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Abstract Fluorides occur naturally in the environment, the
daily exposure of human organism to fluorine mainly depends
on the intake of this element with drinking water and it is
connected with the geographical region. In some countries,
we can observe the endemic fluorosis—the damage of hard
and soft tissues caused by the excessive intake of fluorine.
Recent studies showed that fluorine is toxic to the central
nervous system (CNS). There are several known mechanisms
which lead to structural brain damage caused by the excessive
intake of fluorine. This element is able to cross the blood-brain
barrier, and it accumulates in neurons affecting cytological
changes, cell activity and ion transport (e.g. chlorine trans-
port). Additionally, fluorine changes the concentration of
non-enzymatic advanced glycation end products (AGEs), the
metabolism of neurotransmitters (influencing mainly gluta-
matergic neurotransmission) and the energy metabolism of
neurons by the impaired glucose transporter—GLUT1. It
can also change activity and lead to dysfunction of important
proteins which are part of the respiratory chain. Fluorine also
affects oxidative stress, glial activation and inflammation in
the CNS which leads to neurodegeneration. All of those
changes lead to abnormal cell differentiation and the activa-
tion of apoptosis through the changes in the expression of
neural cell adhesion molecules (NCAM), glial fibrillary acidic

protein (GFAP), brain-derived neurotrophic factor (BDNF)
and MAP kinases. Excessive exposure to this element can
cause harmful effects such as permanent damage of all brain
structures, impaired learning ability, memory dysfunction and
behavioural problems. This paper provides an overview of the
fluoride neurotoxicity in juveniles and adults.
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Introduction

Fluorine is an active non-metal that occurs in the environment
and that is used in industry and medicine (diagnostics, preven-
tion) [1]. The daily exposure of our organisms to fluorine
mainly depends on the geographical region we inhabit. The
most important factor contributing to the exposure is the con-
tent of fluorine in drinking water and, to a lesser extent, in air
and food [2, 3]. Moreover, this element is commonly used in
the prevention of dental caries due to its effectiveness and the
low costs of manufacture of products for oral care [2, 4–6].

In the organisms of infants and children, about 80–90 % of
the absorbed fluorine is accumulated. A smaller amount is
stored in the organisms of adults (60 %). Of the received
fluorine, 75 %–90 % undergoes absorption in the stomach
and intestines, and 99 % of the fluorine that gets to the circu-
latory system is transported to tissues rich in calcium (mainly
to hard tissues). Retrospective studies showed that the symp-
toms of fluorosis (the disorder of the physiology of bones and
teeth and the damage to soft tissue) appeared when the supply
of fluorine was over 0.15 mg/kg/24 h [2, 3, 6–9]. In recent
years, scientists have been focusing on the toxic influence of
this element on the nervous system. Prolonged exposure to
fluorine in the prenatal and postnatal stages of development
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has a toxic influence on the metabolism and physiology of
neurons and glia which results in disorders in the processes
connected with memory and learning [4, 10, 11].
Epidemiological studies carried out in geographical regions
in which fluorine content in drinking water is high showed
that children who live in those areas have a statistically signif-
icant decreased level of intelligence in comparison to children
from regions not contaminated with fluorine [10, 12, 13].
Fluorine exposure in the prenatal and neonatal periods is dan-
gerous because this element has the ability to penetrate
through the placenta and it is able to cross the blood-brain
barrier. Young individuals are less resistant to the toxic influ-
ence of fluorine due to the fact that their defensive mecha-
nisms are not fully developed and the permeability of their
blood-brain barrier is higher than among adults [2, 14–16].
This phenomenon was confirmed by a research carried out
on rats. The animals were exposed to high levels of fluorine
(10, 25, 50 mg/L) for 8 months. The content of fluorides in the
rats’ brains was even 250 times higher than in the control
group [9]. However, the exact mechanisms by which fluorine
decreases cognitive and learning abilities and causes memory
loss were not clearly defined. So far, the element has been
studied in terms of its influence on neurotransmission, the
synthesis of proinflammatory factors, free-radical processes
and the apoptosis of cells of the central nervous system [17].

Cytological Changes within Neurons

Microtubules consisting of compact heterodimer tubulins
form the cell cytoskeleton in which organelles are suspended.
Depending on the type of cells, microtubules can reach the
length of even a few millimetres, and their elasticity and the
ability to adjust the length through building or degrading het-
erodimers are of particular importance for the physiology of
cells [18]. A proper construction of the cytoskeleton is impor-
tant for the functioning of neurons. It was observed that the
disorders in the construction of microtubules influence the
deterioration of dendrites, the degeneration of axons and the
decrease in the number of Purkinje cells [9, 19]. Among adult
mice exposed to fluorine, a decrease in the expression of tu-
bulins forming the heterodimers (Tuba1 and TubB2a) in the
hippocampus was observed (the content of fluorine in drink-
ing water, 100 mg/L). The disorders in the synthesis of tubu-
lins are important in relation to such processes as the maturing
or the division of cells because they might lead to the creation
of malfunctioning neurons without the ability of signal trans-
mission [9].

