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Abstract The effects of temperature and composition on the density and viscosity of pure

benzothiophene and ionic liquid (IL), and those of the binary mixtures containing the IL

1-butyl-1-methylpyrrolidynium tricyanomethanide ([BMPYR][TCM] ? benzothiophene),

are reported at six temperatures (308.15, 318.15, 328.15, 338.15, 348.15 and 358.15) K

and ambient pressure. The temperature dependences of the density and viscosity were

represented by an empirical second-order polynomial and by the Vogel–Fucher–Tammann

equation, respectively. The density and viscosity variations with compositions were

described by polynomials. Excess molar volumes and viscosity deviations were calculated

and correlated by Redlich–Kister polynomial expansions. The surface tensions of benzo-

thiophene, pure IL and binary mixtures of ([BMPYR][TCM] ? benzothiophene) were

measured at atmospheric pressure at four temperatures (308.15, 318.15, 328.15 and

338.15) K. The surface tension deviations were calculated and correlated by a Redlich–

Kister polynomial expansion. The temperature dependence of the interfacial tension was

used to evaluate the surface entropy, the surface enthalpy, the critical temperature, the

surface energy and the parachor for pure IL. These measurements have been provided to

complete information of the influence of temperature and composition on physicochemical

properties for the selected IL, which was chosen as a possible new entrainer in the sepa-

ration of sulfur compounds from fuels. A qualitative analysis on these quantities in terms of

molecular interactions is reported. The obtained results indicate that IL interactions with

benzothiophene are strongly dependent on packing effects and hydrogen bonding of this IL

with the polar solvent.
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1 Introduction

New international regulations require the removal of low level sulfur compounds such as

thiophene, benzothiophene, methyldibenzothiophenes, 4,6-dibenzothiophenethiols, thio-

ethers, and disulfides from fuels. From an industrial point of view these are new challenges

to decrease the sulfur content in diesel fuel in the USA and Europe [1, 2]. The total sulfur

content in European gasoline and diesel fuels must be at a maximum concentration of

10 ppm [2]. Thus, the emission of sulfur from petrol and diesel oils, which is linked to acid

rain phenomena, plays a crucial role in pollution problems of large conglomerates. The

hydrodesulfurization (HDS) process, the established method used in industrial technologies

to remove organic sulfur compounds from fuels, cannot achieve these low sulfur targets

and uses higher temperature, higher pressure, larger reactor volumes and more active

catalysts [3]. Therefore, the easy liquid–liquid equilibrium (LLE) extraction process is

proposed for deep desulfurization with ionic liquids (ILs) [4–7]. ILs are not volatile, are

nonflammable and show excellent solvation capacity mainly via hydrogen bonding. Great

effort has been made to design and synthesize novel ILs to match potential applications

such as media for extraction processes [4–14]. ILs that consist of a short alkane chain with

polar groups such as oxygen, or nitryle, or hydroxyl substituent in cation and cyano-

subgroups in the anion, are expected to be good entrainers in many separation processes.

The application of ILs in the desulfurization process has already been reported in the

literature [7–14]. It is therefore a challenge to design ILs that incorporate progressively

larger extraction selectivity, while maintaining viscosity, density and surface tension

convenient for a new technology.

Several recent attempts have focused on the design and synthesis of ILs with high

selectivity for the separation of sulfur compounds from alkanes. The 1-alkylpyrrolidinium-

based ILs with different anions [14] have been recently studied in our laboratory in ternary

LLE (IL ? thiophene ? heptane) mixtures at T = 298.15 K. The highest selectivity

(Smax = 133.4) with high solute distribution ratio (b = 3.47) was found for 1-butyl-1-

methylpyrrolidinium tricyanomethanide [BMPYR][TCM] [14]. However, larger extraction

parameters are presented by 1-ethyl-3-methylimidazolium tricyanomethanide,

[EMIM][TCM] [13]. Promising results in ternary LLE measurements were obtained also

with 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [EMIM][NTf2]

[11], and 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB] [14].

The current work represents a continuation of our systematic study on desulfurization of

fuels. We have just reported experimental ternary LLE data for three ILs, which we

expected to show high selectivity for the extraction of thiophene: 1-butyl-1-methylpyrro-

lidinium trifluoromethanesulfonate, [BMPYR][CF3SO3], 1-butyl-1-methylpyrrolidinium

tricyanomethanide, [BMPYR][TCM], and 1-hexyl-3-methylimidazolium tetracyanoborate,

[HMIM][TCB] [14]. Therefore, we thought it quite possible that the incorporation of the

pyrrolidinium cation and the tricyanomethanide anion would improve the extraction

activity of benzothiophene. The ternary systems {IL (1) ? thiophene or benzothiophene

(2) ? heptane (3)} were measured at T = 308.15 K and ambient pressure. The

[BMPYR][TCM] was found to show high selectivity in the desulfurization process.
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Recently, very good results for the extraction of sulfur compounds from model mixtures of

real fuels were also obtained with tricyanomethanide-based, [TCM]-, ILs [7]. The

extraction of thiophene and dibenzothiophene (about 95 wt%) was reported for their

simultaneous separation from alkanes with pyridine-based and imidazolium-based ILs [7].

