
Arab. J. Math. (2015) 4:199–213
DOI 10.1007/s40065-015-0130-0 Arabian Journal of Mathematics

Abebe R. Tufa · H. Zegeye

An algorithm for finding a common point
of the solutions of fixed point and variational
inequality problems in Banach spaces

Received: 15 September 2014 / Accepted: 28 May 2015 / Published online: 17 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth real
Banach space E . Let T : C → C be relatively nonexpansive mapping and let Ai : C → E∗ be Li -Lipschitz
monotone mappings, for i = 1, 2. In this paper, we introduce and study an iterative process for finding a
common point of the fixed point set of a relatively nonexpansive mapping and the solution set of variational
inequality problems for A1 and A2. Under some mild assumptions, we show that the proposed algorithm
converges strongly to a point in F(T ) ∩ V I (C, A1) ∩ V I (C, A2). Our theorems improve and unify most of
the results that have been proved for this important class of nonlinear operators.

Mathematics Subject Classification 47H09 · 47H10 · 65J15

1 Introduction

Let C be a nonempty subset of a real Banach space E . A mapping T : C → E is called L-Lipschitz if there
exits L ≥ 0 such that

||T x − T y| ≤ L||x − y||, ∀x, y ∈ C. (1.1)

If L < 1, then T is called a contraction and if L = 1 then T is called a nonexpansive mapping. It follows
that the class of Lipschitzian mappings includes the class of nonexpansive and hence the class of contraction
mappings.

A mapping A of C into E∗ is called monotone if

〈Ax − Ay, x − y〉 ≥ 0, for all x, y ∈ C. (1.2)

A is called α-strongly monotone, if there exists a positive real number α such that
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〈Ax − Ay, x − y〉 ≥ α||x − y||2, for all x, y ∈ C. (1.3)

A is called γ -inverse strongly monotone, if there exists a positive real number γ such that

〈Ax − Ay, x − y〉 ≥ γ ||Ax − Ay||2, for all x, y ∈ C. (1.4)

We observe that any γ -inverse strongly monotone mapping A is Lipschitz with L = 1
γ
.

Clearly, the class ofmonotonemappings includes the classes ofα-stronglymonotone andγ -inverse strongly
monotone mappings.

Let C be a nonempty, closed and convex subset of E and let A : C → E∗ be a nonlinear mapping. The
variational inequality problem, denoted by VIP, is to find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.5)

The solution set of the variational inequality problem is denoted by VI(C, A). The variational inequality
problem is a fundamental problem in variational analysis. The theory of variational analysis has emerged as a
very natural generalization of the theory of boundary value problems and allows us to consider new problems
arising frommany fields of appliedmathematics, such asmechanics, physics, engineering, the theory of convex
programming, and the theory of control: see, for instance [16,18,25,28–30,33].

There are several iterative methods for solving VIP (see, e.g., [4,5,7,11,18,30,33,35]). The basic idea
consists of extending the projected gradient method for solving the problem of minimizing f (x) subject to
x ∈ C given by

xn+1 = PC [xn − αn∇ f (xn)], n ≥ 0, (1.6)

where {αn} is a positive real sequence satisfying certain conditions and PC is the metric projection onto C .
For convergence properties of this method for the case in which f : R2 → R is convex and differentiable
function, one may see [2]. An immediate extension of method (1.6) to VIP is the projected gradient method
for optimization problems, substituting the operator A for the gradient, so that we generate a sequence {xn}
through:

xn+1 = PC [xn − αn Axn], n ≥ 0. (1.7)

Convergence results for this method require some monotonicity properties of A. This method converges under
quite strong hypotheses. If A is Lipschitz continuous with Lipschitz constant L and α-strongly monotone,
then the sequence generated by (1.7) converges to an element of VI(C, A), if {αn} ⊂ (0, 2α/L2) provided that
problem (1.5) has a solution.

We note that, in (1.7), there is no chance of relaxing the assumption on A to plainmonotonicity. For example
consider C = R

2 and A, a rotation with a π
2 angle, which is certainly monotone and Lipschitz continuous

with VI(C, A) = {0}. It is easy to check that ||xn+1|| > ||xn|| for all n ≥ 0 and for all αn > 0. Therefore, the
sequence generated by (1.7) moves away from the solution, independent of the choice of the sequence αn .

To deal with the weakness of the method defined by (1.7), Korpelevich [14] proposed a modification of the
method, called the extragradient algorithm in the finite-dimensional Euclidean spaceRn under the assumption
that a setC ⊂ R

n is closed and convex and a mapping A ofC intoRn is monotone and L-Lipschitz continuous,{
yn = PC [xn − λAxn],
xn+1 = PC [xn − λAyn], n ≥ 0, (1.8)

for all n ≥ 0, where λ ∈ (0, 1
L ). He proved that the sequences {xn} and {yn}, generated by (1.8), converge

strongly to point x∗ ∈ VI(C, A) provided that VI(C, A) is nonempty.
The difference in (1.8) is that A is evaluated twice and the projection is computed twice at each iteration,

but the benefit is significant, because the resulting algorithm is applicable to the whole class of variational
inequalities for monotone mappings. The method of solving VIP by Korpelevichs has received great attention
by many authors (see, e.g., [7,11,16,17,22,30,36,37] and the references therein).

In 2006, Nadezhkina and Takahashi [17] suggested the following modified Korpelevichs method for a
solution of VIP for L-Lipschitz continuous monotone mapping A in infinite-dimensional Hilbert spaces. Let
{xn} be a sequence generated from an arbitrary x0 ∈ C by⎧⎨

⎩
x0 ∈ C,
yn = PC [xn − λn Axn],
xn+1 = αnxn + (1 − αn)PC [xn − λn Ayn], n ≥ 0,

(1.9)
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where PC is a metric projection from H onto C , {λn} ⊂ [a, b] for some a, b ∈ (0, 1/L) and {αn} ⊂ [c, d] for
some c, d ∈ (0, 1). Then, they proved that the sequence {xn} converges weakly to an element of VI(C, A).