The accumulation of fluorine in the brain also influences
the content of Nissl bodies, which are concentrations of ribo-
somes and RNA in neurons. These concentrations are respon-
sible for the characteristic colour of grey matter. Among adult
rats exposed to relatively low concentrations of fluorine, a
significant decrease of the content of this Nissl substance

was observed (the concentration of fluorine in drinking water,
2.1 and 10 mg/L). These values are calculated in the active
neurons. Their content decreases in cells that are growing old
and degenerating [1].

Neuron Activity and the Transportation of Ions

The research carried out on adult specimens showed a nega-
tive influence of fluorine on the volume of neurons. The reg-
ulation of the volume of cells and the concentration of ions
have a significant influence on the preservation of homeosta-
sis in the nervous system [4, 20]. The stimulation of a nervous
synapse is accompanied by the increase of the cell’s volume
by 4–30 % of the initial volume. Such changes influence neu-
ron activity because they are related to the changes in the flow
of ions and water from the cytoplasm to the extracellular space
and vice versa [21–23]. Fluorine (5 mM) causes disorders in
the homeostasis of neurons in the hippocampus of adult rats
and mice by increasing the outflow of chloride ion from cells
and by changing the activity of proteins from the MAP kinase
family. This leads to the decrease of the volume and activity of
neurons [4]. MAP kinases, i.e., mitogen-activated protein ki-
nases, are a family of proteins that take part in the regulation of
the response to extracellular factors such as mitogens. The
proteins ERK and JNK and the isoforms of protein p58 belong
to the family of serine-threonine kinases. These proteins influ-
ence the regulation of the growth and differentiation of cells,
the regulation of apoptosis and the expression of genes [24].
However, recent analysis proved that they also take part in the
regulation of the activity of membrane transporters. Fluorine,
through its influence on the activity of Ras protein, activates a
cascade of reactions that leads to the activation of ERK. This
influences the membrane ion channels and leads to changes in
the flow of ions (including an increased outflow of chloride
ion) and in the nervous cell volume causing disorders in cell
metabolism, in cell functioning and, most of all, in the trans-
mission of nerve impulses [25, 26].

The Energy Metabolism of Neurons

The activity of mitochondria is a very important factor which
influences numerous processes and the lifespan of neurons.
Due to their limited glycolytic capabilities, these cells depend
on the processes of oxidative phosphorylation which is the
main source of energy in the central nervous system. The
energy created by mitochondria is used for the activity of
membrane ion channels and for the transmission of impulses
through synapses, and the dysfunction of these organelles is
observed in neurodegenerative illnesses [27, 28]. One of the
important factors influencing the energy metabolism of neu-
rons is the transportation, absorption and transformation of
glucose, because it serves as the main source of energy for
neurons [29]. It is common knowledge that providing proper
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amounts of glucose to an organism significantly influences the
improvement of cognitive functions, and numerous analyses
confirmed that disorders in glucose metabolism may be the
cause of the death of neurons [30–32]. Among rats exposed to
fluorine, decreased glucose usage was observed (the concen-
tration of fluorine in drinking water, 50 and 100 mg/L) as well
as a decrease in the expression of the main receptor responsi-
ble for the glucose uptake in the nervous system, GLUT1 (the
concentration of fluorine in drinking water, 25, 50 and
100 mg/L), in the cerebral cortex and hippocampus [30].

