices based on their distances to all landmarks, as

guaranteed by the following:

Lemma 6 Given s and t, a vertex v possibly resides on pst
if for pst 2 ½LBðpstÞ;UBðpstÞ
 and 1� i� d, assuming

lðsÞi � lðtÞi, then

lðvÞi 2
½lðsÞi; lðtÞi
 if arccos

lðsÞ2i þ lðtÞ2i � jpstj2

2lðsÞilðtÞi
� p

2

½h; lðtÞi
 else

8
><

>:

8 X. Zhang, L. Chen

123

where

h ¼ 2ðaða� lðsÞiÞða� lðtÞiÞða� pstÞÞ
1
2

pst
;

a ¼ lðsÞi þ lðtÞi þ pst

Lemma 6 can be easily proved following the cosine law

and the Heron’s formula. By applying the filtering criteria

suggested in Lemmas 5 and 6, we could obtain a subgraph

of G, denoted as gst, which must be a superset of pst. Note

that 8v 2 gst; v’s degree is at least 2 and all of v’s neighbors

belong to gst. This is easy to prove by contradiction. Then,

we start an iterative validation process on gst to obtain pst
by filtering out unnecessary vertices step by step, as

described in Algorithm 6.

Algorithm 6 employs a range label to check whether a

vertex resides on the path pst. Each vertex that receives a

lower(upper) bound of the range label, it sets up the list to

watch if any upper(lower) bound would be sent from the

same vertex, e.g. v.swatch and v.twatch in lines 9 and 14,

respectively. Initially, s and t are only half bounded, and

they pass on the range to its neighbors. Iteratively, if a

vertex v finds that it receives both the lower and upper

range bounds from the same vertex, as examined in the two

IF clauses on lines 7 and 11, v definitely does not reside on

pst. Therefore, v can be marked as inactive, and it will not

participate in any further computation. Finally, all vertices

that remains active and closely bounded shall be returned.

Correctness. There are only two cases where v does not

reside on pst. One is that v reaches both s and t from a same

vertex u. In this case, according to Algorithm 6, v would

receive range updates from u only; thus, it will be pruned.

The other case is that the sum of two shortest path distances

jpuvj þ jpu0vj is larger than jpuu0 j, where u and u0 resides on
pst. Thus, the algorithm terminates before all vertices on

the path puv and pu0v get closely bounded, and these paths

would be removed eventually.

Complexity. Obviously, Algorithm 6 takes the space

complexity of up to OðjgstjÞ, and the total iteration step of

Algorithm 6 is the same as jpstj. And within each step, only

vertices with range updates would send out messages to

selected neighbors. Therefore, comparing to the naive

exploration method, Algorithm 6 reduces the communica-

tion cost at each superstep. While comparing with Algo-

rithm 5, Algorithm 6’s total number of iteration steps is

fixed. It makes Algorithm 6 more generic for all possible

workloads.

Note that it is trivial to add a global counter in Algo-

rithm 6 to record each vertex’s shortest path distance to s

and t. Then the exact jpstj can be obtained after the program
execution. The difference between Algorithm 5 and 6 is

that the former aims at fast validation of jpstj with as least

vertex access as possible under the help of vertex labeling.

Algorithm 6 first uses vertex labeling to identify a super set

of pst to explore, then conduct the exploration in a way that

eliminate communication as much as possible.

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 9

123

Our guided graph exploration method could serve as a

building block to evaluate other distance aware queries. For

example, in the network field, there are common requests

like routing a package from s to t that must pass or must not

pass some given node within a transfer budget. Our vertex

label method makes it straightforward to estimate the cost

to include or exclude a vertex on the shortest path explo-

ration. Therefore, cost aware solutions can be easily con-

structed to discover such a constraint routing path

efficiently.

5 Apply to Online Graph Queries

The distance estimation and guided graph exploration

technique elaborated above can serve as fundamental

building blocks for various online graph queries. In this

section, we present two different types of selective online

queries that can benefit from the proposed technique.

5.1 Distance Join Query

Given a query graph Q and the data graph G, a distance

join query returns all the subgraphs from G that satisfy

every pairwise distance constraint in Q. Such a kind of

query is handy and expressive in social network analysis

and Biochemical network investigation [8, 14, 38]. It

captures not only the structure information about the query

graph, but also implies strong connectivity constraints, i.e.

the pairwise distance between any two given vertices.

Clearly, a distance join query is more flexible than the

subgraph search and especially useful in graph analytic

tasks that target on co-relationship discovery. For com-

prehensiveness, we first define the distance join query as

follows:

Definition 7 (distance join) Given a query graph Q of n

vertices {v1; . . .; vn} and m edges of weights

{wðvi; vjÞjðvi; vjÞ 2 Q; 1� i 6¼ j� n}, let S denote a set of

n vertices selected from a data graph G, we define S is a

distance match of Q iff the following bijective function

f holds:

1. 8vi;1� i� n; f ðviÞ 2 S;

2. d̂ðf ðviÞ; f ðvjÞÞ�wðvi; vjÞ, if (vi; vjÞ 2 Qð1� i 6¼ j� n),

where function d̂ð�; �Þ denotes the pairwise shortest

path distance of two vertices in G.
Then the distance join of Q and G, denoted as DJ(Q, G), is

to find all the distance matches of Q in G.

According to the definition, function f can be defined as

any bijective mapping, e.g. label matching, similarity

matching and etc. And d̂ð�; �Þ can be any distance metric

depending on the application scenario. In this work, we

adopt the exact label matching as function f, and the

shortest path distance as the distance function d̂ð�; �Þ, which
satisfies the triangle inequality. An example of DJ(Q, G) is

given in Fig. 1. In the example, the weight of each edge in

G is one. Based on the query, a vertex c must be adjacent to

a vertex d, which makes c1 and d1 the only option. Con-

sidering d̂ða1; b1Þ[2 and a2 does not reach c1,

{a1; b2; c1; d1} is the only valid result.

Note that DJ(Q, G) allows different pairwise distance

constraints, which makes the query introduced in [38] a

special case of our study (as the query in [38] restricts all

pairwise distance constraints to a same value D). Such a

generalized query semantic implies at least the same

computational complexity as the query defined in [38],

which is reported to be #P-complete.

5.1.1 Evaluation Overview

Intuitively, it is the join order selection problem to generate

a good query plan for DJ(Q, G). First of all, we need a cost

model to evaluate different query plans. There have been

many literatures studying the cost metric of a distributed

jobs w.r.t various constraints. We omit the details on cost

model construction as it is beyond the scope of this paper.