Liquid–liquid extraction, such as extraction of benzothiophene from petrol and diesel

oils, is greatly affected by viscosity and liquid surface tension. Knowledge about the

physicochemical properties such as density, viscosity, or surface tension and thermody-

namic surface properties is necessary in order to design any process involving ILs on an

industrial scale [15]. The excess functions calculated from viscosity and density of binary

systems play a very important role in the understanding of molecular interactions that exist

in the bulk of liquids and on the surface. Recently, we published new data for N-octyl-

isochinolinium bis{(trifluoromethyl)sulfony}imide, [OiQuin][NTf2], for possible extrac-

tion of 2-phenylethanol from the aqueous phase [16], and for 1-alkyl-cyanopyridinium-

based ILs [17] as well as [EMIM][TCM] [18], for possible extraction of sulfur compounds

from fuels. As in all hydrogen-bonded liquids, the structural organization of constituents

makes ILs behave as very viscous fluids. The high viscosity of ILs is widely known and

usually destroys the mass transport of extractants in new IL-entrainers and limits their

generalized use for a variety of applications. Studies of physicochemical properties,

besides helping in deciding limits of increase in temperature for the desired applications,

are expected to reflect the molecular interactions in binary systems.

Liquid surface tension as an equilibrium thermodynamic property is important for

engineering aspects related to use of the IL as an entrainer. Surface tension of a liquid is

related to the intermolecular interaction potential energy and the liquid interfacial

microstructure. Knowledge of the impact of temperature on the surface tensions of fluids is

essential for most industrial applications. In recent years, measurements of the experi-

mental surface tension data has been focused mainly on imidazolium-based ILs, which are

air and moisture stable, and their binary solutions with alcohols and water [19, 20]. The

surface tensions of ILs are usually lower than that of water (71.98 mN�m-1 at

T = 293.15 K, 0.1 MPa, [21]); for example, for 1-ethyl-3-methylimidazolium tricyano-

methanide it is 50.94 mN�m-1 at T = 298.15 K [18].

The current work represents a continuation of our systematic study on desulfurization of

fuels and physicochemical properties of ILs. We report an experimental investigation of

the density, viscosity and surface tension for the pure IL, [BMPYR][TCM], and benzo-

thiophene, as well as of binary mixtures containing ([BMPYR][TCM] ? benzothiophene)

as a function of temperature and composition at ambient pressure.

Using the quasi-linear variation of surface tension with temperature observed for the

pure IL, the surface thermodynamic properties, such as surface entropy, surface enthalpy,

surface energy, the critical temperature and parachor were determined. The data obtained

were analyzed to determine the effect of temperature on fundamental physicochemical and

thermodynamic properties.

2 Experimental Section

2.1 Materials

The sample of 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM], was

from Iolitec (C0.98 mass fraction), Mw = 232.32 g�mol-1, CAS No. 878027-72-6. The

sample was dried for several days at 300 K under reduced pressure to remove volatile

J Solution Chem (2014) 43:1929–1946 1931

123



impurities and trace water and was then stored in a desiccator under an inert atmosphere.

Benzothiophene, Sigma Aldrich Chemie GmbH (C0.99 mass fraction), CAS No. 95-15-8,

was stored over freshly activated molecular sieves (4Å, Union Carbide).

The structure of [BMPYR][TCM] is shown in Scheme 1. Physical properties: density,

q, dynamic viscosity, g, and surface tension, r, of pure IL and benzothiophene, together

with the literature data, are listed in Table 1 [22–24].

The water content was analyzed by Karl Fischer titration (method TitroLine KF). The

sample of IL, or solvent, was dissolved in methanol and titrated in steps of 0.0025 cm3.

The error in the water content is ±10 ppm by mass for the 3 cm3 of injected IL. The water

content in solvents used was less than 350 ppm by mass.