However, we realize that Korpelevichs modified method (1.9) has only weak convergence in the infinite-
dimensional Hilbert spaces (you may also see, e.g., [6,7]). Therefore, several authors studied to obtain strong
convergence by modifying the original method of Korpelevich. For example, in [4,9,31], it is proved that some
very interesting Korpelevich-type algorithms strongly converge to a solution of VIP.

Recently, Yao et al. [32] investigated the problem of finding a solution of variational inequality problem
for γ -inverse strongly monotone mapping A, by considering the following iterative algorithm:

{
yn = PC [xn − λn Axn + αn( f (xn) − xn)],
xn+1 = PC [xn − μn Ayn + γn(yn − xn)], n ≥ 0, (1.10)

where f : C → H is a ρ-contractive mapping and {αn}, {λn}, {μn} and {γn} are real sequences satisfying
certain conditions. Then, they proved that the sequence {xn} generated by (1.10) converges strongly to x∗ ∈
VI(C, A).

More recently, Zegeye and Shahzad [38] investigated the problem of finding a common solution of a finite
family of variational inequality problems for Lipschitz monotone mappings in Hilbert spaces. In fact, they
proved the following theorem.

Theorem ZS Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let Ai : C → H be an
Li -Lipschitz monotone mappings with Lipschitz constants Li , for i = 1, 2. Let f : C → C be a contraction
mapping. Assume that F = V I (C, A1) ∩ V I (C, A2) is nonempty. Let {xn} be a sequence generated from an
arbitrary x0 ∈ C by ⎧⎪⎨

⎪⎩
zn = PC [xn − γn A2xn],
yn = PC [xn − γn A1xn],
xn+1 = αn f (xn) + (1 − αn)

(
anxn + bn PC [xn − γn A1yn]

+cn PC [xn − γn A2zn]
)
,

(1.11)

where PC is the metric projection from H onto C , and {γn〉, {an}, {bn}, {cn} and {αn} are real sequences
satisfying certain conditions. Then, {xn} converges strongly to a point x∗ ∈ F .

We observe that the strong convergence result in [38] is valid only in Hilbert spaces. This now leads to the
following important question.

Question 1 Can we obtain an iterative scheme which converges strongly to a point in V I (C, A) in more
general Banach spaces?

It is well known that if C is a nonempty closed convex subset of a Hilbert space H the metric projection
PC : H → C is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not
available in more general Banach spaces. Recently, Alber [1] introduced a generalized projection operator �C
in a Banach space E which is an analogue of the metric projection in Hilbert spaces.

Let E be a smooth real Banach space with dual E∗. Let the Lyapunov functional φ : E × E → R,
introduced by Alber [1], be defined by

φ(y, x) = ||y||2 − 2〈y, J x〉 + ||x ||2, for x, y ∈ E, (1.12)

where J is the normalized duality mapping from E into 2E
∗
defined by J x := { f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x ||2 =

|| f ∗||2}, where 〈·, ·〉 denotes the generalized duality pairing. It is well known that E is smooth if and only if
J is single valued and if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E . In
addition, if E is a reflexive and strictly convex Banach space with a strictly convex dual, then J−1 is duality
mapping from E∗ into E which is single valued, one-to-one, surjective and J J−1 = IE∗ and J−1 J = IE (see
[24]). We note that in a Hilbert space, H, J is the identity mapping.

Let C be a subset of a smooth real Banach space E . The generalized projection �C : E → C , introduced
by Alber [1], is a mapping that assigns to an arbitrary point x ∈ E the minimum point of the function φ(y, x),
that is �Cx = x , where x is the solution to the minimization problem: inf y∈C φ(y, x).

It is known that, if C is nonempty, closed and convex subset of a real reflexive, strictly convex, and smooth
Banach space E and x ∈ E , then there exists a unique element x0 ∈ C such that φ(x0, x) = min{φ(z, x) :
z ∈ C} (see, e.g [1]).

From the definition of φ, we have that
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(||x || − ||y||)2 ≤ φ(x, y) ≤ (||x || + ||y||)2, (1.13)

φ(x, y) = φ(x, z) + φ(z, y) + 2 〈x − z, J z − J y〉 . (1.14)

If E is a Hilbert space, then φ(y, x) = ||y − x ||2 and �C = PC is the metric projection of H onto C.
Let T be a mapping from C into itself. A point x ∈ C is a fixed point of T if T x = x and we denote

by F(T ) the set of fixed points of T ; that is, F(T ) = {x ∈ C : T x = x}. A point p in C is said to be an
asymptotic fixed point of T (see [19]) if C contains a sequence {xn} which converges weakly to p such that
lim
n→∞ ||xn − T xn|| = 0. The set of asymptotic fixed points of T will be denoted by F̂(T ). A mapping T from

C into itself is called relatively nonexpansive if (R1) F(T ) �= ∅; (R2) φ(p, T x) ≤ φ(p, x) for x ∈ C and
(R3) F(T ) = F̂(T ).

Clearly, if E = H , a real Hilbert space, then the class of relatively nonexpansive mappings includes the
class of nonexpansive and hence contraction mappings with nonempty fixed point set.

Many authors have considered the problem of finding a common element of the fixed point set of a relatively
nonexpansivemapping and the solution set of a variational inequality problem forγ−inverse stronglymonotone
mapping (see, e.g., [13,15,20,23,26,34]).