For the rest of this paper, we use C�ð�Þ to denote the cost

function.2

Given the cost-driven query evaluation plan, which is a

sequence of subqueries to evaluate, the join condition

validation falls into two categories: (1) validate two ver-

tices that do not reside on the same machine; (2) validate

two vertices that are co-located on the same machine. As

elaborated in Sect. 3, the distance-aware graph partition

particularly favors the distance approximation of vertices

that are far away from each other. Thus, it only takes

constant time to justify a join condition for the case (1).

However, for the query inputs of two vertices that are not

far away from each other, i.e., they fall into the same set of

Voronoi cells after partition, we need further computation

on each computing node to answer the query. The essential

challenge is to minimize the I/O operation as much as

Fig. 1 An example of DJ(Q, G)

2 The cost model we employed is elaborated in [36]. As a matter of

fact, any off-shelf cost models can be applied.

10 X. Zhang, L. Chen

123

possible such that queries can be answered more

efficiently.

5.1.2 Data Block Construction

We discuss how we organize graph data locally according

to the c-WSSD property. Let Fi � F be the set of subgraph

partitions distributed to a computing node i. As it is

infeasible to keep Fi completely in the main memory, Fi

must be written back to the file system in a certain manner.

Since we employ HDFS as the underlying file system,

challenge rises because HDFS, like other Cloud file sys-

tems, is managed on the block basis. First, the data loading

from disk is at the level of blocks. Second, HDFS

demonstrates unsatisfactory performance in random block

access. Therefore, it is not a trivial task to write Fi back to

HDFS. A data block needs to be carefully constructed.

Since Fi ¼ fðA;BÞ; :::g is a set of subgraph pairs, where

both A and B are sets of Voronoi cells. Therefore, the

storage structure should be designed on the basis of Vor-

onoi cells. Without loss of generality, we consider the

storage of subgraph A from (A, B)2 Fi. Let A compose r

Voronoi cells, i.e., A ¼ fvc1; vc2; . . .; vcrg. Assume A

needs s disk blocks. It matters the way to assign r Voronoi

cells to s data blocks. Because if two query vertices fall

into A, intuitively we would not want to load all s data

blocks to explore A for the answer. Our solution is as

follows. We first compute the group betweenness of each

Voronoi cell, and select the Voronoi cells of high

betweenness than all adjacent neighbors, which are named

as peaks. Starting from these peaks, we expand the region

of each peak by progressively including its adjacent Vor-

onoi cells to form a mountain. After all the Voronoi cells

are covered by this process, we derive a partition of this

subgraph. Each mountain corresponds to one or more

consecutive data blocks. Like the visual example shown in

Fig. 2, we simplify each Voronoi cell as a square, and the

number within each cell represents its group betweenness

in the subgraph. We consider a 6�8 matrix of Voronoi

cells. Clearly, there are some peak cells (marked with

circles) that have high group betweenness, surrounded by

Voronoi cells of relatively low group betweenness, which

visually forms three mountains in Fig. 2a.3 Given any two

query points p and q, intuitively, the shortest path between

them are most likely to reside on a path passing through

some of the peaks, as shown in the figure. Therefore, if we

group the Voronoi cells according to the mountain areas,

we can achieve more efficient disk I/O on average.

Moreover, we introduce redundancies for cell clustering

in our implementation, as the three large overlapping

rectangles shown in Fig. 2(b), such that it reduces the

probability of involving more groups of Voronoi cells for

the query evaluation. Although the factor of redundancy

itself can be a research topic if more data statistics and

query patterns are presented, in our prototype system, we

only include the two-hop neighbor cells. For each group of

Voronoi cells, we write them back to the disk on the basis

of Voronoi cells. For each cell, it is organized as the

(key, value) data model, although we need to add special

links from values to keys, such that when it is loaded in the

main memory, it serves as an auxiliary index structure for

shortest path computing.

As elaborated above, we now have the power to validate

the distance join conditions effectively for both cases: (1)

vertices that are far away from each other; (2) vertices that

are close by each other. Although to generate the optimal

query plan remains an open question, fast and accurate

distance estimation always serves as a fundamental build-

ing block.

5.2 Vertex Set Bonding

Vertex Set Bonding query (VSB query for short) extracts

the most prominent vertices, called bonding agents, in

connecting two sets of input vertices. The prominence of a

vertex is defined on its contribution to the shortest path

connectivity between input vertex sets. Intuitively, given

two input sets of vertices X and Y, the desired bonding

agents are the minimum set of vertices to remove in order

to enlarge every pair of shortest path distance between

X and Y. Such type of query finds various applications in

practice, for example, network monitoring [7], community

bonding [5, 13] and etc. In this section, we formally define

the VSB query and then show how the query evaluation

can benefit from our guided graph exploration. For com-

prehensiveness, we first introduce the vertex-path and

vertex–vertex dominance concept.

Definition 8 (v–p Dominance) A vertex v dominates a

path pst, denoted as v‘pst, iff jpstj increases by removing v

from the graph. fv‘gP denotes the set of shortest paths

dominated by v.

(a) (b)

Fig. 2 An example of Voronoi cell grouping

3 Figure 2 is to provide a visual aid, and the boundaries are not

specifically defined.

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 11

123

If there exists multiple shortest paths between s and t,

then pst may not be dominated by any single vertex.

Instead, pst is dominated by a vertex set U, denoted as

U‘pst, where jpstj increases if U is removed from the graph.

Definition 9 (u-v Dominance) A vertex u dominates

another vertex v, denoted as u‘v, iff fv‘gP � fu‘gP. The
set of vertices dominated by vertex u is denoted as fu‘gV .

Given two sets of vertices X and Y, let PXY ¼ fpxyjx 2
X; y 2 Yg denote the set of all pairwise shortest paths

between the elements of X and Y, we further define closed

dominance and minimum closed dominance as follows:

Definition 10 (Closed dominance) A vertex set U is said

to be a closed dominance of PXY , iff PXY �
S

u2Ufu‘g
P
.

Definition 11 (Minimum closed dominance) A vertex set

U is a minimum closed dominance of PXY iffU is no longer a

closed dominance of PXY after removing any element in U.

Definition 12 (Optimal minimum closed dominance) A

vertex set U is an optimal minimum closed dominance of

PXY iff U is a minimum closed dominance of PXY ; 6 9U0

which is another minimum closed dominance of PXY that

9u0 2 U0; 9u 2 U having u0‘u.

Based on the terminology introduced above, now we for-

mally define the vertex set bonding query, a.k.a theVSBquery.