2.2 Density Measurements

The densities of the chemicals used and their mixtures were measured using an Anton Paar

GmbH 4500 vibrating-tube densimeter (Graz, Austria) thermostatted over the

(308.15–358.15) K temperature range. The temperature was controlled with two integrated

Pt 100 platinum thermometers providing good precision of (±0.01 K). The densimeter

includes an automatic correction for the viscosity of the sample. The apparatus is precise to

within 1 9 10-5 g�cm-3, and the overall uncertainty of the measurements was estimated to

be better than 5 9 10-5 g�cm-3. The calibration of the densimeter was performed at

atmospheric pressure using doubly distilled and degassed water {CAS: 77-32-18-5; Anton

Paar GmbH, liquid density standard, density, 0.99820 ± 0.00002 g�cm-3 (293.15 K);

Table 1 Physical properties: density, q, dynamic viscosity, g and surface tension, r of pure ionic liquid and
benzothiophene at T = 308.15 K

qexpt.

(g�cm-3)
qlit. (g�cm-3) gexpt.

(mPa�s)
glit.

(mPa�s)
rexpt.

(mN�m-1)
rlit.

(mN�m-1)

[BMPYR][TCM] 1.00076 1.00066a 20.565 – 48.04 –

Benzothiophene 1.15081 1.15055b 2.941 2.517c 34.49 42.6c

1.14860c

(309.15 K)

a Extrapolated value from Ref. [22]
b Ref. [23]
c Ref. [24]

N+
C-

N

N

N

1-Butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM] 

Scheme 1 The chemical structure of [BMPYR][TCM]
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literature density 0.9982323 g�cm-3 (293.15 K, KNOVEL DIPPR); conductivity, j = 8

lS}, specially-purified benzene (CAS: 71-43-2; standard CHE USC 11; CHEMIPAN,

Poland, 0.9999 in mass fraction), and dried air. The data are similar to the literature data of

different ILs [14, 16–18].

2.3 Viscosity Measurements

Viscosity measurements were carried out in an Anton Paar BmbH AMVn (Graz, Austria)

programmable rheometer, with a nominal uncertainty of ±0.1 % and reproducibility

\0.05 % for viscosities from 2.54 to 370 mPa�s. Temperature was controlled internally

with a precision of ± 0.01 K in the range from 308.15 to 358.15 K. The diameter of the

capillary was 1.8 mm for viscosities from 2.5 to 70 mPa�s. The diameter of the balls was

1.5 mm.

2.4 Surface Tension Measurements

The surface tension measurements were made with a Tensiometer (KSV Sigma 701

System Finland) using a Du-Noüy ring taking into account the Zuidema Waters correction.

Measurements were performed using the ring method that is widely used [25] since the

studies of Harkins and Jordan [26] that improved the accuracy and established tables of

correction factors based on the work of Freund and Freund [27]. The force acting on the

balance was recorded with respect to time. The maximum value of the downward force

was used to calculate the surface tension. All measurements were repeated three to five

times. The equipment has both a control and a mechanic unit that are connected to a PC-

controlled instrument for the precise measurement of a liquid with an uncertainty of ±0.04

mN�m-1. Temperature was maintained at the desired value within ±0.1 K.

3 Results and Discussion

3.1 Effect of Temperature and Composition on Density and Viscosity

The experimental data of density, q, and dynamic viscosity, g, as a function of mole

fraction, x1, of the {[BMPYR][TCM] (1) ? benzothiophene (2)} system at different

temperatures are listed in Table 2.

Fit parameters with R2 = 1 for the empirical correlation (see Eqs. 1 and 2) of the

density as a function of temperature (a0, a1and a2) and concentration (bi), for pure sub-

stances and for mixtures, are listed in Tables 1S and 2S in the supplementary material

(SM), respectively:

q ¼ a2T2 þ a1T þ a0 ð1Þ

q ¼ b4x4
1 þ b3x3

1 þ b2x2
1 þ b1x1 þ b0 ð2Þ

The density of [BMPYR][TCM] is lower than that of benzothiophene, but the viscosity is

almost ten times higher. The densities of the IL range in values from 1.00076 g�cm-3 at

T = 308.15 K (q = 1.00066 g�cm-3, extrapolated value from [22]) to 0.97100 g�cm-3 at

T = 358.15 K, and of benzothiophene from 1.15081 g�cm-3 at T = 308.15 K to
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1.10592 g�cm-3 at T = 358.15 K. Immiscibility in the binary solutions of {[BMPYR][TCM]

(1) ? benzothiophene (2)} was observed in our ternary LLE measurements [13, 28]. The data

presented in this work do not cover the compositions at the immiscibility gap (see Figs. 1, 2).