For finding an element of F(T )
⋂

Â'VI(C, A) under the assumption that a set C is closed and convex
subset of H , where H is a real Hilbert space, T is nonexpansive mapping of C into itself, and A is Lipschitz
monotone mapping of C into H , Nadezhkina and Takahashi [17], introduced the following iterative process.⎧⎨

⎩
x0 ∈ C, chosen arbitrary,
yn = PC (xn − λn Axn),
xn+1 = αnxn + (1 − αn)T PC [xn − λn Ayn].

They proved that the sequences {xn} and {yn} converge weakly to the same element of F(T )Â'
⋂

V I (C, A).
In [10], Iiduka and Takahashi proposed the iteration scheme given by{

x0 = x ∈ C, chosen arbitrary,
xn+1 = αnx + (1 − αn)T PC [xn − λn Axn],

where A is γ -inverse strongly monotone, {αn} is a sequence in (0, 1), and {λn} is a sequence in (0, 2γ )
satisfying certain conditions. They showed that if F(T )

⋂
VI(C, A) is nonempty, then the sequence {xn}

converges strongly to some z ∈ F(T )
⋂

VI(C, A).
Very recently, Zegeye et al. [33] introduced and studied the iterative scheme given below for a common

point of the solution set of a variational inequality problem for γ -inverse strongly monotone mapping A and
the fixed point set of a closed relatively quasi-nonexpansive mapping T in a 2-uniformly convex and uniformly
smooth real Banach space E : ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x0 ∈ C = C1, chosen arbitrary,
zn = �C (J−1(J xn − λn Axn)),
yn = J−1(β J xn − (1 − β)JT zn),
Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = �Cn+1(x0), n ≥ 0,

(1.15)

where C is a closed convex nonempty subset of E and {λn} is a sequence satisfying certain conditions. They
proved that the sequence {xn} converges strongly to an element of F := F(T )

⋂
VI(C; A) �= ∅ provided that

A satisfies ||Ax || ≤ ||Ax − Ap|| for all x ∈ C and p ∈ F .
This brings us to our second question.

Question 2 Can we obtain an iterative scheme which converges strongly to a common point of the fixed point
set of a relatively nonexpansive mapping T and the solution of a variational inequality problem for Lipschitz
monotone mapping A in Banach spaces?

It is our purpose in this paper to propose an extragradient-type method for finding a common point of
the fixed point set of a relatively nonexpansive mapping T and the solution set of two variational inequality
problems for Lipschitz monotone mappings in a 2-uniformly convex and uniformly smooth real Banach space
E . As a consequence, we obtain a convergence theorem for approximating a common point of the solution of
a finite family of variational inequality problems for Lipschitz monotone mappings. The results obtained in
this paper improve and extend the results of Zegeye and Shahzad [38], Yao et al. [32] and some other results
in this direction.
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2 Preliminaries

Let E be a real Banach space. Let S(E) = {x ∈ E : ||x || = 1}. Then the norm of E is said to be Gâteaux
differentiable if

lim
t→0

||x + t y|| − ||x ||
t

, (2.1)

exists for each x, y ∈ S(E). In this case, E is called smooth (see e.g., [24]).
The modulus of smoothness of E is defined by

ρE (τ ) := sup
{‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
.

A Banach space E is called uniformly smooth if limτ→0
ρE (τ )

τ
= 0. It is well known that every uniformly

smooth space (e.g., L p and the Sobolev spacesWm
p , (1 < p < ∞)) has Gâteaux differentiable norm (see e.g.,

[8]).
A normed space E is called strictly convex if for all x, y ∈ E such that ||x || = ||y|| = 1, x �= y,

|| x+y
2 || < 1.

Themodulus of convexity of E is the function σ : (0, 2] → [0, 1] defined by σ(ε) = in f
{
1−|| x+y

2 || : ||x ||
= 1 = ||y||; ε = ||x − y||

}
.

E is called uniformly convex if and only if σ(ε) > 0 , for every ε ∈ (0, 2]. Clearly, every uniformly convex
is strictly convex space.

Let p > 0. Then E is said to be p-uniformly convex if there exists a constant c > 0 such that σ(ε) ≥ cε p,
for all ε ∈ (0, 2]. It is well known (see for example [27]) that

Łp or łp =
{
p-uniformly convex if p ≥ 2,
2-uniformly convex if 1 < p ≤ 2.

A monotone mapping B : C → 2E
∗
is called maximal monotone if its graph G(B) is not properly

contained in the graph of any other monotone mapping. It is clear that a monotone mapping B is maximal if
and only if for any (x, u) ∈ E × E∗, if 〈x − y, u − v〉 ≥ 0, for every (y, v) ∈ G(B), then it follows that
u ∈ Bx . Let A be a monotone and L-Lipschitz mapping of C into E∗ and let NCv be the normal cone to C at
v ∈ C ; i.e.,

NCv = {w ∈ E∗ : 〈v − u, w〉 ≥ 0,∀u ∈ C}.
Define

Bv =
{
Av + NCv, if v ∈ C,
∅, if v /∈ C .

(2.2)

Then, B is maximal monotone and 0 ∈ Bv if and only if v ∈ V I (C, A) (see, e.g., [21]).
In the sequel, we shall make use of the following lammas.

Lemma 2.1 ([35]) Let C be a non-empty closed and convex subset of a real reflexive, strictly convex and
smooth Banach space E. If A : C → E∗ is continuous monotone mapping, then V I (C, A) is closed and
convex.

Lemma 2.2 ([1]) Let C be a non-empty closed and convex subset of a real reflexive, strictly convex and smooth
Banach space E. Then for ∀y ∈ C,

φ(y, �Cx) + φ(�Cx, x) ≤ φ(y, x).