An equally important factor for the functioning of mito-
chondria is oxidative stress. Oxidative stress caused by the
excessive production of reactive oxygen species (ROS) sig-
nificantly influences the functioning of neurons through its
influence on the activity of mitochondrial enzymes.
Increased ROS synthesis in the mitochondria of nervous cells,
disorders in integrity and changes in the potential of mito-
chondrial membrane were observed among rats which re-
ceived fluorine in the proportion of 13 mg/kg/24 h [33].
Prenatal and postnatal exposure of mice to high concentrations
of fluorine in drinking water (150 mg/L) caused disorders in
the energy metabolism of the cerebral cortex of the animals.
One of the observed facts was the increased activity of one of
the subunits of ATP synthase—ATP5h. This enzyme consists
of several subunits that form two dimers—F1 and F0. F1 is the
catalytic part, whereas F0 is a membrane subunit which takes
part in the transportation of protons. The disorders in the func-
tioning of these subunits lead to changes in the energy balance
(ATP/ADP) within the cell. The analysis showed the hyperac-
tivity of subunit ATP5h, a part of the content of F0, which
leads to disorders in the activity of ATP synthase [15, 34]. The
exposure to fluorine also caused a decrease in the activity of
NADH-ubichinon oxidoreductase which is a part of respira-
tory chain complex 1. It is involved in the transportation of
ions in the chain and in the creation of sodium gradient nec-
essary in the process of ATP synthesis. The aforementioned
changes in the activity of ATP synthase and NADH-ubichinon
oxidase lead to a significant decrease of ATP synthesis in the
mitochondria of nervous cells [15, 35]. Another study carried
out on mice confirmed that fluorine influences the activity of
complexes of the respiratory chain and of enzymes of the citric
acid cycle. A decrease in the activity of complexes I, II, III and
IV; isocitrate dehydrogenase and succinate dehydrogenase
was observed in the cerebral cortex, cerebellum and hippo-
campus of mice exposed to high concentrations of fluorine
(the concentration of fluorine in drinking water, 270 mg/L)
[27].

A decrease in the activity of the respiratory chain com-
plexes influences the increase in the synthesis of ROS which
activate the pathways leading to the degradation of mitochon-
dria as well as the entire cell [27]. ROS and the products of
lipid peroxidation are also responsible for the formation of
compounds that block the active area of isocitrate

dehydrogenase, consequently inhibiting the oxidative decar-
boxylation of the isocitrate in the Krebs cycle and influencing
the activity of this pathway. Fluorine itself influences the ac-
tivity of many enzymes through its ability to break the hydro-
gen bonds in proteins—e.g. in the enzyme active centre [36,
37]. Furthermore, the increase in the synthesis of free radicals
in mitochondria leads to the initiation of oxidative stress and
the degradation of mitochondrial DNA. The result of these
processes forms another phenomenon that takes place in the
mitochondria—the disorder of the expression of enzymes nec-
essary for the synthesis of ATP and the decrease of ATP con-
centration. This, in consequence, leads to the activation of the
processes that cause the death of the cell [33].

Oxidative Stress and the Activity of Anti-Oxidative
Enzymes

The analysis carried out with the usage of experimental animal
models more than once confirmed that the accumulation of
fluorine in the central nervous system initiates inflammatory
and degenerative processes through the activation of oxidative
stress in both young and adult specimens. Oxidative stress is
caused by the disturbance in the balance between the synthesis
of ROS and the activity of anti-oxidative enzymes. The in-
creasing concentration of ROS leads to metabolism disorders,
the initiation of inflammatory states and the disorders of the
differentiation, maturing and division of cells. This, in conse-
quence, causes tissue damage [17, 38]. ROS do not only cause
disorders in the signal pathways of cells, but if their concen-
tration is high, membrane lipid release and oxidation take
place. The products of this process might be further trans-
formed into physiological and pharmacological active inflam-
matory compounds [39].

Numerous analyses carried out on cell cultures and animal
models confirmed that fluorine accumulation in the brain
leads to the increase of the concentration of ROS, the decrease
of the activity of antioxidative enzymes and the increase of the
intensity of lipid peroxidation. In the neuron cultures isolated
from the hippocampus, after 48 h of fluorine incubation (con-
centration, 40 and 80 mg/L), several phenomena were ob-
served: the increase in the synthesis of ROS and the deriva-
tives of lipid peroxidation, malondialdehyde (MDA), the de-
crease of the activity of antioxidative enzymes, superoxide
dismutase (SOD) and glutathione peroxidise (GPx), and the
decrease of the concentration of glutathione [40]. Increased
activity of catalase (CAT) was observed among young rats
exposed to fluorine, which might point to the activation of
protective mechanisms against the harmful activity of oxygen
free radicals in the organism (the concentration of fluorine in
drinking water, 30 and 100 mg/L) [33, 41]. In relation to adult
rats that received 20mg of fluorine per kilogram of bodymass
every 24 h, it was observed that the concentration of glutathi-
one in the brain decreased, the production of the radicals OH
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and NO increased and the activity of antioxidative enzymes
CAT, SOD, GPX and glutathione reductase (GR) was smaller
[5]. Moreover, increased intensity of oxidation of lipids and
proteins was observed in the cerebral cortex, cerebellum and
medulla oblongata (the concentration of fluorine in drinking
water, 50 and 150 mg/L). These results were confirmed by
another analysis in which, among rats exposed to fluorine in
the prenatal and postnatal periods, increased concentrations of
fluorine in the serum and the brain were observed as early as
on the 14th day of life, which resulted in the decreased activity
of SOD and higher intensity of lipid peroxidation in the brains
of the analysed animals (the concentration of fluorine in drink-
ing water, 20 mg/L) [33, 42]. An increase in the concentration
of the products of lipid oxidation was also observed among
adult rats that were exposed to 10 mg/L of fluorine concentra-
tion in drinking water. In the case of these animals, SOD
activity was also smaller [17].