Definition 13 (VSB Query) Given an undirected graph

G ¼ hV;Ei and two input sets of vertices X and Y, a vertex

set bonding query Q ¼ hG;X;Y ;Ri asks for a set of ver-

tices R � V � fX; Yg, such that 1) R forms an optimal

minimum closed dominance of PXY ; 2) ABðRÞ ¼
P

v2R CBðvjX; YÞ is maximized, where

CBðvjX; YÞ ¼
X

x2X;y2Y

rxyðvÞ
rxy

In the above definition, rxyðvÞ denotes the number of

shortest paths between x and y that pass through v; rxy
denotes the total number of shortest paths between x and y.

From the problem definition, one can easily tell that the

VSBproblem is a variation of theweighted set cover problem,

which has been proven to be NP-hard. However, one upfront

problem is that X and Y are given at ad hoc, no vertex-path

dominance relation is determined until the run time. In other

words, for any vertex v 2 V; fv‘gV is unpredictable until X

andY are determined andG is extracted.More importantly, the

essential difficulty of the VSB problem is that there could be

exponential number of vertex sets for the minimum closed

dominance verification, which makes none of the existing

solutions for weighted set cover problem applicable.

Our general solution framework works as follows. We

label all vertices according to their distances to selected

landmarks. Then the guided graph exploration building block

would effectively filter unnecessary vertices when a VSB

query is submitted to the query engine. Later,we shall perform

the betweenness ranking computation on exploring only the

valid vertices4. To show how guided graph exploration helps

with the query evaluation, we highlight two building blocks:

path sharing and probe-based communication.

5.2.1 Naive Plan Versus Path Sharing

A naive query plan is to apply the same computation pro-

cedure on each pxy, where x 2 X; y 2 Y , and assemble the

final results based on a reduction of every pxy’s dominance

vertices, as described in Algorithm 7. Note that a temporary

data set Dxy is employed in the algorithm to store all the

dominant vertices of pxy (on Line 4). As Line 1-3 applies the

same computing procedure to all pairwise paths between X

and Y, this part can be executed in parallel. The reduction

process on Line 4 is to reduce the dominance vertices of each

path to a single set D and then compute centrally.

4 As a matter of fact, we can perform approximated betweenness

ranking on exploration as presented in work [37].

12 X. Zhang, L. Chen

123

Theorem 1 Algorithm 7 takes up OðjXjjYjjpxyjÞ space,

communicates at OðjXjjY jjpxyjÞ volume of data, and runs at

the time complexity of OðjXj2jYj2Þ, returns an optimal

minimum dominance of PXYR having ABðRÞ[1
2
ABðR�Þ,

where R� is the optimal answer,.

Proof For each pairwise shortest path pxy, the temporary

dominance vertex set Dxy computed on Line 4 can be as

large as jpxyj, which explains the space and communication

complexity. The nested loop structure indicates a com-

parison between a path against every other path, which is

of complexity OðjXj2jY j2Þ.
We prove R is an optimal minimum dominant set of PXY

by contradictory. Assume there exists another vertex u 2
pxy that dominates v 2 R. As v‘pxy holds, therefore, both u

and v are pushed into the priority queue (Line 9). However,

v is returned only if it is the vertex of the largest dominance

in the priority queue, meaning fv‘gP � fu‘gP, which

indicates the assumption must be invalid. As we elaborated

before, a vertex u’s betweenness CBðuÞ equals to

jfu‘gPj þ f , where f is u’s contribution to other shortest

paths that it resides on but does not dominate. Clearly f

cannot exceed 1, therefore, at each step a returned result’s

betweenness is at least 1
2
of the optimal choice. Accumu-

latively, the final ABðRÞ	ABðR�Þ. h

Algorithm 7 is straightforward and easy to implement,

and it works for all query workload. However, its effi-

ciency can suffer from the all-to-one large volume of data

copy in the reduction step (Line 4). Meanwhile, the effi-

cacy of Algorithm 7 can be further improved if we take the

f part of a vertex’s betweenness estimation into consider-

ation. Thus, we develop several optimization techniques to

improve the performance of VSB query processing.

In contrast to naively compute the pairwise shortest path

between two sets of input vertices X and Y, an optimization

opportunity lies in taking the advantage of vertex distri-

bution in X and Y. As the VSB query can be applied to find

the bonding between communities, where a community

must be composed of vertices that are close to each other. It

implies the potential of shortest path sharing property.

Thus, there are two problems to solve: (1) how to quickly

decide the input vertex distribution, as X and Y are given at

ad hoc; (2) how to make the best of path sharing.

We solve the first problem with group prediction using

vertex labels. Note that all vertices are labeled by their

distances to landmarks. Graph G is partitioned into a

number of small graphs that have a diameter restriction.

Thus, given two vertices u and v, if both lðuÞi and lðvÞi is
smaller or equal to d (the graph partition parameter dis-

cussed in Sect. 4), it is certain that u and v are in the same

partition graph. Intuitively, if u and v share similar

distances to multiple landmarks, they are close to each

other. Given a VSB query Q ¼ hG;X; Y ;Ri, we first par-

tition vertices in X and Y according to their labels. With so

many distance-based clustering algorithms off-the-shelf,

we choose the simplest one. We groups vertices of the

same small graph partition together to obtain long shared

paths, such that the exploration cost can be greatly saved.

The second problem essentially concerns how to iden-

tify the shared paths when vertices are grouped. As a

matter of fact, such shared paths can only be determined

during the runtime. Sometimes, vertices that are close to

each other may not share an single edge to destinations at

all. Therefore, we only need to identify the region or the

boundary of shared paths to save the exploration cost.

Given a set of grouped vertices, denoted as X0, we simply

add a virtual node xv to the graph to represent X0. The trick
is how we decide lðxvÞ.

Lemma 7 Given a set of vertices X0, a virtual vertex xv of

label lðxvÞi, having

lðxvÞi ¼
Maxflðx0Þig �Minflðx0Þig

2

� �

where x0 2 X0, guarantees 8x0 2 X0 s.t.: 1) if

jpx0yj\jpxvyj; px0y � pxvy; 2) if jpx0yj[jpxvyj; pxvy � px0y.

Proof Consider the case when jpx0yj\jpxvyj. Clearly, two
adjacent vertex’s label difference on every dimension is at

most one, where the label is a d-dimensional vector. Thus,

the label of lðxvÞ defined in the Lemma indicates the center

of X0, which reaches every vertex x0 in X0 with minimum

hops. Therefore, the path pxvy must passes x0, implying

px0y � pxvy. Similarly, the case when jpx0yj[jpxvyj can be

easily verified. h

By employing the path sharing, we could greatly save

the concurrent exploration cost of Algorithm 7, as well as

the space and communication cost on Dxy, since the total

number of such dominant vertex set are reduced.