Wemake use of the function V : E × E∗ → R defined by V (x, x∗) = ||x ||2 −2 〈x, x∗〉+ ||x∗||2 for all x ∈ E
and x∗ ∈ E∗, studied by Alber [1]. That is V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.3 ([1]) Let E be reflexive strictly convex and smooth Banach space with E∗ as its dual.Then,
V (x, x∗) + 2

〈
J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 2.4 ([1]) Let C be a nonempty, closed and convex subset of a real smooth Banach space E and x ∈ E.
Then, x0 = �Cx if and only if

〈z − x0, J x − J x0〉 ≤ 0, ∀z ∈ C.

Lemma 2.5 ([3]) Suppose that E is 2-uniformly convex Banach space.
Then, there exists μ ≥ 1 such that 1

μ
||x − y||2 ≤ φ(x, y) for all x, y ∈ E .

Lemma 2.6 ([33]) Let E be a uniformly convex Banach space and BR(0) be a closed ball of E. Then, there
exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

||α0x0 + α1x1 + α2x2 + · · · + αk xk ||2 ≤
k∑

i=0

αi ||xi ||2 − αiα j g(||xi − x j ||),

where 0 ≤ i ≤ j ≤ k, for each αi ∈ (0, 1) and for xi ∈ BR(0) := {x ∈ E : ||x || ≤ R}, i = 0, 1, 2, . . . , k
with

∑k
i=0 αi = 1.

Lemma 2.7 ([12]) Let E be a real smooth and uniformly convex Banach space and let {xn} and {yn} be two
sequences of E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then xn − yn → 0 as n → ∞.

Remark 2.8 For any bounded sequences {xn} and {yn} in a 2-uniformly convex and uniformly smooth real
Banach space E we have

xn − yn → 0 ⇔ φ(xn, yn) → 0 as n → ∞. (2.3)

Lemma 2.9 ([28]) Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions:

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞ an = 0.

Lemma 2.10 ([16]) Let {an} be sequences of real numbers such that there exists a subsequence {ni } of {n}
such that ani < ani+1, for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞
and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j < a j+1}.
For the rest of this paper,�C is a generalized metric projection from E ontoC ,μ is a constant as in Lemma

2.5 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfying limn→∞ αn = 0 and
∑

αn = ∞.

3 Main result

Theorem 3.1 Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
realBanach space E. Let Ai : C → E∗ be Li -LipschitzmonotonemappingswithLipschitz constants Li , for i =
1, 2. Let T : C → C be relatively nonexpansive mapping. Assume that F = V I (C, A1)∩ V I (C, A2)∩ F(T )
is nonempty. Let {xn} be a sequence generated from an arbitrary x0, u ∈ C by⎧⎪⎪⎨

⎪⎪⎩

zn = �C J−1[J xn − γn A2xn],
yn = �C J−1[J xn − γn A1xn],
wn = an J xn + bn JT xn + cn J (un) + dn J (vn),

xn+1 = �C J−1
[
αn Ju + (1 − αn)wn

]
,

(3.1)

where un = �C J−1[J xn − γn A1yn], vn = �C J−1[J xn − γn A2zn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L :=

max{L1, L2} and {an}, {bn}, {cn}, {dn} ⊂ [e, 1) ⊂ (0, 1) such that an + bn + cn + dn = 1. Then, {xn}
converges strongly to a point x∗ in F which is nearest to u with respect to the Lyapunov distance.
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Proof Let p ∈ F . Then, by (3.1), Lemma 2.2 and the monotonicity of A1 we have

φ(p, un) = φ(p, �C J
−1(J xn − γn A1yn))

≤ φ(p, J−1(J xn − γn A1yn)) − φ(un, J
−1(J xn − γn A1yn))

= ||p||2 − 2 〈p, J xn − γn A1yn〉 + ||J xn − γn A1yn||2
−[||J xn − γn A1yn||2 − 2 〈un, J xn − γn A1yn〉 + ||un||2]

= ||p||2 − 2 〈p, J xn〉 + ||xn||2 − ||xn||2 + 2 〈p, γn A1yn〉
+2 〈un, J xn〉 − ||un||2 − 2 〈un, γn A1yn〉

= φ(p, xn) − φ(un, xn) + 2 〈p − un, γn A1yn〉
= φ(p, xn) − φ(un, xn) + 2 〈p − yn, γn A1yn〉 + 2 〈yn − un, γn A1yn〉
= φ(p, xn) − φ(un, xn) + 2γn 〈p − yn, A1yn − A1 p〉 + 2γn 〈p − yn, A1 p〉

+2γn 〈yn − un, A1yn〉
≤ φ(p, xn) − φ(un, xn) + 2γn 〈yn − un, A1yn〉 , (3.2)

and from (1.14), we obtain

φ(un, xn) = φ(un, yn) + φ(yn, xn) + 2 〈un − yn, J yn − J xn〉 . (3.3)

Thus, from (3.2) and (3.3) we get

φ(p, un) ≤ φ(p, xn) − φ(un, yn) − φ(yn, xn) (3.4)

+2 〈yn − un, γn A1yn − J xn + J yn〉 .