The analyses carried out so far show that one of the mech-
anisms by which fluorine influences the disorders in brain
functioning is the increase of the synthesis of ROS and the
weakening of the defensive mechanisms against their activity
(the decrease in the activity of antioxidative enzymes) [43]. In
the central nervous system, the intensity of the processes that
utilize oxygen is very high. Moreover, there are high concen-
trations of easily oxidizable fatty acids, and the activity of
antioxidative enzymes is relatively small in comparison to
other tissues [7, 44]. Long-lasting oxidative stress causes the
Bwear^ of enzymes responsible for the removal of free radi-
cals. Their increasing concentration in cells causes lipid per-
oxidation and the oxidation of proteins and nucleic acids [40,
45]. The changes in the content of membrane phospholipids in
neurons, caused by their release and oxidation, result in the
changes in the fluidity, stability and permeability of the cell
membrane [46, 47]. Furthermore, by activating different sig-
nal paths, oxidative stress leads to the decrease in the lifespan
of cells, the disorders in growth and differentiation and the
initiation of apoptosis [7, 48, 49].

The Advanced Glycation End Products

The advanced glycation end products (AGEs) of proteins and
lipids are created spontaneously in living organisms in a
multi-stage process that does not undergo enzymatic catalysis.
In physiological conditions, AGEs fulfil regulatory functions,
including the inhibition of cell differentiation. A high content
of glycation products was observed in foetal stem cells. Their
intensive degradation ensues when they begin to differentiate.
The increase in the synthesis and the concentration of AGEs in
the organism is observed in pathological states [43, 50]. In
properly functioning organisms, AGEs are quickly degraded
in proteasomes. However, in some products, cross-linking oc-
curs, which influences the physicochemical properties of these
cells and leads to the creation of insoluble aggregates. AGEs

are bound by specific receptors. Currently, there are five
known types of receptors that bind the products of non-
enzymatic glycation: MSR-1 (macrophage scavenger recep-
tor), AGE-R1, AGE-R2 (which binds phosphoproteins),
AGE-R3 (which recognizes galactosidic groups) and RAGE
(the receptor for AGEs). While the receptors AGE-R1–3 and
MSR-1 take part in the removal of the products of glycation
from circulation, RAGE acts as a signal receptor activating the
processes connected with the synthesis of ROS, transcription
factors and the proinflammatory particles such as nuclear fac-
tor kB (NF-kB) and the previously mentioned MAP kinases
(MAPK) [43, 50, 51]. RAGE demonstrates expression on
macrophages, T lymphocytes, cardiomyocytes, endothelial
cells, smooth muscle cells, neurons and dendritic cells [52].
The accumulation of AGEs in neurons increases the synthesis
of ROS, disturbs the transmission of nervous impulses and
stimulates the atrophy of nerve fibres. Moreover, it correlates
with the increased expression of proteins that regulate the
apoptosis and differentiation of cells [43, 53].