Table 2 Experimental density, q, excess molar volume, VE, dynamic viscosity, g, and viscosity deviation,
Dg for the {[BMPYR][TCM] (1) ? benzothiophene (2)} binary system as a function of temperature and
composition

X1 308.15 318.15 328.15 338.15 348.15 358.15

q (g�cm-3)

1.0000 1.00076 0.99469 0.98868 0.98273 0.97684 0.97100

0.8888 1.01123 1.00505 0.99893 0.99287 0.98687 0.98094

0.7788 1.02282 1.01653 1.01030 1.00412 0.99800 0.99193

0.6435 1.03924 1.03277 1.02637 1.02003 1.01374 1.00750

0.4733 1.06393 1.05721 1.05054 1.04392 1.03735 1.03081

0.3889 1.07814 1.07125 1.06440 1.05759 1.05082 1.04410

0.3233 1.09010 1.08302 1.07599 1.06900 1.06205 1.05512

0.0000 1.15081 1.14183 1.13285 1.12388 1.11490 1.10592

VE (cm3�mol-1)

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.8888 -0.3639 -0.3787 -0.3946 -0.4114 -0.4295 -0.4533

0.7788 -0.7035 -0.7356 -0.7698 -0.8040 -0.8406 -0.8794

0.6435 -1.1136 -1.1626 -1.2170 -1.2746 -1.3344 -1.3977

0.4733 -1.5617 -1.6362 -1.7141 -1.7951 -1.8804 -1.9675

0.3889 -1.7296 -1.8128 -1.8989 -1.9873 -2.0795 -2.1774

0.3233 -1.8067 -1.8904 -1.9789 -2.0704 -2.1664 -2.2641

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

g (mPa�s)

1.0000 20.56 15.44 12.00 9.59 7.81 6.47

0.8888 18.76 14.10 10.97 8.77 7.16 5.93

0.7788 17.03 12.77 9.95 7.96 6.49 5.38

0.6435 14.78 11.13 8.69 6.96 5.67 4.74

0.4733 11.92 9.01 7.10 5.68 4.65 3.88

0.3889 10.45 7.87 6.19 4.98 4.10 3.44

0.3233 9.23 6.89 5.41 4.36 3.59 3.03

0.0000 2.94 2.06 1.74 1.49 1.29 1.14

Dg (mPa�s)

1.0000 0.00 0.00 0.00 0.00 0.00 0.00

0.8888 0.15 0.15 0.11 0.08 0.07 0.05

0.7788 0.36 0.29 0.22 0.15 0.11 0.09

0.6435 0.50 0.46 0.34 0.25 0.18 0.16

0.4733 0.64 0.61 0.50 0.36 0.27 0.22

0.3889 0.66 0.61 0.45 0.34 0.27 0.22

0.3233 0.59 0.50 0.3 0.25 0.19 0.16

0.0000 0.00 0.00 0.00 0.00 0.00 0.00

a Standard uncertainties u are as follows: u(x1) = ± 1 9 10-4, u(q) = ± 1 9 10-4 g�cm-3,
ur(g) = ± 3 % and u(T) = ± 0.01 K
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The viscosity decreases with increasing benzothiophene content. The dynamic viscosity

of the pure IL and the mixtures as a function of temperature, through the whole compo-

sition range, was correlated by the well-known Vogel–Fulcher–Tammann, VFT equation

[29–31],

g ¼ CT0:5 exp
D

T � T0

� �
ð3Þ

The fit parameters, determined empirically, are in general C, D and T0 when a linear

relation is observed between logarithmic value of gT0.5 and (T - T0)-1. For the best

0.96

1.01

1.06

1.11

1.16

300 310 320 330 340 350 360

ρ
/ g
·c

m
-3

T / K

Fig. 1 Density, q, for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures as a function of
temperature at different IL mole
fraction, x1: (filled circle) 1.0000,
(open circle) 0.8888, (filled
triangle) 0.7788, (open triangle)
0.6435, (filled diamond) 0.4733,
(open diamond) 0.3889, (filled
square) 0.3233, and (open
square) 0.0000. Solid lines
represent the polynomial with
parameters given in Table 1S in
the supplementary material

0.96

1.01

1.06

1.11

1.16

0.0 0.2 0.4 0.6 0.8 1.0

ρ
/ g
·c

m
- 3

x1

Fig. 2 Density, q, for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures as a function of
concentration x1 at different
temperatures: (filled circle)
308.15 K, (open circle) 318.15,
(filled triangle) 328.15 K, (open
triangle) 338.15 K, (filled
diamond) 348.15 K, and (open
diamond) 358.15 K. Solid lines
represent the polynomial with
parameters given in Table 2S in
the supplementary material. The
dotted line represents the
immiscibility gap [14]
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correlation of the experimental curves, the value of T0 = 118.01 K (Tg,1 = 178.01 K [32]

-60 K) was used in the calculations. A single value of the parameter T0 was used for

different concentrations. Figure 3 depicts the dynamic viscosity as a function of temper-

ature. The temperature dependence of viscosity becomes distinctly nonlinear, especially at

low benzothiophene content. The parameters C and D from Eq. 3 change smoothly with

composition for the system, as shown in Table 3S in the supplementary material.