5.2.2 Probe-Based Communication

A main bottleneck of Algorithm 7 is its all-to-one com-

munication at the reduction part, which brings about a burst

of data copying over network. Instead of such a brute-force

solution, we develop a probe-based lookup strategy which

could greatly save the overall communication cost. Let

each graph vertex be associated with a set of independent

hash functions, denoted by H. We could use H to build up a

bloom filter for the element-in-set test, which is essential to

our probe-based communication. To elaborate, instead of

directly copying Dxy over network (Line 5 in Algorithm 7),

we first compute the bloom filter of each Dxy for pxy,

denoted as F xy, which is a mf bits vector. Then we pass mf

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 13

123

to threads examining other pairwise shortest paths. In this

way, each thread can check whether any dominant vertex it

finds could also be dominant vertex on other paths.

Although the bloom filter may introduce false positive, it

greatly reduces the size of data to transfer for verification.

Another benefit of using probe-based communication is

that most computation is local, such that the centralized

computing workload (Lines 5-11 in Algorithm 7) could be

reduced. Following the same context of Algorithm 7, we

show how the probe-based communication is employed to

evaluate a VSB query in Algorithm 8.

In Algorithm 8, we eliminated the centralized compu-

tation. Although R is a shared variable, a distributed lock

can be employed for synchronous updates. As the algo-

rithm shows, it is easy to be executed in parallel, e.g., each

computing thread computes for each pairwise shortest path.

Apparently, the communication cost is much reduced

comparing to Algorithm 7, since only the bloom filter

vector is transferred in the first place. The verification later

on (Line 9) transfers one vertex’s label at a time. More

importantly, each thread aborts as soon as it contributes a

dominance vertex to R, or finds out that a residing path is

already in R. This early stop property leads to a fast con-

vergence of the final answer. It is worth pointing out that

Algorithm 8 achieves the same approximation ratio on

AB(R) as Algorithm 7, as long as R greedily chooses a

vertex u of the largest jfu‘gPj at each synchronous update.

Comparing to the path sharing technique, which only

benefits when input vertices tend to be close to each other,

this probe-based solution is generic for all kinds of

workloads.

In this section we show how to apply the distance esti-

mation and guided graph exploration to two types of graph

queries. As a matter of fact, there are other technical

challenges in evaluating such queries. For example, adap-

tive query plan generation, as well as taking the query

structure feature into consideration would yield better

performance of distance join processing. As VSB query use

the betweenness semantic for bonding vertices, online

betweenness approximation and ranking technique would

greatly contribute to efficient query processing. However,

the two techniques discussed in Sects. 3 and 4 are

orthogonal research problems and applicable to any dis-

tance-aware graph queries.

6 Experiments

We report two sets of experiments in this section: 1) testing

the effectiveness of c-WSSD partition method on reducing

the computation cost of pairwise join validation for dis-

tance join queries; 2) how guided graph exploration

accelerates shortest path computing and the VSB query

evaluation.

6.1 Setup

6.1.1 c-WSSD Partition for Distance Join

Testbed We built up the test bed on a cluster of 16 servers.

Every server has 4 Intel(R)Xeon(R)CPUE5-2650of2.0GHz,

each of which has two cores and supports 16 threads, 12 GB

memory and 1 TB hard disk storage. The running operating

system is 2.6.35-22-server #35-Ubuntu SMP.

Datasets Brief statistics of the four employed data sets

are summarized in Table 1. In the table dmax denotes the

diameter of a graph. Data set A is the US patents data. Data

set B is the web graph of the TREC 2009 Category B data

set, which is the set of the first 50 million English pages

14 X. Zhang, L. Chen

123

collected in January and February 2009 by the Language

Technologies Institute at CMU. Synthetic data sets C and D

are random graphs generated with the igraph5 package.

Query Workload Given a data set, we randomly select

10� 20 labels and generate three types of query graphs:

star-shaped, path-shaped and circled graph. Meanwhile, we

randomly assign the pairwise distance constraints. We

generate 300 distance queries for each data set and evaluate

the batch one by one. We run every job batch with 3 cold-

start and report the average execution time.

6.1.2 Guided Graph Exploration for VSB Queries

Testbed We build up the test bed using the Google Cloud

platform, using 6 servers of the n1-highmem-8 type. Each

server has 8 virtual CPUs, 52GB memory and 1TB per-

sistent disk, running Debian 7 of Linux kernel 3.2.0-4-

amd64. We choose GraphLab [19] to build the prototype

system, as it supports both BSP-based graph computation

model and the message passing model. Our program is

written in C?? and compiled with gcc 4.7.2(switch O3 is

on).

Datasets We employ four data sets of different scales

and topologies in the experiments, as briefly summarized in

Table 2. Data set A describes the web graph of the TREC

2009 Category B data set. Data set B comes from the

WebGraph 2012 project [23], which is extracted from the

Web cropus released by the Common Crawl Foundation in

August 2012. Data set C is a crawled social graph from

twitter [18]. Note that we only employ the largest con-

nected component of graph data B and C and make the

graphs undirected. Synthetic data sets D is a random graph

generated with igraph.

Query Workload For each VSB query, we randomly

select 10� 100 vertices as input X and Y. We generate

three types of queries, which essentially represent different

kinds of workloads: (1) 8x 2 X; lðxÞi � d; 8y 2 Y; lðyÞj � d,

where i; j 2 ½1; d
 are randomly selected, i.e., both vertices

in X and Y are close to each other, denoted as XLYL; (2)

8x 2 X; lðxÞi � d, where i 2 ½1; d
 is randomly selected,

8y 2 Y is randomly selected, denoted as XLYR; (3) both

X and Y are randomly generated from G, denoted as

XRYR. We would like to show that our solution works

well for all kinds of workloads, and the optimization

techniques we proposed would be very useful for certain

kind of workload. We generate 100 VSB queries for each

type of workload, and evaluate the batch one by one. We

run every job batch with 3 cold-start and report the average

execution time.

6.2 c-WSSD Partition

c-WSSD partition method provides a distance-aware par-

tition of a large graph, which makes it possible to estimate

the pairwise shortest path distance in constant time. In the

experiments we study from two aspects: (1) the effective-

ness of c-WSSD method in terms of query evaluation time

cost as well as the I/O and network cost; (2) the scalability

of c-WSSD method under different scales of data and

parameter.