In vivo research carried out on adult rats showed that fluo-
rine increases the concentration of products of advanced
glycation of proteins in cells (the concentration in drinking
water, 50 mg/L) [43]. A significant increase in the expression
of RAGE and NADPH oxidase 2 (NOX2) was also observed
among specimens exposed to fluorine for 6 months (the con-
centration in drinking water, 5 and 50 mg/L). In order to de-
termine the influence of NOX2 on the activation of AGE/
RAGE, simultaneous research with cell cultures was carried
out. SH-SY5Y cells originating from human neuroblastoma
were incubated with various concentrations of fluorine for
48 h (the applied concentrations, 0.5, 5 and 50 mg/L). The
following phenomena were observed in the culture with the
concentration of 50 mg/L: a significant increase in ROS and
MDA after 6 h of incubation, increased expression of NOX2
after 12 h of incubation and RAGE after 24 h of incubation
and an increased concentration of AGE in cells after 36 h of
incubation (the concentrations of the analysed particles posi-
tively correlated with the time of incubation). The analysis
confirmed that one of the mechanisms that lead to the degen-
eration of neurons is the activation of the AGE/RAGE com-
plex. An additional analysis carried out in vitro confirmed that
one of the mechanisms that lead to the activation of AGE/
RAGE is the increase in the activity of NOX2 [43]. An in-
creased intensity of non-enzymatic glycation of proteins is
predominantly observed when the activity of oxidative factors
becomes stronger and, at the same time, when the antioxida-
tive mechanisms are inhibited. As mentioned before, fluorine
strengthens the synthesis of free radicals and decreases the
activity of antioxidative enzymes in the central nervous sys-
tem which may strengthen the synthesis of AGEs and the
expression of RAGE on the membranes of neurons. This, in
consequence, may cause pathological accumulation of AGEs
in the cells of the nervous system [43, 52]. The accumulation
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of AGEs in neurons activates proinflammatory transcription
factors—NF-kB initiating the inflammatory state and MAP
kinases which change the permeability of the membrane of
nerve cells and may activate the apoptosis pathway. These
processes may initiate the demyelination of dendrites and the
degeneration of neurons.

The Synthesis of Proinflammatory Factors

One of the factors indicating the initiation and development of
an inflammatory state in all organs is the change in the con-
centration of interleukins. Interleukins belong to cytokines—
proteins that take part in the intercellular signalling and the
regulation of immunological response [54]. Cytokines in the
nervous system influence the regulation of sleep and the pro-
cesses connected to memorizing. They also take part in neu-
rodegenerative processes, and they help keep the integrity of
the blood/brain barrier [55]. Interleukin 6 (Il-6) is secreted by
macrophages, B-lymphocytes, microglia, neurons, adipo-
cytes, myocytes and fibroblasts, but only a few cells show
the expression of receptors for Il-6—some of the leukocytes
and microglial cells. In the nervous system, astrocytes and
oligodendrocytes do not show the expression of receptors
for Il-6 [54]. In physiological conditions, a low concentration
of Il-6 in the nervous system is observed [56]. In low concen-
trations, Il-6 may have a neuroprotective effect—it influences
the differentiation of oligodendrocytes, acts as a neurotrophic
factor and takes part in the regeneration of neurons and, in
relation to mice among which the Il-6 gene is blocked, the
activation of microglia is decreased. The rise in the concentra-
tion of Il-6 appears in inflammatory states and neurodegener-
ative illnesses [57, 58]. Among illnesses with an inflammatory
basis and neurodegenerative diseases, an increased concentra-
tion of other cytokines such as Il-1B and TNF-α is also ob-
served. These cytokines are responsible for the initiation of
inflammatory states and the death of neurons [59]. Research
shows that the exposure of adult rats to fluorine causes the
activation ofmicroglia in the hippocampus and cerebral cortex
and that it initiates an inflammatory state through the synthesis
of proinflammatory cytokines—Il-1B, Il-6 and TNF-α (the
concentration in drinking water, 60 and 120 mg/L) [60].

The Activation of Glial Cells and the Migration
of Lymphocytes to CNS

Despite the big numbers of glial cells located in the nervous
system (it is estimated that there are 10 times more of these
cells than neurons), they do not take part in the information
transfer, but their task is to support the activity of neurons. We
can divide them into macroglia that include astrocytes, oligo-
dendrocytes and Schwann cells, and microglia. Astrocytes
fulfil functions crucial to maintaining the homeostasis and
the proper functioning of the nervous system. Among other

roles, they are responsible for the metabolism and the preser-
vation of the proper concentration of potassium, the regulation
of pH, the metabolism and transport of neurotransmitters and
the regulation of the strength of stimulation [17, 61]. The rise
in the number of glial fibrillary acidic protein (GFAP) cells
indicates the activation of astrocytes and the initiation of de-
fensive mechanisms against harmful factors, such as fluorine.
GFAP is a protein specific for astrocytes. Its expression in-
creases when the cells of the nervous system become damaged
or when they show disorders in metabolism. It stimulates their
proliferation in order to minimize and repair the damage [17,
62]. Microglia are cells differentiating from macrophages,
which are Bsettled^ in the nervous system. As in the case with
astrocytes, their task is to preserve the balance in the nervous
system. However, their influence and activity are homological
to the activity of macrophages. They are responsible for the
absorption of the products of nerve tissue breakdown.
Therefore, their proliferation is stimulated by external factors
such as improper proteins that find their way into intercellular
space or substances released from dying neurons [63]. The
activation of microglia might occur when the pathway associ-
ated with the activity of MAP–ERK kinase is initiated.
Oxidative stress in the nervous system causes an increase in
the expression of ERK in glial cells which initiates the syn-
thesis of proinflammatory substances [64, 65]. The migration
of B lymphocytes to the nervous system is observed in path-
ological states. They take part in the inhibition of damage
progression and in the repair processes engaging, among
others, microglia [17, 34].