Moreover, by Lemma 2.4, we have that,

〈yn − un, γn A1yn − J xn + J yn〉 = 〈un − ynγn A1xn − γn A1yn〉
+ 〈un − yn, J xn − γn A1xn − J yn〉

≤ γn 〈un − yn, A1xn − A1yn〉 . (3.5)

Then, since A1 is Lipschitz, by (3.4) and (3.5), we have that,

φ(p, un) ≤ φ(p, xn) − φ(un, yn) − φ(yn, xn)

+2γn 〈un − yn, A1xn − A1yn〉
≤ φ(p, xn) − φ(un, yn) − φ(yn, xn) + 2γn||un − yn||||A1xn − A1yn||
≤ φ(p, xn) − φ(un, yn) − φ(yn, xn) + 2Lγn||un − yn||||xn − yn||
≤ φ(p, xn) − φ(un, yn) − φ(yn, xn) + Lγn[||un − yn||2 + ||xn − yn||2]. (3.6)

Hence, from (3.6) and Lemma 2.5 we have,

φ(p, un) ≤ φ(p, xn) − 1

μ
||yn − xn||2 − 1

μ
||un − yn||2

+Lγn[||un − yn||2 + ||xn − yn||2]
≤ φ(p, xn) +

(
Lrn − 1

μ

)
[||yn − xn||2 + ||un − yn||2]. (3.7)

Likewise, we obtain that

φ(p, vn) ≤ φ(p, xn) +
(
Lrn − 1

μ

)
[||zn − xn||2 + ||vn − zn||2]. (3.8)

123



206 Arab. J. Math. (2015) 4:199–213

Now, from (3.1), (3.7), (3.8), Lemma 2.2, Lemma 2.6 and the fact that Lγn − 1
μ

< 0, we have the following:

φ(p, xn+1) = φ(p, �C J
−1(αn Ju + (1 − αn)wn))

≤ φ(p, J−1(αn Ju + (1 − αn)wn))

= φ(p, J−1(αn Ju + (1 − αn)[an J xn + bn JT xn + cn Jun + dn Jvn]))
≤ αnφ(p, u) + (1 − αn)[anφ(p, xn) + bnφ(p, xn) + cnφ(p, un)

+dnφ(p, vn) − anbng(||JT xn − J xn||)]
≤ αnφ(p, u) + (1 − αn)φ(p, xn) − (1 − αn)anbng(||JT xn − J xn||)

+(1 − αn)

(
Lγn − 1

μ

)[
cn(||un − yn||2 + ||yn − xn||2)

+dn(||vn − zn||2 + ||zn − xn||2)
]

≤ αnφ(p, u) + (1 − αn)φ(p, xn). (3.9)

Therefore, by induction we get that

φ(p, xn+1) ≤ max{φ(p, u), φ(p, x0)}, ∀n ≥ 0,

which implies that {xn}, {yn}, {zn}, {un} and {vn} are bounded.
Let x∗ = �Fu and tn = J−1

(
αn Ju + (1 − αn)wn). Then, using (3.1), Lemma 2.2, Lemma 2.3 and the

fact that Lγn − 1
μ

< 0, we obtain

φ(x∗, xn+1) = φ(x∗, �C J
−1(αn Ju + (1 − αn)wn))

≤ φ(x∗, J−1(αn Ju + (1 − αn)[an J xn + bn JT xn + cn Jun + dn Jvn]
)
)

= V (x∗, αn Ju + (1 − αn)[an J xn + bn JT xn + cn Jun + dn Jvn])
≤ V (x∗, (1 − αn)[an J xn + bn JT xn + cn Jun + dn Jvn] + αn J x

∗)
−2

〈
tn − x∗, αn(J x

∗ − Ju)
〉
,

and

φ(x∗, xn+1) ≤ (1 − αn)[anφ(x∗, xn) + bnφ(x∗, xn) + cnφ(x∗, un) + dnφ(x∗, vn)]
−(1 − αn)anbng(||JT xn − J xn||) + 2αn

〈
tn − x∗, Ju − J x∗〉

≤ (1 − αn)φ(x∗, xn) + (1 − αn)

(
Lγn − 1

μ

)
(3.10)

×[
cn(||un − yn||2 + ||yn − xn||2) + dn(||vn − zn||2 + ||zn − xn||2)

]
−(1 − αn)anbng(||JT xn − J xn||) + 2αn

〈
tn − x∗, Ju − J x∗〉

≤ (1 − αn)φ(x∗, xn) + 2αn
〈
tn − x∗, Ju − J x∗〉

= (1 − αn)φ(x∗, xn) + 2αn
〈
tn − xn, Ju − J x∗〉

+2αn
〈
xn − x∗, Ju − J x∗〉

≤ (1 − αn)φ(x∗, xn) + 2αn||tn − xn||||Ju − J x∗||
+2αn

〈
xn − x∗, Ju − J x∗〉 . (3.11)

Now, we consider two cases.

Case 1 Suppose that there exists n0 ∈ N such that {φ(x∗, xn)} is decreasing for all n ≥ n0. Then, we get that
{φ(x∗, xn)} is convergent. Thus, from (3.10) and the fact that an, bn, cn, dn ≥ e > 0, γn < b < 1

μL for all
n ≥ 0 and αn → 0 as n → ∞, we have that

un − yn → 0, yn − xn → 0, zn − vn → 0,

zn − xn → 0, JT xn − J xn → 0 as n → ∞. (3.12)

As E∗ is uniformly smooth , J−1 is uniformly continuous on bounded subsets of E∗ and hence we obtain

123



Arab. J. Math. (2015) 4:199–213 207

J−1(JT xn) − J−1(J xn) = T xn − xn → 0 as n → ∞. (3.13)

Moreover, by the property of φ, we have

φ(xn, tn) = φ
(
xn, J

−1 (αn Ju + (1 − αn)[an J xn + bn JT xn + cn Jun + dn Jvn])
)

≤ αnφ(xn, u) + (1 − αn)[anφ(xn, xn) + bnφ(xn, T xn)

+cnφ(xn, un) + dnφ(xn, vn)].
This together with (2.3), (3.12) and (3.13) implies that

φ(xn, tn) → 0 as n → ∞, (3.14)

which in turn implies that

xn − tn → 0 as n → ∞. (3.15)

Furthermore, since {xn} is bounded subset of E which is reflexive, we can choose a subsequence {xn j } of {xn}
such that xn j ⇀ z and lim supn→∞〈xn − x∗, Ju − J x∗〉 = lim j→∞〈xn j − x∗, Ju − J x∗〉. This implies from
(3.12) that zn j ⇀ z, yn j ⇀ z, un j ⇀ z and vn j ⇀ z as j → ∞.