The composition dependence of viscosity was described by the following polynomial:

g ¼ c3x3
1 þ c2x2

1 þ c1x1 þ c0 ð4Þ

The parameters of the correlation are listed in Table 4S in the supplementary material

and the calculated lines are shown in Fig. 4. The dynamic viscosity of the IL changes from

20.56 mPa�s at T = 308.15 K to 6.47 mPa�s at T = 358.15 K, and for benzothiophene

from 2.94 mPa�s at T = 308.15 K to 1.14 mPa�s at T = 358.15 K. The values of viscosity

presented in this work are higher than that reported for [EMIM][TCM] [18], which was

suggested as a very good entrainer for the extraction of sulfur compounds from alkanes.

ILs exhibit high viscosities that are usually higher than those for molecular organic sol-

vents. Both density and viscosity decrease with an increase of temperature.

The values of excess molar volumes, Vm
E, of the mixtures formed from two polar

compounds are the result of a number of effects which may contribute terms differing in

sign. Disruption of H-bonds in the IL molecules makes a positive contribution, but specific

interaction between two dissimilar molecules makes negative contributions to Vm
E. The

free-volume effect, which depends on differences in the characteristic pressures and

temperatures of the components (described by Flory formalism [33]), makes a negative

contribution. Packing effects or conformational changes of the molecules in the mixtures

are more difficult to categorize. However, interstitial accommodation and the effect of the

condensation give further negative contributions.

0

5

10

15

20

25

300 310 320 330 340 350 360

η
/ m

Pa
·s

T / K

Fig. 3 Dynamic viscosity, g, as
a function of temperature for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures at different IL
mole fraction, x1: (filled circle)
1.0000, (open circle) 0.8888,
(filled triangle) 0.7788, (open
triangle) 0.6435, (filled
diamonds) 0.4733, (open
diamonds) 0.3889, (filled square)
0.3233 and (open square) 0.0000.
Solid lines represent the VFT
equation with parameters given
in Table 3; the dotted line
represents the immiscibility gap
[14]
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Experimental excess molar volume Vm
E data of {[BMPYR][TCM] (1) ? benzothiophene

(2)} are listed in Table 2. The data were correlated by the well-known polynomial Red-

lich–Kister equation (Eq. 5):

VE
m ¼ x1ðx1 � 1Þ

Xi¼3

i¼0

Aið1� 2x1Þi�1 ð5Þ

rV ¼
Xn

i¼1

ðVEðexp:Þ
m � VEðcalc:Þ

m Þ=ðn� kÞ
( )" #1=2

ð6Þ

where x1 is the mole fraction of the IL and Vm
E is the molar excess volume. The values of

the parameters (Ai) were determined using the least-squares method. The fit parameters are

summarized in Table 5S in the supplementary material, along with the corresponding

standard deviations, rV, for the correlations (Eq. 6), where n is the number of experimental

points and k is the number of coefficients. The values of Vm
E, as well as the Redlich–Kister

fits, are plotted in Fig. 5 as a function of the mole fraction. The Vm
E values exhibit negative

deviations from ideality over the entire composition range. The graph also shows the

unsymmetrical variation of these excess molar volumes with composition. The minimum

of Vm
E is close to -1.8067 cm3�mol-1, at mole fraction x1 = 0.3233 (at T = 308.15 K) and

is shifted to lower values of mole fraction of the IL. The values of Vm
E decrease as the

temperature increases. The strength of interactions between the IL and benzothiophene is

at its highest and most negative at the higher temperature. This has to be the result of a

more efficient packing effect rather than due to interactions at higher temperature.

The values of the excess dynamic viscosity, Dg, are listed in Table 2. These values were

correlated with the following Redlich–Kister equation:

Dg ¼ x1ðx1 � 1Þ
Xi¼3

i¼0

Bið1� 2x1Þi�1 ð7Þ

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

η
/ m

Pa
·s

x1

Fig. 4 Dynamic viscosity, g, as
a function of ionic liquid mole
fraction, x1, for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures at different
temperatures: (filled circle)
308.15 K, (open circle) 318.15,
(filled triangle) 328.15 K, (open
triangle) 338.15 K, (filled
diamond) 348.15 K, and (open
diamond) 358.15 K. Solid lines
represent the polynomial with
parameters given in Table 4S in
the supplementary material; the
dotted line represents the
immiscibility gap [14]
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rDg ¼
Xn

i¼1

ðDgexp � DgcalcÞ=ðn� kÞ
( )" #1=2

ð8Þ

The parameters are listed in Table 6S in the supplementary material. Figure 6 shows the

positive values of the excess dynamic viscosity for this binary system with Dgmax mini-

mally shifted to a lower IL mole fraction.