Effectiveness To validate the effectiveness of c-WSSD,

we randomly generate 100 pairwise shortest path distance

queries for each data set. In Fig. 3, we report the experi-

ment results on the largest real and synthetic data set B and

D, respectively. We measure the query evaluation cost in

terms of disk I/O (swap) volume, network volume and the

time efficiency. We employed two other intuitive graph

partition strategies for comparison: random partition and

the k-minimal cut partition using METIS [16]. Note that

on each individual computing node, we set up the same

data block layout and in-memory index structure. There-

fore, only the graph data distribution matters in this

experiment.

As shown in Fig. 3a, c-WSSD and random partition

have about the same cost, while k-minimal cut can intro-

duce high I/O cost. The rationale behind is that k-minimal

cut tends to group large number of connected vertices in

one partition. Therefore, the queried two vertices are very

much likely fall into the same storage node where graph

exploration method needs to be adopted. It is not surprising

that, as shown in Fig. 3b, k-minimal cut greatly saves the

network traffic. However, c-WSSD is the winner of query

evaluation time, as shown in Fig. 3c. Because it does not

Table 1 Graph data used for c-WSSD partition and distance join

ID # of nodes # of edges # of labels dmax

A 3,774,768 16,522,438 481 22

B 428,136,613 454,075,638 1,325 78

C 500,000,000 4,287,029,468 1,000,000 1,052

D 10,000,000,000 23,946,452,156 1,000,000 1,927

Table 2 General statistics of employed graph data sets

ID No. of nodes

(million)

No. of edges

(million)

dmax Size

(GB)

A *428 � 454 78 3.6

B *1,825 � 65,219 5328 869.2

C *33 � 1108 7 25.6

D 10,000 23,946 2,927 42.2

5 http://igraph.sourceforge.net/index.html.

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 15

123

http://igraph.sourceforge.net/index.html

introduce much network traffic or I/O cost during the query

evaluation. The extra cost of c-WSSD is paid during the

preprocessing stage of graph partition.

Scalability As introduced in Sect. 3, the preprocessing

steps include selecting the initial vertices of high global

betweenness, computing the Voronoi diagram, and re-

partition the graph which involves large volumes of data

copying over the network. As discussed before, the cardi-

nality of initial vertex set serves as a trade-off point

between query efficiency and system complexity. There-

fore, we conduct experiments based on different sizes of

initial vertex sets to demonstrate its affection on the final

solution.

Figure 4a gives the time cost evaluation on four data

sets with respect to the initial vertices selection based on

different selection ratios, where r ¼ jV 0j
jV j denotes the per-

centage of employed vertices to partition the graph. We

have two main observations. First, for a given r, along with

the size of a graph grows, the selection cost increases

dramatically. Second, given a data set, when r increases in

the order of magnitude, the selection cost also increases,

however, following a Logarithm level growth.

Figure 4b demonstrates the time cost of computing

Voronoi diagram with Algorithm 1 given in Sect. 3. Given

a data set, when r increases in the order of magnitude, the

time cost to compute the Voronoi diagram does not grow in

the same pace. Since the computing process is essentially

in the BSP (Bulk Synchronous Processing) style; therefore,

more initial vertices actually help to explore the entire

graph faster. However, extra cost to maintain the boundary

vertices cannot be neglected.

The time cost to compute the partition set F is presented

in Fig. 4c. The results are obtained when � is set to 0.05,

similar trends of results are observed when � ¼ 0:01 and

� ¼ 0:1. As proved in Sect. 3, the cardinality of final F is

only subjected to the size of initial vertex set V 0. We

observe the same trend in the experiment that the time cost

to compute F is closely related to the selection of r.

6.3 Guided Graph Exploration for VSB Query

Our experiment study mainly includes three parts: 1) how

the proposed guided graph exploration and betweenness

ranking on-exploration help VSB query processing; 2) how

different query processing algorithms work under different

query workloads.

Preprocessing As presented in Sect. 3.1, we can select d

landmarks using either a deterministic or a random algo-

rithm. d is the crucial parameter to choose. Intuitively, the

larger d is, the number of vertices covered by a single

landmark gets larger, which leads to a smaller d. Experi-

ments also validate this point. In Table 3, we report the

 0

 2

 4

 6

 8

 10

B D

I/O
 (G

B
)

Graph Data Set

c-WSSD
random

k-minimal

(a)

 10

 15

 20

 25

 30

 35

 40

 45

B D

N
et

w
or

k
V

ol
um

e
(M

B
)

Graph Data Set

c-WSSD
random

k-minimal

(b)

 20

 30

 40

 50

 60

 70

 80

B D

Ev
al

ua
tio

n
tim

e
(s

)

Graph Data Set

c-WSSD
random

k-minimal

(c)

Fig. 3 Pairwise shortest path distance computation: c-WSSD versus random versus k-minimal cut. a I/O cost. b Network cost. c Time cost

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

A B C D

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Graph Data Set

r=10e-6

r=10e-5

r=10e-4

(a)

 10

 100

 1000

A B C D

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Graph Data Set

r=10e-6

r=10e-5

r=10e-4

(b)

 0

 50

 100

 150

 200

 250

A B C D

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Graph Data Set

r=10e-6

r=10e-5

r=10e-4

(c)

Fig. 4 Scalability test: preprocessing cost of the Voronoi diagram construction and the partition computation. a Cost of V 0 selection. b Cost of

Voronoi diagram computation. c Cost of computing F

16 X. Zhang, L. Chen

123

time efficiency of graph preprocessing and the value of

d accordingly, as well as the total disk space cost after

preprocessing.

Regarding time efficiency, we have two observations

from the results. First, by increasing d; d drops more sig-

nificantly if a deterministic algorithm is employed com-

paring to using a random algorithm. For example, when d
increases from 16 to 32 in graph B, d drops from 1429 to

879, which almost drops a half using the deterministic

algorithm. On the contrary, by using the random algorithm,

it only drops from 2574 to 1782. Second, although a ran-

dom algorithm always generates more partitions, it is still a

winner w.r.t. time efficiency. Meanwhile, as shown in

Table 2, the extra space cost of vertex labeling turns to be

manageable even d is set to a small value. Although each

vertex is presented with a d bytes vector during query

processing, the label vectors are initially compressed and

recovered only upon data access. The reported data sizes in

Table refvsb:datasets are the ones with vertex label com-

pression applied, as elaborated in Sect. 3.1.2. A straight-

forward observation is that if G is power-law graph with

large Gdiam, like graph B and D, smaller d promises better

compression ratio. For example, the sizes of graph B with d
set to 8 and 16 are very close. This property is guaranteed

by the characteristic of value-based compression. More-

over, if the data graph is extremely dense with a small

diameter, like graph C, the extra space cost on vertex

labeling drops significantly when d increases, as the num-

ber of landmarks would be very limited.