Note that relatively nonexpansiveness of T implies that z ∈ F(T ).
Now, we show that z ∈ ∩2

i=1VI(C, Ai ). Since Ai , for each i ∈ {1, 2}, is Lipschitz continuous, we have
||A1un j − A1yn j || → 0 as j → ∞.

Now, let

B1x =
{
A1x + NCx, if x ∈ C,
∅, if x /∈ C,

(3.16)

where NC (x) is the normal cone to C at x ∈ C given by NC (x) = {w ∈ E∗ : 〈x − u, w〉 ≥ 0 for all u ∈ C}.
Then, B1 is maximal monotone and 0 ∈ B1x if and only if x ∈ V I (C, A1) (see, e.g. [21]). Let (v, w) ∈ G(B1).
Then, we havew ∈ B1v = A1v+NCv and hencew− A1v ∈ NCv. Thus, we get 〈v−u, w− A1v〉 ≥ 0, for all
u ∈ C . On the other hand, since un j = �C J−1(J xn j − γn j A1yn j ) and v ∈ C , we have 〈J xn j − γn j A1yn j −
Jun j , un j − v〉 ≥ 0, and hence 〈v − un j , (Jun j − J xn j )/γn j + A1yn j 〉 ≥ 0. Thus, as un j ∈ C , the above
imply that

〈v − un j , w〉 ≥ 〈v − un j , A1v〉
≥ 〈v − un j , A1v〉 − 〈v − un j , (Jun j − J xn j )/γn j + A1yn j 〉
= 〈v − un j , A1v − A1un j 〉 + 〈v − un j , A1un j − A1yn j 〉

−〈v − un j , (Jun j − J xn j )/γn j 〉
≥ 〈v − un j , A1un j − A1yn j 〉 − 〈v − un j , (Jun j − J xn j )/γn j 〉. (3.17)

Therefore, since E is uniformly smooth we have that J is uniformly continuous and hence Jun − J xn → 0.
Thus, from (3.17) we get that 〈v − z, w〉 ≥ 0 as j → ∞. Then, maximality of B1 gives that z ∈ B−1

1 (0).
Therefore, z ∈ VI(C, A1). Similarly, with the use of vn j = �C J−1(J xn j − γn j A2zn j ) we get that z ∈
VI(C, A2). Thus, we have that z ∈ VI(C, A1)∩VI(C, A2)∩F(T ). Therefore, by Lemma 2.4, we immediately
obtain that

lim sup
n→∞

〈xn − x∗, Ju − J x∗〉 = lim
j→∞〈xn j − x∗, Ju − J x∗〉

= 〈z − x∗, Ju − J x∗〉 ≤ 0. (3.18)

Hence, it follows from (3.11), (3.15), (3.18) and Lemma 2.9 that φ(x∗, xn) → 0 as n → ∞. Then, Lemma
2.7 implies that xn → x∗ = �Fu.

Case 2 Suppose that there exists a subsequence {ni } of {n} such that

φ(x∗, xni ) < φ(x∗, xni+1),

for all i ∈ N. Then, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂ N such thatmk → ∞, and

123



208 Arab. J. Math. (2015) 4:199–213

φ(x∗, xmk ) ≤ φ(x∗, xmk+1) and φ(x∗, xk) ≤ φ(x∗, xmk+1), (3.19)

for all k ∈ N. Now, from (3.10) and the fact that an, bn, cn, dn ≥ e > 0, γn < b < 1
μL for all n ≥ 0 and αn → 0

as n → ∞, we get that umk − ymk → 0, ymk −xmk → 0, zmk −vmk → 0, zmk −xmk → 0, JT xmk − J xmk → 0
as k → ∞. Thus, following the method in Case 1, we obtain

lim sup
k→∞

〈xmk − x∗, Ju − J x∗〉 ≤ 0. (3.20)

Now, from (3.11), we have that

φ(x∗, xmk+1) ≤ (1 − αmk )φ(x∗, xmk ) + 2αmk 〈xmk − x∗, Ju − J x∗〉
+2αmk ||tmk − xmk ||.||Ju − J x∗||, (3.21)

and hence (3.19) and (3.21) imply that

αmkφ(x∗, xmk ) ≤ φ(x∗, xmk) − φ(x∗, xmk+1) + 2αmk 〈xmk − x∗, Ju − J x∗〉
+2αmk ||tmk − xmk ||.||Ju − J x∗||

≤ 2αmk 〈xmk − x∗, Ju − J x∗〉
+2αmk ||tmk − xmk ||.||Ju − J x∗||. (3.22)

But the fact that αmk > 0 implies that

φ(x∗, xmk ) ≤ 2〈xmk − x∗, Ju − J x∗〉 + 2||tmk − xmk ||.||Ju − J x∗||.
Thus, using (3.15) and (3.20) we get that φ(x∗, xmk ) → 0 as k → ∞. This together with (3.21) implies that
φ(x∗, xmk+1) → 0 as k → ∞. But φ(x∗, xk) ≤ φ(x∗, xmk+1) for all k ∈ N gives that xk → x∗. Therefore,
from the above two cases, we can conclude that {xn} converges strongly to a point x∗ = �Fu. The proof is
complete.

If, in Theorem 3.1, we assume that T = I , the identity mapping on C , then we obtain the following
corollary.