3.2 Effect of Temperature and Composition on the Surface Tension

The values of surface tension, r, of [BMPYR][TCM] at different temperatures (308.15 K

to 338.15 K) are listed in Table 3. Within the present study, the surface tension of

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

V
E

/ c
m

3 ·m
ol

- 1

x1

Fig. 5 Excess molar volume,
VE, versus the ionic liquid mole
fraction, x1, for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures at different
temperatures: (filled circle)
308.15 K, (open circle) 318.15,
(filled triangle) 328.15 K, (open
triangle) 338.15 K, (filled
diamond) 348.15 K, and (open
diamond) 358.15 K. The solid
line represented the Redlich–
Kister equation with parameters
given in Table 5S; the dotted line
represents the immiscibility gap
[14]

-0.1

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

∆η
/ m

Pa
·s

x1

Fig. 6 Dynamic viscosity
deviation, Dg, versus ionic liquid
mole fraction, x1 for the
{[BMPYR][TCM]
(1) ? benzothiophene (2)}
binary mixtures at different
temperatures: (filled circle)
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line represents the Redlich–
Kister equation with parameters
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dotted line represents the
immiscibility gap [14]
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[BMPYR][TCM] at T = 308.15 K is 48.04 mN�m-1. This value is much higher than those

for other, mainly imidazolium, ILs [19], but is very similar to the tricyanamide-based IL

[EMIM][TCM] measured by us (49.91 mN�m-1 at T = 298.15 K) [18]. The surface ten-

sion is much higher for the IL than for benzothiophene and decreases with increasing

concentration of benzothiophene, implying that the benzothiophene molecules tend to

adsorb at the air–solution interface due to it hydrophobicity. The surface tension decreases

with an increase of temperature, which is typical for organic solvents.

The correlation of the surface tension as a function of temperature and composition was

represented with the equations:

r ¼ d1T þ d0 ð9Þ

r ¼ e3x3
1 þ e2x2

1 þ e1x1 þ e0 ð10Þ

The obtained parameters are shown in Tables 7S and 8S in the supplementary material

for temperature and composition dependences, respectively. The surface tension decreases

with an increase of temperature and of benzothiophene content in the binary mixtures (see

Figs. 7, 8).

The absence of a breakpoint in this mixture confirms the special interactions observed in

the LLE in its ternary system [11–14]. These properties cannot be deduced using phase

equilibrium data only. A regularly increasing value of the solution surface tension indicates

that the two compounds, the IL and benzothiophene, are present at the gas/liquid interface.

The [BMPYR][TCM] IL is a complex molecule, in which the Columbic forces, hydrogen

bonds and van der Waals forces all are present in the interaction between the cation and

anion, as well as between the dissimilar molecules in the solution, with the hydrogen bonds

being probably the most important forces in the IL at higher mole fractions. This can be

explained by the high capacity of benzothiophene to form p-p interactions, making pos-

sible an easy accommodation of benzothiophene into the IL’s structure. On the other hand

Table 3 Experimental surface
tension, r, and surface tension
deviation, Dr, for the
{[BMPYR][TCM] (1) ? benzo-
thiophene (2)} binary system as a
function of temperature and
composition

a Standard uncertainties u are as
follows: u(x1) = ± 1 9 10-4,

u(r) = ± 0.1 mN�m-1 and
u(T) = ± 0.01 K

x1 308.15 318.15 328.15 338.15

r (mN�m-1)

1.0000 48.04 47.59 47.04 46.39

0.8888 47.63 47.08 46.59 45.99

0.6435 46.55 46.08 45.41 44.84

0.4733 45.65 45.05 44.39 43.60

0.3889 45.03 44.37 43.61 42.82

0.3233 44.24 43.58 42.80 42.10

0.0000 34.49 33.40 32.12 30.41

Dr (mN�m-1)

1.0000 0.00 0.00 0.00 0.00

0.8888 1.10 1.07 1.20 1.37

0.6435 3.34 3.55 3.69 4.15

0.4733 4.75 4.93 5.21 5.63

0.3889 5.27 5.45 5.69 6.20

0.3233 5.36 5.59 5.86 6.52

0.0000 0.00 0.00 0.00 0.00
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benzothiophene, in comparison with alcohols, is not a substance forming associates

between similar molecules, and thus theoretically fewer molecules are free to interact with