Immunohistochemical analyses carried out on the material
collected from adult rats exposed to fluorine showed that the
activation of astrocytes takes place in the cerebral cortex (the
concentration of fluorine in drinking water, 10 mg/L). In the
studied material, an increased immunoreactivity of GFAP was
observed, which is specifically connected to astrocytes. The
research also confirmed that the activation of microglia and
the migration of B cells took place in the brains of the exposed
rats. The research consisted of antibodies anti-CD68 which
are specific to cells originating from the line of macrophages,
including microglia, and of antibodies anti-CD20 specific to B
cells [17].

The Metabolism of Neurotransmitters

Another mechanism by which fluorine may influence the dis-
orders in the functioning of neurons is the change in the con-
centration of neurotransmitters. Prolonged exposure to fluo-
rine causes a decrease in the concentration of glutamate in the
brain. Glutamate constitutes about 30 % of all neurotransmit-
ters in the central nervous system and is the main stimulating
transmitter. It is secreted in high amounts in the hippocampus,
which is responsible for the processes of memorizing and
learning [66–68]. This amino acid is supplied to the organism
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with the diet. However, only a small amount of it passes
through the blood/brain barrier. This is a protective mecha-
nism against excessive inflow of this neurotransmitter to the
brain which could cause the depolarization and damaging of
neurons [69, 70]. Therefore, in the central nervous system,
there has to be a balance between the synthesis of the endo-
genic glutamate and its loss. In the synthesis of glutamate,
aspartate transaminase (AST) and alanine aminotransferase
(ALT) take part. Their activity is inhibited by an excessive
supply of fluorine [69, 71]. This element also increases the
activity of glutamate decarboxylase (GAD) which results in
the transformation of glutamate into γ-aminobutyric acid
(GABA)—the main inhibiting transmitter in the nervous sys-
tem. These processes lead to the decrease in the pool of glu-
tamate in the brain leading to dysfunctions in synaptic trans-
mission and the disorders in cognitive functions.

Bergmann glial cells (BGC) are abundantly present in the
cerebellum. They participate in the transportation and metab-
olism of neurotransmitters, the preservation of the balance of
potassium and the correct pH in the nervous system. One of
the more important functions of BGC is the metabolism of
glutamate. These cells are one of the main sources of this
neurotransmitter, and to a large extent, they are responsible
for glutamatergic stimulation [6, 72]. The incubation of BGC
cells (isolated from the cerebellum of rats) with fluorine in con-
centrations of 1 and 2 mM caused a significant decrease in the
lifespan of cells, causing disorders in the metabolism of glu-
tamate [6, 73]. Other research showed a decrease in the con-
centration of glutamate in the serum, hippocampus and cere-
bral cortex of the studied animals (the concentration of fluo-
rine in drinking water, 120 mg/L), an increase in the activity of
glutamic acid decarboxylase and a decrease in the activity of
asparagine transferase and alanine transferase—the enzymes
participating in the metabolism of glutamate (the concentra-
tion of fluorine in drinking water, 150 mg/L) [66, 69, 74].
Glutamate participates in memory processes through the stim-
ulation of specific ionotropic and metabotropic (mGluRs) re-
ceptors. One of the things that the receptors of the mGluR I
group (mGluR1 and mGluR5) are responsible for is the pres-
ervation of the correct plasticity of synapses. They show ex-
pression in the hippocampus, cerebral cortex and cerebellum.
The inhibition of the expression of mGluR5 among test ani-
mals causes significant disorders in spatial orientation and
Bspatial learning^. Fluorine causes an insignificant decrease
in the expression of mGluR5 [66, 75]. Glutamatergic stimula-
tion is strongly related to memory (mainly long-termmemory)
and learning, so all the disturbances of the synthesis and trans-
portation of glutamate negatively influence those two process-
es [6, 76].

Fluorine also causes changes in the secretion of neurotrans-
mitters such as serotonin, dopamine, norepinephrine, acetyl-
choline and epinephrine (the concentration of fluorine in
drinking water, 20, 40 and 60 mg/L) [77]. Adult rats that

received drinking water with 100 mg/L concentration of fluo-
rine had a higher concentration of noradrenalin and serotonin
in the hippocampus, striatum and cerebral cortex [78].