Corollary 3.2 Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
real Banach space E. Let Ai : C → E∗ be Li -Lipschitz monotone mappings with Lipschitz constants Li ,
for i = 1, 2. Let u be any point in C. Assume that F = V I (C, A1) ∩ V I (C, A2) is nonempty. Let {xn} be a
sequence generated from an arbitrary x0 ∈ C by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn = �C J−1[J xn − γn A2xn],
yn = �C J−1[J xn − γn A1xn],
wn = an J xn + bn J (un) + cn J (vn),

xn+1 = �C J−1
[
αn Ju + (1 − αn)wn

]
,

(3.23)

where un = �C J−1[J xn − γn A1yn]), vn = �C J−1[J xn − γn A2zn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L :=

max{L1, L2} and {an}, {bn}, {cn} ⊂ [e, 1) ⊂ (0, 1) such that an + bn + cn = 1. Then, {xn} converges strongly
to a point x∗ in F which is nearest to u with respect to the Lyapunov distance.

If, in Corollary 3.2, we consider A1 = 0 or A2 = 0, then we obtain the following corollary for one
variational inequality problem for a monotone mapping A.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a rm 2-uniformly convex and uniformly
smooth real Banach space E. Let A : C → E∗ be a Lipschitz monotone mapping with Lipschitz constant L
and let u be any point in C. Assume that V I (C, A) is nonempty. Let {xn} be a sequence generated from an
arbitrary x0 ∈ C by {

yn = �C J−1[J xn − γn Axn],
xn+1 = �C J−1

[
αn Ju + (1 − αn)

(
an J xn + (1 − an)J (un)

)]
,

where, un = �C J−1[J xn−γn Ayn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ) and {an} ⊂ [e, 1) ⊂ (0, 1). Then, {xn} converges

strongly to a point x∗ in F which is nearest to u with respect to the Lyapunov distance.
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If, in Theorem 3.1, we assume that Ai , for i = 1, 2, are γi -inverse strongly monotone mappings, then both

are L-Lipschitz with constant L = max
{

1
γ1

, 1
γ2

}
and hence we get the following corollary.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
real Banach space E. Let Ai : C → E∗ be an γi -inverse strongly monotone mappings, for i = 1, 2. Let
T : C → C be relatively nonexpansive mapping. Assume that F = V I (C, A1) ∩ V I (C, A2) ∩ F(T ) is
nonempty. Let {xn} be a sequence generated from an arbitrary u, x0 ∈ C by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn = �C J−1[J xn − γn A2xn],
yn = �C J−1[J xn − γn A1xn],
wn = an J xn + bn JT xn + cn J (un) + dn J (vn),

xn+1 = �C J−1
[
αn Ju + (1 − αn)wn

]
,

(3.24)

where un = �C J−1[J xn − γn A1yn]), vn = �C J−1[J xn − γn A2zn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L :=

max{ 1
γ1

, 1
γ2

}, and {an}, {bn}, {cn}, {dn} ⊂ [e, 1) ⊂ (0, 1) such that an+bn+cn+dn = 1. Then, {xn} converges
strongly to a point x∗ in F which is nearest to u with respect to the Lyapunov distance.

If, in Theorem 3.1, we assume that C = E , then the projection mapping �C is reduced to the identity
mapping in E and VI(C, A1) = A−1

1 (0), VI(C, A2) = A−1
2 (0). Thus, we get the following corollary.

Corollary 3.5 Let E be a 2-uniformly convex and uniformly smooth real Banach space E. Let Ai : E → E∗
be Li -Lipschitz monotone mappings with Lipschitz constants Li , for i = 1, 2. Let T : E → E be relatively
nonexpansive mapping. Assume that F = A−1

1 (0) ∩ A−1
2 (0) ∩ F(T ) is nonempty. Let {xn} be a sequence

generated from an arbitrary u, x0 ∈ C by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn = J−1[J xn − γn A2xn],
yn = J−1[J xn − γn A1xn],
wn = an J xn + bn JT xn + cn J (un) + dn J (vn),

xn+1 = J−1
[
αn Ju + (1 − αn)wn

]
,

(3.25)

where un = J−1[J xn −γn A1yn]), vn = J−1[J xn −γn A2zn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L := max{L1, L2}

and {an}, {bn}, {cn}, {dn} ⊂ [e, 1) ⊂ (0, 1) such that an + bn + cn + dn = 1. Then, {xn} converges strongly
to a point x∗ in F which is nearest to u with respect to the Lyapunov distance.

We note that the method of proof of Theorem 3.1 provides a convergence theorem for a finite family of
Lipschitzian monotone mappings. In fact, we have the following theorem.

Theorem 3.6 Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
realBanach space E. Let Ai : C → E∗ be Li -LipschitzmonotonemappingswithLipschitz constants Li , for i =
2, 3, . . . , N. Let T : C → C be relatively nonexpansive mapping. Assume that F = ∩N

i=2V I (C, Ai ) ∩ F(T )
is nonempty. Let {xn} be a sequence generated from an arbitrary u, x0 ∈ C by

⎧⎨
⎩

yni = �C J−1[J xn − γn Ai xn],
xn+1 = �C J−1

[
αn Ju + (1 − αn)

(
bn0 J xn + bn1 JT xn + ∑N

i=2 bni J (uni )
)]

,

where uni = �C J−1[J xn − γn Ai yni ], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L := max{Li : i = 2, 3, . . . , N },

{bni } ⊂ [e, 1) ⊂ (0, 1) such that
∑N

i=0 bni = 1. Then, {xn} converges strongly to a point x∗ in F which is
nearest to u with respect to the Lyapunov distance.