Fast shortest path computing To validate the guided

graph exploration for shortest path, we randomly pick 100

pairs of vertices from each graph and ask for pxy, and rank

the betweenness of two random vertices from pxy. As a

comparison, we employ the GraphLab’s shortest path

utility implementation and the parallel betweenness com-

puting algorithm introduced in [2]. Due to the space limit,

we highlight our findings on graph B.

Figure 5 shows how our methods, greedy (Algorithm 5)

and guided exploration (Algorithm 6), compare to the

GraphLab’s shortest path in pst evaluation. Figure 5a, b

shows the time and space cost respectively. Space cost is

the total size of data access on the distributed storage. Note

Table 3 Graph preprocessing using different algorithms

ID d T(sec) Size(GB)

d dm. rd. dm. rd. dm. rd.

A 4 64 98 146 39 33.2 57.7

8 36 78 129 32 22.4 41.3

16 8 42 89 27 8.2 23.6

B 8 2231 3029 549 227 4216 4248

16 1429 2574 531 189 4094 4225

32 879 1782 492 141 2709 2799

C 1 126 145 329 124 1139 1178

2 10 26 69.2 36.4 95.6 105.4

4 3 59 2.3 78.5 78.9 131.7

D 8 1576 2109 421 179 1465 1509

16 1206 2005 392 164 1437 1486

32 457 1324 354 139 1128 1305

 0.0625
 0.125

 0.25
 0.5

 1
 2
 4
 8

 16
 32

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Queries

GraphLab
Greedy
Guided

(a)

 10

 100

 1000

 10000

 100000

 1e+006

 0 10 20 30 40 50 60 70 80 90 100

Sp
ac

e
(M

B
)

Queries

GraphLab
Greedy
Guided

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

Queries

GraphLab
delta=8

delta=16
delta=32

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

Queries

GraphLab
delta=8

delta=16
delta=32

(d)

Fig. 5 The speed up of evaluating pst queries. a Time (d ¼ 8). b Space (d ¼ 8). c (T) Greedy versus GraphLab. d (T) Guided versus GraphLab

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 17

123

that the queries of x axis are sorted in an ascending order of

jpstj, and y axis is presented in logarithm scale. As shown in

Fig. 5a, when jpstj is small, the greedy method’s execution

time is only about half of the GraphLab’s method. The

reason is that Algorithm 5 terminates quickly with less

vertex access. With the increasing of jpstj, the greedy

algorithm’s efficiency drops and sometimes even performs

worse than the GraphLab’s method. Because when jpstj
grows, it takes the greedy algorithm more iterations to

guess the correct jpstj. On the contrary, guided exploration

performs stable and achieves more time saving when jpstj
grows.

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 10 100 1000 10000

|p
xy

|

|X|*|Y|

(a)

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000

|p
xy

|

|X|*|Y|

(b)

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000 10000

|p
xy

|

|X|*|Y|

(c)

 0.0625
 0.125

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Queries

P+PS
P

N+PS
N

(d)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Queries

P+PS
P

N+PS
N

(e)

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Queries

P+PS
P

N+PS
N

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C D

N
or

m
al

iz
ed

 E
va

lu
at

io
n

M
ak

es
pa

n

Graph Data Set

N
N+PS

P
P+PS

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C D

N
or

m
al

iz
ed

 E
va

lu
at

io
n

M
ak

es
pa

n

Graph Data Set

N
N+PS

P
P+PS

(h)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

A B C D

N
or

m
al

iz
ed

 E
va

lu
at

io
n

M
ak

es
pa

n

Graph Data Set

N
N+PS

P
P+PS

(i)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

8 16 32

N
or

m
al

iz
ed

 E
va

lu
at

io
n

M
ak

es
pa

n

delta

N
N+PS

P
P+PS

(j)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4

N
or

m
al

iz
ed

 E
va

lu
at

io
n

M
ak

es
pa

n

delta

N
N+PS

P
P+PS

(k)

Fig. 6 a–i Different query workloads test; j–k evaluation speedup

using different d (Graph B & C). a XLYL query distribution. b XLYR

query distribution. c XRYR query distribution. d XLYL query time

cost. e XLYR query time cost. f XRYR query time cost. g Q of XLYL

workload. h Q of XLYR workload. i Q of XRYR workload. j d &

efficiency (Graph B). k d & efficiency (Graph C)

18 X. Zhang, L. Chen

123

To investigate how d affects our algorithm, we present

time cost of greedy and guided exploration with different d
setting on the same workload in Fig. 5c, d. Note that we

normalize all the time cost using GraphLab’s result, as it

does not rely on the setting of d. Apparently, our algorithm
achieves more speedup when d is smaller, which is rea-

sonable as it promises better pruning power. Another

observation from the result is that, comparing to the guided

exploration, the greedy algorithm is more resistent to dif-

ferent d. It is because greedy algorithm uses vertex label

pruning in a passive way, while the guided exploration

employs the pruning actively before making a decision on

the next hop. Clearly, as shown in Fig. 5d, when jpstj is
large, the guided exploration is more sensitive to the setting

of d. Although smaller d works better for the path query,

there is the greater extra space overhead to trade off.

VSB query evaluation We evaluate our proposed solu-

tion from the efficiency perspectives. We first set d for the

four data sets as 8, 32, 2 and 32, respectively, to compare

the effectiveness of our proposed query processing solu-

tion. In Sect. 5.2, we introduce a naive VSB query pro-

cessing solution (Algorithm 7) and two optimization

techniques to improve the time efficiency. To validate the

proposed solution, we report how the combination of

optimization techniques serve the query evaluation, par-

ticularly, on different query workloads. Due to the space

limit, we highlight our results on graph B in Fig. 6. Fig-

ure 6a–c show the distribution of random queries we

generated, where queries are sorted according to their input

size (jXj � jY j as x axis). Figure 6d–f shows the time costs

for different query evaluation methods over different

workloads, where N stands for the naive algorithm, P

stands for the probe-based communication solution (Al-

gorithm 8), PS stands for path sharing. Apparently, if input

vertices are close to each other, path sharing would achieve

great time saving, as shown in Fig. 6d. On the contrary,

when query inputs are randomly selected, as shown in

Fig. 6f, probe-based method performs better.