The Expression of Proteins that Regulate the Maturing,
Differentiation and Proliferation of Neurons

Constant exposure of young specimens to fluorine in the pre-
natal and postnatal periods initiates processes that lead to the
degeneration of neurons through the influence on the expres-
sion of regulatory proteins. Among other phenomena, changes
in the demyelinating character, a decrease in the number of
Purkinje cells and the degradation of dendrites are observed in
the histopathological image of animals that received fluorine
for a long period of time [79].

Neural cell adhesion molecules (NCAM) are membrane
glycoproteins that are responsible for the adhesion and migra-
tion of cells of the nervous system, the development of axons
and synapses and the activation of signal pathways [80]. The
disturbances in the expression of the isoforms NCAM-120,
NCAM-140 and NCAM-180 influence the cognitive func-
tions of the nervous system, whereas the presence of
NCAM-180 significantly influences the plasticity of neurons
in the hippocampus. Nerve cells isolated from the hippocam-
pus show a decreased expression of NCAM after incubation
with fluorine (the applied fluorine concentrations, 20, 40 and
80 mg/L). The application of the 80-mg/L concentration re-
sulted in a decrease in the amount of all of the three aforemen-
tioned isoforms, whereas with lower fluorine concentrations
the expression of the isoform NCAM-180 also decreased sig-
nificantly [40]. The decrease in the expression of NCAM in-
fluences the plasticity of neurons and causes disturbances in
cognitive functions. This phenomenon is confirmed by exper-
iments carried out on animals with the NCAM gene blocked,
as they showed that the animals had problems with spatial
learning [40, 81].

Animals exposed to fluorine suffered from chronic pain
and had a higher sensitivity to pain. Furthermore, there was
an increase in the expression of brain-derived neurotrophic
factor (BDNF) and a decrease in the expression of GFAP in
the cerebral cortex and hippocampus of those animals (the
concentration of fluorine in drinking water, 50 and 150 mg/
L) [30]. The expression of the BDNF is regulated, among
others, by serine-threonine kinases, so the changes in the con-
centration of BDNF in nerve cells may be caused by the acti-
vation of proteins from theMAP kinase family by fluorine [4].
BDNF is a protein belonging to neurotrophins—a group of
neurotrophic factors that includes substances supporting the
differentiation and survivability of neurons [82]. BDNF regu-
lates the growth and regeneration of neurons, and it influences
their plasticity. The increase in its synthesis accompanies such
processes as the damaging of tissue or ageing [83–86]. GFAP
is a protein specific for astrocytes, and the changes in its
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expression influence the maturing of neurons and glial cells
[87]. The increased concentration of BDNF in the nervous
system with the simultaneous decrease in the concentration
of GFAP indicates disorders in the maturing of nerve cells
and the activation of repair processes aiming at the neutraliza-
tion of the damage caused by the toxic influence of fluorine
[11].

The Influence of Fluorine on the Initiation of Apoptosis
in the Central Nervous System

ROS in cells function as signalling particles and, in physio-
logical concentrations, influence the activity of metabolic
pathways. However, if their concentration in cells is too high,
it leads to the oxidation of nucleic acids, including the oxida-
tion of DNA and the braking of α-helix. The accumulation of
many such changes in the DNA, detected by repair mecha-
nisms, leads to the activation of the apoptosis pathway
[88–90]. There was a significant increase in the number of
apoptotic cells in the culture of nerve cells isolated from the
hippocampus after 48 h of incubation with fluorine. The fol-
lowing concentrations of fluorine were used in the research—
20, 40 and 80 mg/L. However, the increase in the concentra-
tions of apoptotic cells appeared in the case of 40 and 80mg/L
[40].

Nuclear factor kappa B (NF-kB) is a transcription factor
that participates in the processes related to cell growth, the
regulation of cell cycle, the development of an inflammatory
state and the response to stress [91–94]. Depending on its level
of expression and the pathways it influences, it may protect
cells from apoptosis or initiate the process [95, 96]. A research
carried out on neurons isolated from the hippocampus of a rat
incubated 24 h with fluorine (40 and 80 mg/L) indicated a
significantly increased frequency of damage to the DNA and
an increase in the synthesis of NF-kB [48]. Among animals
exposed to lower concentrations of fluorine (30 mg/L), there
was an increase in the expression of NF-kB which correlated
with an increased concentration of calcium ions in the studied
cells. It is widely known that fluorine increases the synthesis
of ROS in neurons, which causes damage to the cell mem-
brane. Calcium ions move through the damaged membrane to
nerve cells causing, among others, an increase in the expres-
sion of NF-kB. Consequently, they influence the initiation of
programmed death [95, 97].