We also note that the method of proof of Theorem 3.1 provides the following theorem for approximating the
minimum-norm point of solution of two variational inequality problems.
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Theorem 3.7 Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
real Banach space E. Let Ai : C → E∗ be an Li -Lipschitz monotone mappings with Lipschitz constants
Li , for i = 1, 2. Assume that F = ∩2

i=1V I (C, Ai ) is nonempty. Let {xn} be a sequence generated from an
arbitrary x0 ∈ E by⎧⎪⎨

⎪⎩
zn = �C J−1[J xn − γn A2xn],
yn = �C J−1[J xn − γn A1xn],
xn+1 = �C J−1

[
(1 − αn)

(
an J xn + bn JT xn + cn J (un) + dn J (vn)

)]
,

(3.26)

where un = �C J−1[J xn − γn A1yn], vn = �C J−1[J xn − γn A2zn], {γn} ⊂ [a, b] ⊂ (0, 1
μL ), for L :=

max{L1, L2}, {an}, {bn}, {cn}, {dn} ⊂ [e, 1) ⊂ (0, 1) such that an + bn + cn + dn = 1. Then, {xn} converges
strongly to a minimum-norm point x∗ of F with respect to the Lyapunov distance.

Remark 3.8 Theorem 3.1 extends Theorem 3.1 of Nadezhkina and Takahashi [17] in the sense that our scheme
provides strong convergence to a common point of the fixed point set of a relatively nonexpansive mapping
and solutions of two variational inequality problems for Lipschitz monotone mappings in spaces more general
than Hilbert spaces.

Remark 3.9 Theorem 3.1 also extends Theorem 3.1 of Iiduka and Takahashi [10] and Theorem 3.2 of Zegeye
et al. [33] in the sense that our scheme provides strong convergence to a common point of the fixed point set
of a relatively nonexpansive mapping and solutions of two variational inequality problems for a more general
class of Lipschitz monotone mappings in 2-uniformly convex and uniformly smooth real Banach spaces.

Remark 3.10 Corollary 3.2 extends Theorem 1 of Yao et al. [32] and Corollary 3.2 of Zegeye and Shahzad [38]
in the sense that our scheme provides strong convergence to a common point of solutions of two variational
inequality problems in spaces more general than Hilbert spaces.

4 Numerical example

Now, we give an example of a relatively nonexpansive mapping and two Lipschitzian monotone mappings
satisfying Theorem 3.1 and some numerical experiment result to explain the conclusion of the theorem as
follows:

Example 1 Let H = R with Euclidean norm. Let C = [−1, 2] and T : C → C be defined by

T x =
{
x2, x ∈ [−1, 0),
x, x ∈ [0, 2], (4.1)

and A1, A2 : C → R be defined by

A1x =
{
0, x ∈ [−1, 1],
(x − 1)2, x ∈ (1, 2]. (4.2)

A2x =
⎧⎨
⎩
2x, x ∈ [−1, 0),
0, x ∈ [0, 1

2 ),

x − 1
2 , x ∈ [ 12 , 2].

(4.3)

Then, we observe that, T is continuous and hence F(T ) = [0, 2] = F̂(T ).
Now, if p ∈ F(T ), then we have

φ(p, T x) =
{

(p − x2)2, x ∈ [−1, 0),
(p − x)2, x ∈ [0, 2], (4.4)

and φ(p, x) = (p − x)2 for all x ∈ [−1, 2].
Thus, φ(p, T x) ≤ φ(p, x) for all x ∈ [−1, 2] and hence T is relatively nonexpansive mapping which is

not nonexpansive since for x = −0.6 and y = −0.7, we have |T x − T y| = 0.13 > 0.1 = |x − y|.
Moreover, we easily see that A1 and A2 are monotone mappings. Next, we show that A1 is Lipschitz.
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Case 1 Let x, y ∈ [−1, 1]. Then we have:
|A1x − A1y| = |0 − 0| = 0 ≤ |x − y|. (4.5)

Case 2 Let x ∈ [−1, 1] and y ∈ [1, 2]. Then we have:
|A1x − A1y| = |0 − (y − 1)2| = (y − 1)2 ≤ |y − x | = |x − y|. (4.6)

Case 3 Let x, y ∈ [1, 2]. Then we have:
|A1x − A1y| = |(x − 1)2 − (y − 1)2| ≤ |x2 − y2| + 2|x − y|

≤ |x + y||x − y| + 2|x − y|
≤ 4|x − y| + 2|x − y| = 6|x − y|.

From, Cases 1, 2 and 3 we conclude that A1 is Lipschitz with Lipschitz constant L1 = 6. Similarly, one can
show that A2 is Lipschitzmappingwith Lipschitz constant L2 = 3. It is also clear that VI(C, A1)∩VI(C, A2)∩
F(T ) = [

0, 1
2

]
.

Now, ifwe take,αn = 1
n+100 , γn = 1

n+200+0.001, an = bn = cn = 1
n+100+0.001, dn = 1− 3

n+100−0.003,
and u = 1.0, we observe that the conditions of Theorem 3.1 are satisfied and Scheme (3.1) reduces to⎧⎨

⎩
zn = PC [xn − γn A2xn],
yn = PC [xn − γn A1xn],
xn+1 = αnu + (1 − αn)(anxn + bnT xn + cnun + dnvn),

(4.7)

where un = PC [xn − γn A1yn] and vn = PC [xn − γn A2zn]. Thus, for x0 = −0.8, Scheme (4.7) converges
strongly to 0.5 = PF (u). See the following table and figure.

n 0 184 1364 1365 3512 30,000 40,000 70,000 89,999

xn −0.8000 0.0010 0.4999 0.5001 0.5854 0.5156 0.5119 0.5070 0.5054

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−1

−0.5

0

0.5

1

1.5

iterations, n

ite
ra

te
s,

 x
n

 

 
x(0)=−0.8
x=0.5
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