the IL in the solution and adsorb on the air–liquid surface. The surface tension of the
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Fig. 7 Surface tension, r, as a function of temperature for the {[BMPYR][TCM] (1) ? benzothiophene
(2)} binary mixtures at different IL mole fraction, x1: (Black filled circle) 1.0000, (open circle) 0.8888,
(filled triangle) 0.7788, (open triangle) 0.6435, (filled diamond) 0.4733, (open diamond) 0.3889, (filled
square) 0.3233, and (open square) 0.0000. Solid lines represent the polynomial with parameters given in
Table 7S in the supplementary material
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Fig. 8 Surface tension, r, as a function of IL mole fraction, x1, for the {[BMPYR][TCM] (1) ? benzo-
thiophene (2)} binary mixtures at different temperatures: (filled circle) 308.15 K, (open circle) 318.15,
(filled triangle) 328.15 K, and (open triangle) 338.15 K. Solid lines represent the polynomial with
parameters given in Table 8S in the supplementary material
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{[BMPYR][TCM] ? benzothiophene} solutions present formally similar patterns to those

measured earlier [EMIM][TCM] [18]. According to our results, the regular decrease of the

surface tension observed with decreasing IL mole fraction confirms that this behavior can

be explained by strong interaction (IL ? benzothiophene) within the investigated mole

fraction region (see Fig. 8).

For the better understanding the results of this work, the surface tension deviation (Dr)

was calculated according to the equation:

Dr ¼ r�
X2

i¼0

xiri ð11Þ

where xi and Dri are the mole fraction and surface tension deviation of component i,

respectively. The surface tension deviations were correlated by means of the Redlich–

Kister equation in the following form:

Dr ¼ x1ðx1 � 1Þ
Xi¼3

i¼0

Cið1� 2x1Þi�1 ð12Þ

where xi and Dri are the mole fraction and surface tension deviation of component i,

respectively. The surface tension deviations at different temperatures are listed in Table 3.

The values of parameters Ci/(mN�m-1) have been determined using the least-squares

method:

rDr ¼
Xn

i¼1

ðDrexp � DrcalcÞ=ðn� kÞ
( )" #1=2

ð13Þ

The standard deviation, rDr, is given by the formula (Eq. 13) where n is the number of

experimental points and k is the number of coefficients. The parameters and standard

deviations rDr are listed in Table 9S in the supplementary material. The values of Dri are

positive for all compositions of {[BMPYR][TCM] (1) ? benzothiophene (22)} over the

measured composition range as can be seen in Fig. 9. The maximum value of Dri is

5.36 N�m-1 and shifts to a lower mole fraction of the IL, x1 = 0.3233 at T = 388.15 K.

Values of Dri increase with an increase of temperature. This is similar to observations for

[EMIM][TCM] [18], but opposite to that observed for (IL ? an alcohol) binary mixtures

[34–36]. Changes with temperature may be attributed to diminishing of the hydrogen

bonding between cation and anion in the IL, and then a new distribution of interactions

exists at the surface and in the bulk region.

The measurements of the surface tension as a function of temperature provide the

possibility of calculating the surface thermodynamic functions in the measured tempera-

ture range (308.15–338.15) K. The surface entropy (Sr) and the surface enthalpy (Hr) were

calculated from the following equations [37, 38]:

Sr ¼ � dr
dT

ð14Þ

Hr ¼ r� T
dr
dT

� �
ð15Þ

The thermodynamic functions for [BMPYR][TCM] at T = 308.15 K are listed in

Table 4. The surface entropy is quite high {Sr = (55.00 ± 0.05) 9 10-6 N�m-1�K-1 at
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T = 308.15 K}, but lower than that for [EMIM][TCM] {Sr = (10.61 ± 0.08) 9 10-5

N�m-1�K-1 at T = 298.15 K [18] }, and higher than those for many ionic liquids [16, 17,

19, 36]. The lower is the surface entropy, the lower is the surface organization of the

solution. The lower value of entropy of the IL shows that the partial molar entropy of the

IL decreases at the contact between the IL and air in the surface region. The surface

enthalpy {Hr = (64.98 ± 0.05) 9 10-3 N�m-1 at T = 308.15 K} is lower than those

observed for [EMIM][TCM] (T = 298.15 K) [18] and other ionic liquids [16, 17, 19, 36].

Because of the negligible vapour pressure of the IL, the critical temperature, (Tc) can be

estimated from the measurements of surface tension as a function of temperature according

to following two formulae:

r
M

q

� �2=3
¼ K TE

c � T
� �

ð16Þ

r ¼ Er 1� T

TG
c

� �11=9
ð17Þ
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Fig. 9 Surface tension deviation, Dr, versus ionic liquid mole fraction, x1, for the {[BMPYR][TCM]
(1) ? benzothiophene (2)} binary mixtures at different temperatures: (filled circle) 308.15 K, (open circle)
318,15, (filled triangle) 328.15 K, and (open triangle) 338.15 K. The solid line represents the Redlich–
Kister equation with parameters given in Table 9S in the supplementary material

Table 4 Surface thermodynamic functions for the pure ionic liquid [BMPYR][TCM] at temperature