The analyses carried out so far indicate that the apoptosis of
neurons observed in chronic fluorosis may be activated by the
mitochondrial pathway. It was proved that the processes relat-
ed to nerve cell degeneration are influenced by MAP kinases,
signal pathways with the participation of G proteins, calcium
ions, the p38 protein and Jun N-terminal kinase (JNK)
[98–100]. The 6-month exposure of rats to both low (5 mg/
L) and high (50 mg/L) concentrations of fluorine in drinking
water caused a significant increase in the number of apoptotic

cells in the brain and in the content of the phosphorylated form
of JNK. In the case of the total content of JNK, the changes
were insignificant. The analysis suggests that fluorine stimu-
lates apoptosis through the activation of JNK because in the
brains of the exposed animals there is an increase in the con-
tent of the active (phosphorylated) form of this protein, and
not its total content, in comparison to the animals from the
control group [98]. JNK kinases influence apoptosis through
the activation of caspases and the changes in the expression of
genes associated with this process [101]. Furthermore, among
adult rats supplied with fluorine in drinking water, there was
an increased expression of the proapoptotic protein Bax and a
decreased expression of the apoptosis inhibiting Bcl-2. The
ana lys i s ca r r i ed ou t by means o f the t e rmina l
deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) method confirmed the increased intensity of apo-
ptotic processes in brain structures of the animals (the concen-
tration in drinking water, 60 and 120 mg/L) [60].

The results achieved in vivo were confirmed by in vitro
studies. In the culture of cells of the SH-SY5Y line, after
48 h of incubation with fluorine (40 and 80 mg/L), there
was an increase in the concentration of caspase-3 and in the
expression of Fas, Fas-L, caspase-3 and caspase-8. The activ-
ity of caspase-3 is regulated by the changes in the expression
and activity of other proapoptotic proteins, including caspase-
8 and caspase-9 that are activated in the mitochondrial path-
way. The damage of cells caused by the toxic influence of
fluorine leads to the activation of the mitochondrial pathway
of apoptosis through the activation of procaspase-8 by Fas and
the activation of caspase-3 which eventually initiates the deg-
radation of neurons [102].

Summary

Previous studies on fluorine neurotoxicity showed that one of
the main mechanisms that lead to the disturbances in central
nervous system homeostasis is oxidative stress. ROS act as
mediators in many processes and in high concentrations. They
are able to initiate cell damage and metabolism disorders [38].
Fluorine is responsible for both—increase in ROS synthesis
and lipid peroxidation and decrease in anti-oxidative enzyme
activity in neurons and glia [43]. An excessive intake of fluo-
ride is also responsible for the increase in AGE synthesis in
CNS which leads to synthesis of transcription factors and
proinflammatory substances including NF-kB, interleukins
and MAP kinases [43]. Moreover, fluorine causes glial cell
activation which is involved in inflammation in the brain and
change in the expression of proteins which regulate neuron
differentiation and proliferation and initiate apoptosis such as
NCAM, GFAP, BDNF, JNK, Bax and Bcl2 [17, 30, 60, 61,
101]. The accumulation of this element in CNS causes cyto-
logical changes within neurons (changes in tubulin expression
and concentration of Nissl bodies) and changes in neuron
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activity and their energy metabolism [1, 4, 9, 15, 30]. The
accumulation of fluorine in the nervous system influences
the synthesis of neurotransmitters, the activity of enzymes,
the expression of receptors and the plasticity of neurons
[105–107]. Numerous analyses carried out in in vivo and
in vitro models confirmed that prolonged exposure to high
concentrations of fluorine leads to the degeneration of neurons
[1, 60].

The central nervous system during development is highly
sensitive to the influence of fluorine due to its weakened pro-
tective mechanisms. In the childhood period, exposure to this
element may cause permanent damage to the functions of all
brain structures [103, 104]. Among both young and adult
specimens exposed to the toxic influence of high doses of
fluorine, we can observe impaired ability to learn, distur-
bances in memory and information processing and behaviour-
al problems. All of these cause a decrease in the quality of life
[42]. Numerous reports concerning the occurrence of endemic
fluorosis lead to the establishment of an accepted concentra-
tion of fluorine in drinking water by the World Health
Organization (WHO) at a level of which the element does
not accumulate excessively in the human organism and does
not cause adverse effects. The current value is set at 1.5 mg/L
[1, 2]. However, recent findings concerning the toxic influ-
ence of this element on the nervous system, especially dan-
gerous in relation to developing organisms, lead to higher
restrictions in countries where fluorosis occurs frequently.
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