We report the normalized query processing makespan of

different methods on all data sets in Fig. 6g–i. We have

made two observations from the efficiency experiments.

First, given the same query workload, the underlying graph

structure would greatly affect algorithm performance. Take

graphs A for example, it is much more sparse than graph C.

As shown in Fig. 6g, over the same query workload, the

best evaluation strategy for graph A is path sharing, while

for graph C it is a combination of path sharing and probe-

based communication. Clearly, reducing network commu-

nication as much as possible for a dense network brings

more benefits than packing shared paths. Second, path

sharing clearly helps a lot when the vertices in X or Y are

close to each other. For example, for the XLYL workload,

comparing to the naive algorithm, we can obtain almost 5x

speed up on graph A by applying path sharing. On the

contrary, the probe-based communication method performs

more stable on different workloads. One thing to notice is

that combining path sharing with probe-based solution does

not double the speedup. The reason is that path sharing

reduces the concurrent computing threads itself, but makes

the computing workload of each thread unbalanced. Note

that in Algorithm 8, R is updated with synchronization,

which could easily suffer from unbalanced current com-

puting workloads.

Another critical concern is that how d affects the query

evaluation performance. As the algorithms, we proposed

are based on the guided graph exploration method, there-

fore, we observe the similar trend of efficiency improve-

ment when d decreases as shown in Fig. 5d. We highlight

our findings using the results from graph B and C. For

graph B, as shown in Fig. 6j, the path sharing optimization

method is closely bounded with the total number of ver-

tices to explore. Therefore, the probe-based method is

essential to the performance improvement. For graph C, as

shown in Fig. 6k, due to the density property, path sharing

is desirable when d is set to a proper value, like d=2. When

delta equals to 1, there is not much optimization space left

after a probe-based method is employed, as the pruning

power on vertex exploration is sufficiently strong. On the

contrary, when d equals to 4, almost the entire graph needs

to be considered to extract the shared path, which would

result in severe performance decay. The hints we learn

from the results are that if the query workload is unknown,

smaller d is preferred for fast query processing as long as

the extra space cost is manageable; the crucial performance

optimization lies in reducing the total number of vertices to

access and compute; path sharing does not help with the

speedup if d is too small or too large.

7 Related Work

Distributed graph processing models and systems General

purpose large graph management has drawn great research

interest. Early work [20] illustrates the challenging issues

of large graph management. Proposals in [3] and [22] are

two well recognized models for parallel large graph pro-

cessing, which are MPI(Message Passing Interface)-based

and BSP, respectively. Although MPI usually gains more

time efficiency, it is relatively complicated and puts a

heavy burden of system implementation on programmers.

Pregel [22] is a vertex-centric computing model, which is

more flexible and relatively easy to program. However, it

has to sacrifice time efficiency due to inevitable synchro-

nization costs at each iteration step. Work [24] conducts an

empirical comparison of three computing diagrams for

large graph processing, which are RDBMS-like

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 19

123

approaches, data parallel approach (e.g. Pregel) and in-

memory graph exploration approach. Improvement works

over Pregel, like Pregelix [6], Blogel [35] targets on net-

work cost reduction to yield better performance. Trinity

[31] and GBase [15] are two other state-of-art distributed

general purpose graph management systems with substan-

tially different designs. GBase models graphs using adja-

cent matrices. It transforms nearly all the graph analytic

functions into matrix manipulations using iterative

MapReduce jobs. On the contrary, Trinity employs an in-

memory key-value store in a distributed shared memory

environment. It models graph data following the vertex-

centric model, i.e., each vertex is associated with its one-

hop neighbor(s), such that all the classical graph exploring

algorithms can be directly plugged in.

Distance-based query over distributed graph Employing

landmarks to approximate the shortest path distance is a

widely adopted technique [17, 25, 27]. The basic idea is to

pre-compute the shortest distances between all the nodes

and selected landmarks and then apply the triangle

inequality to help estimate the shortest path distance. Work

[27] investigates finding the optimal set of landmarks. In

particular, they target on answering the pairwise shortest

path distance query. They introduce the LandMark-Cover

problem, which is to find a minimum number of points

such that given any pair of vertices u and v, there exists at

least one landmark residing on the shortest path from u to

v. This problem is proven to be closely related with the

2-hop labeling scheme [9]. Landmark-based methods do

not aim to provide the exact distance. Instead, they use a

small number of landmarks to do estimation. Tao et al. [32]

introduce the k-skip shortest path, which is a natural sub-

stantial of returning the exact shortest path. Intuitively, it

reports a set of vertices V that consecutively reside on a

shortest path from s to t, having every vertex on this path is

at most k-hop away from at least one vertex in V. Follow-

up works, like graph simplification [30], shortest path

discovery over road network [11, 34], employ similar

concepts to perform a distance-preserving graph partition.

The d-evenly coverage landmark selection defined in this

work, however, is orthogonal to the k-skip concept.

Because shortest path is not the substantial concern in our

problem. We select landmarks to serve online graph

exploration. There is no sequence semantic of our land-

marks. In other words, k-skip returns more vertices residing

on the shortest path of two query points when k decreases.

On the contrast, given a smaller d, the d-evenly coverage

serves better in reducing redundant vertex access on

exploration step by step. Vertex labeling is another line of

research to answer distance queries. Gavoille et al. show

that general graphs support an exact distance labeling

scheme with labels of O(n) bits [12]. Several special graph

families, including trees or graphs with bounded tree-

width, have distance labeling schemes with Oðlog2nÞ bit

labels [1]. However, it is infeasible to directly apply these

theory results to a large graph of billion nodes, as the space

overhead of labeling would be unaccepted. Our solution,

on the other hand, simply targets on vertex pruning using

distance labels. And due to the d-evenly coverage landmark

selection scheme, the locality of vertices’ label vectors is

well preserved. Therefore, a simple value-based compres-

sion could greatly help to reduce the overall space cost on

vertex labeling.