T = 308.15 K: surface entropy, Sr, surface enthalpy, Hr, critical temperatures, TE
c and TG

c , and surface

energy, Er

106 Sr (N�m-1�K-1) 103 Hr (N�m-1) TE
c (K) TG

c (K) Er (mN�m-1)

55.0 64.98 1646 1377 65.46
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The critical temperature may be calculated from the Eötvös equation, (Eq. 16) [39],

where K is a constant, q/(g�cm-3) is the density, M/(g�mol-1) is the molar mass, T/(K) is

the temperature of the measured surface tension r/(N�m-1), and TE
c /(K) is the Eötvös

critical temperature. The critical temperature can be also calculated from the alternative

van der Waals–Guggenheim equation (Eq. 17) for traditional organic liquids [38, 40],

where Er is the total surface energy of the IL, which equals the surface enthalpy as long as

there is negligible volume change due to thermal expansion at temperatures well removed

from the Guggenheim critical temperature TG
c /(K). The critical temperatures in this work,

calculated from (Eqs. 16 and 17) and the total surface energy of the IL, are presented in

Table 4. The two obtained values of the critical temperatures differ slightly from each

other, (TE
c /(K) = 1646 and TG

c /(K) = 1377), and are higher than those of other ILs [16,

17, 19, 36]. The total surface energy of the IL is equal to 65.46 ± 0.05 mN�m-1 at

T = 308.15 K, which is twice as large as that for 1-butyl-3-cyanopyridinium bis{(tri-

fluoromethyl)sulfonyl}imide, [BCN3Py][NTf2] [17], and similar to [EMIM][TCM]

(T = 298.15 K) [18]. According to the corresponding states correlations, in both equations

(Eqs. 16 and 17) the surface tension becomes null at the critical temperature [40].

Using the definition of parachor (Eq. 18) and the measured density in a range of

temperature (308.15 to 338.15) K, the parachor was calculated and the values are listed in

Table 5.

P ¼ Mr1=4

q
ð18Þ

The obtained value, 616.18 at T = 308.15 K (mN�m-1)1/4�cm3�mol-1, is similar to

many values published earlier for other ILs [16, 17, 19, 36].

4 Conclusions

The density, viscosity and surface tension of 1-butyl-1-methylpyrrolidinium tricyano-

methanide, [BMPYR][TCM], were measured. The consequences of adding different

amounts of benzothiophene and increasing the temperature were investigated. Through

density, viscosity and surface tension measurements, it is established that both the increase

in temperature and addition of benzothiophene lead to decreases in Coulombic, hydrogen

bonding and van der Waals interactions and hence to structural disorder in the ionic liquid.

Negative deviations in the range of measured mole fraction were observed for the

excess molar volumes, Vm
E, and positive deviations were observed for both the excess

dynamic viscosity, Dg, and surface tension deviation, Dr. The results show that addition of

benzothiophene increases the density but decreases the viscosity and surface tension of the

Table 5 The parachor, P, for the
pure IL [BMPYR][TCM] in the
temperature range
T = (308.15–338.15) K

T (K) P (mN1/4�m-1/4�cm3�mol-1)

308.15 616.2 ± 0.1

318.15 618.5 ± 0.1

328.15 620.4 ± 0.1

338.15 622.0 ± 0.1
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mixture, which results in a loss of structural order at the interface and in the bulk of the IL.

The molecular interpretation of the possible interactions for similar and dissimilar mole-

cules, together with the packing effects, were discussed for the measured properties pre-

sented here.

The [BMPYR][TCM] IL presents surface tension value of the same order as observed

for conventional ionic liquids and much higher than those reported for common organic

solvents. The thermodynamic functions of the surface, such as surface entropy and

enthalpy, were found to be similar to, or lower than those reported for other ILs. The

molecular interpretation of the possible cross-hydrogen bonding between the IL and

benzothiophene is difficult because of the immiscibility gap at low IL mole fractions. Thus,

the negative excess molar volume data may be interpreted in terms of the packing effect.

The packing effects or conformational changes of the molecules play a decisive role in the

formation of associates in the solution and of the gas/liquid interface. Values of the

parachor derived from the temperature dependence of the surface tension values are

believed to be accurate enough for engineering calculations. The comparison made with

[EMIM][TCM] [18], measured earlier, shows that the nature of the anion is the dominant

factor in determining the extraction process, while changing the cation plays a minor role.

Both ILs are similar in their nonaggregation behavior with thiophene or benzothiophene

and their surface thermodynamic functions.

The results of the correlations with the second order polynomials, Redlich–Kister

equation, and VFT equation for density, viscosity, excess molar volumes, viscosity devi-

ation, surface tension and the surface tension deviation were presented, each with very low

standard deviations.
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