8 Conclusion

In this paper, we study two fundamental building blocks for

distance-aware online graph query: fast and accurate dis-

tance estimation, as well as guided graph exploration. A c-

WSSD partition method is introduced to generate the index

structure to produce error-bounded shortest path distance

estimation in O(1) time with space complexity of O(c|V|),

where c is a constant factor. Furthermore, we discuss how

to perform guided graph exploration with landmark refer-

encing. We validate the proposed technique with distance

join and VSB query workload over both real and synthetic

graph data in real Cloud environment.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Alstrup S, Bille P, Rauhe T (2005) Labeling schemes for small

distances in trees. SIAM J Discrete Math 19(2):448–462

2. Bader DA, Madduri K (2006) Parallel algorithms for evaluating

centrality indices in real-world networks. In: ICPP, pp 539–550

3. Bader DA, Madduri K (2008) Snap, small-world network analysis

and partitioning: an open-source parallel graph framework for the

exploration of large-scale networks. In: IPDPS, pp 1–12

4. Bader DA, Kintali S, Madduri K, Mihail M (2007) Approxi-

mating betweenness centrality. In: WAW, pp 124–137

5. Brandtzæg PB, Heim J, Kaare BH (2010) Bridging and bonding

in social network sites—investigating family-based capital.

IJWBC 6(3):231–253

6. Bu Y, Borkar VR, Jia J, Carey MJ, Condie T (2014) Pregelix:

big(ger) graph analytics on a dataflow engine. PVLDB

8(2):161–172

7. Castro M et al (2003) Future directions in distributed computing.

In: Topology-aware routing in structured peer-to-peer overlay

networks, pp 103–107

8. Cheng J, Yu JX, Yu PS (2011) Graph pattern matching: a join/

semijoin approach. IEEE Trans Knowl Data Eng

23(7):1006–1021

20 X. Zhang, L. Chen

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

9. Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reachability

and distance queries via 2-hop labels. SIAM J Comput

32(5):1338–1355

10. Fu AW, Wu H, Cheng J, Wong RC (2013) IS-LABEL: an

independent-set based labeling scheme for point-to-point distance

querying. PVLDB 6(6):457–468

11. Funke S, Nusser A, Storandt S (2014) On k-path covers and their

applications. PVLDB 7(10):893–902

12. Gavoille C, Peleg D, Pérennes S, Raz R (2004) Distance labeling

in graphs. J Algorithms 53(1):85–112

13. Guille A, Hacid H, Favre C, Zighed DA (2013) Information

diffusion in online social networks: a survey. SIGMOD Rec

42(2):17–28

14. Jin W, Yang J (2011) A flexible graph pattern matching frame-

work via indexing. In: SSDBM, pp 293–311

15. Kang U, Tong H, Sun J, Lin CY, Faloutsos C (2011) Gbase: a

scalable and general graph management system. In: KDD,

pp 1091–1099

16. Karypis G et al (1998) A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM J Sci Comput

20(1):359–392

17. Kleinberg JM, Slivkins A, Wexler T (2004) Triangulation and

embedding using small sets of beacons. In: FOCS 17–19,

pp 444–453

18. Kwak H, Lee C, Park H, Moon SB (2010) What is twitter, a

social network or a news media? In: WWW, pp 591–600

19. Low Y, et al (2010) Graphlab: a new framework for parallel

machine learning. In: UAI, pp 340–349

20. Lumsdaine A, Gregor D, Hendrickson B, Berry JW (2007)

Challenges in parallel graph processing. Parallel Process Lett

17(1):5–20

21. Madduri K, et al (2009) A faster parallel algorithm and efficient

multithreaded implementations for evaluating betweenness cen-

trality on massive datasets. In: IPDPS, pp 1–8

22. Malewicz G, et al (2010) Pregel: a system for large-scale graph

processing. In: SIGMOD, pp 135–146

23. Meusel R, et al (2014) Graph structure in the web - revisited: a

trick of the heavy tail. In: WWW, pp 427–432

24. Najork M, et al (2012) Of hammers and nails: an empirical

comparison of three paradigms for processing large graphs. In:

WSDM, pp 103–112

25. Ng TSE, Zhang H (2002) Predicting internet network distance

with coordinates-based approaches. In: INFOCOM

26. Potamias M, Bonchi F, Castillo C, Gionis A (2009a) Fast shortest

path distance estimation in large networks. CIKM, pp 867–876

27. Potamias M, Bonchi F, Castillo C, Gionis A (2009b) Fast shortest

path distance estimation in large networks. In: CIKM,

pp 867–876

28. Qi Z, Xiao Y, Shao B, Wang H (2013) Toward a distance oracle

for billion-node graphs. PVLDB 7(1):61–72

29. Qiao M, Cheng H, Yu JX (2011) Querying shortest path distance

with bounded errors in large graphs. In: SSDBM, pp 255–273

30. Ruan N, Jin R, Huang Y (2011) Distance preserving graph sim-

plification. In: ICDM, pp 1200–1205

31. Shao B, Wang H, Li Y (2012) The trinity graph engine. Technical

Report 161291, Microsoft Research

32. Tao Y, Sheng C, Pei J (2011) On k-skip shortest paths. In:

SIGMOD, pp 421–432

33. Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J (2013)

From ‘‘think like a vertex’’ to ‘‘think like a graph’’. PVLDB

7(3):193–204

34. Yan D, Cheng J, Ng W, Liu S (2013) Finding distance-preserving

subgraphs in large road networks. In: ICDE, pp 625–636

35. Yan D, Cheng J, Lu Y, Ng W (2014) Blogel: a block-centric

framework for distributed computation on real-world graphs.

PVLDB 7(14):1981–1992

36. Zhang X, Chen L, Wang M (2015a) Efficient parallel processing

of distance join queries over distributed graphs. IEEE Trans

Knowl Data Eng 27(3):740–754

37. Zhang X, Cheng H, Chen L (2015b) Bonding vertex sets over

distributed graph: a betweenness aware approach. PVLDB

8(12):1418–1429

38. Zou L, Chen L, Özsu MT (2009) Distancejoin: pattern match

query in a large graph database. PVLDB 2(1):886–897

39. Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D (2014)

gstore: a graph-based SPARQL query engine. VLDB J

23(4):565–590

Distance-Aware Selective Online Query Processing Over Large Distributed Graphs 21

123

	Distance-Aware Selective Online Query Processing Over Large Distributed Graphs
	Abstract
	Introduction
	Problem Definition
	Partition-Based Distance Index
	c-WSSD Partition

	Guided Graph Exploration
	Landmark Selection
	Guided Graph Exploration

	Apply to Online Graph Queries
	Distance Join Query
	Evaluation Overview
	Data Block Construction

	Vertex Set Bonding
	Naive Plan Versus Path Sharing
	Probe-Based Communication

	Experiments
	Setup
	c-WSSD Partition for Distance Join
	Guided Graph Exploration for VSB Queries

	c-WSSD Partition
	Guided Graph Exploration for VSB Query

	Related Work
	Conclusion
	Open Access
	References

