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Abstract Cardiac arrhythmias are associated with raised in-
tracellular [Ca2+] and slowed action potential conduction
caused by reduced gap junction (GJ) electrical conductance
(Gj). Ventricular GJs are composed of connexin proteins
(Cx43), with Gj determined by Cx43 phosphorylation status.
Connexin phosphorylation is an interplay between protein ki-
nases and phosphatases but the precise pathways are un-
known. We aimed to identify key Ca2+-dependent phosphor-
ylation sites on Cx43 that regulate cardiac gap junction con-
ductance and action potential conduction velocity. We inves-
tigated the role of the Ca2+-dependent phosphatase, calcine-
urin. Intracellular [Ca2+] was raised in guinea-pig myocardi-
um by a low-Na solution or increased stimulation. Conduction
velocity and Gj were measured in multicellular strips.
Phosphorylation of Cx43 serine residues (S365 and S368)
and of the intermediary regulator I1 at threonine35 was

measured by Western blot. Measurements were made in the
presence and absence of inhibitors to calcineurin, I1 or protein
phosphatase-1 and phosphatase-2.

Raised [Ca2+]i decreased Gj, reduced Cx43 phosphoryla-
tion at S365 and increased it at S368; these changes were
reversed by calcineurin inhibitors. Cx43-S368 phosphoryla-
tion was reversed by the protein kinase C inhibitor
chelerythrine. Raised [Ca2+]i also decreased I1 phosphoryla-
tion, also prevented by calcineurin inhibitors, to increase ac-
tivity of the Ca2+-independent phosphatase, PPI. The PP1 in-
hibitor, tautomycin, prevented Cx43-365 dephosphorylation,
Cx43-S368 phosphorylation and Gj reduction in raised
[Ca2+]i. PP2A had no role. Conduction velocity was reduced
by raised [Ca2+]i and reversed by calcineurin inhibitors.
Reduced action potential conduction and Gj in raised [Ca2+]
are regulated by calcineurin-dependent Cx43-S365 phosphor-
ylation, leading to Cx43-S368 dephosphorylation. The cal-
cineurin action is indirect, via I1 dephosphorylation and sub-
sequent activation of PP1.
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pS368-
Cx43

Phosphorylated Cx43 at serine 368

pS365-
Cx43

Phosphorylated Cx43 at serine 365

dV/dtmax Maximum rate of action potential depolarisation
FST Fostriecin
Gi Intracellular conductance
Gj Gap junction conductance
I1 Total protein phosphatase inhibitor-1
PKC Protein kinase C
PP Protein phosphatases
pThr35-
I1

Phosphorylated protein phosphatase inhibitor-1
at threonine 35

S Serine
T-Cx43 Total Cx43
TTM Tautomycin
zi Total longitudinal impedance

Introduction

Propagation of the cardiac action potential (AP) between ad-
jacent ventricular myocytes depends on gap junctions (GJs),
located at intercalated discs and composed of connexin phos-
phoproteins, (Cx), mainly the isoform Cx43. Reduced AP
conduction velocity, which potentially leads to re-entrant ar-
rhythmias, is associated with a decrease of GJ unitary electri-
cal conductance (Gj) [7]. Several factors modulate Gj includ-
ing an increase of the intracellular Ca2+ concentration
([Ca2+]i) or altered Cx43 phosphorylation [4, 14, 25, 31].
Myocardial hypoxia or ischaemia and conditions such as hy-
pertrophy are associated with reduced AP conduction, raised
intracellular [Ca2+] and GJ uncoupling [2, 26, 32, 34, 38].
However, the intracellular pathways for GJ uncoupling are
unclear, although a change to the phosphorylation status of
Cx43 has been implicated [20, 30, 35].

Alteration to Cx43 phosphorylation status results from
changes to the activities of protein kinases (PKs) and/or
phosphatases (PPs). Cx43 is targeted by several serine-
threonine PKs, such as PKC, PKA and PKG, that either in-
crease or decreaseGj [6, 25]. Cx43 protein is rich in serine (S)
residues and phosphorylation of several S residues modulates
Gj, for example, at S306, S365 and S368 [27]. In particular,
under physiological conditions S365 is predominant in its
phosphorylated form (pS365), and this has been proposed to
mask and prevent phosphorylation of S368 [39]. During myo-
cardial ischaemia, pS365 is dephosphorylated to allow phos-
phorylation of S368 by PKCε [9, 10] and this is associated
with a reducedGj [33]. However, the identity of the PPs which
dephosphorylate S365 is unknown. There are several candi-
dates, for example Ca2+-independent serine-threonine PPs,
such as PP1 and PP2A, modulate AP conduction in cardiac
pathologies such as heart failure and acute ischaemia [1, 22].

However, the contribution of the Ca2+-calmodulin-dependent
serine-threonine PP calcineurin (Cn) is unknown, although its
activity increases in pathologies associated with arrhythmias
[46].

Cn regulates the activity of many intracellular enzymes,
including PKC and PP1 [5, 11]. Cn has also been implicated
in the pathogenesis of cardiac arrhythmias associated with
pathologies such as hypertrophic cardiomyopathy and aortic
stenosis [28, 37]. However, the relationships between raised
[Ca2+]i, Cn action, Cx43 phosphorylation state, Gj and AP
conduction have not been characterised in myocardium. We
hypothesised that with acute elevation of [Ca2+]i Cn, in syn-
ergy with PKC, controls Cx43 phosphorylation to decreaseGj

and slow AP conduction, with possible intermediate roles for
PP1 and PP2A. Intracellular [Ca2+] was elevated in isolated
ventricular myocardial preparations by reducing the extracel-
lular [Na+] and by increasing stimulation rate. Calcineurin
activation by Ca2+ is sufficiently rapid and sensitive that both
interventions are sufficient to activate this protein phosphatase
[36, 42].

Materials and methods

Isolated preparations and solutions Dunkin-Hartley guinea
pigs (400–500 g) were killed by cervical dislocation and the
heart was rapidly excised in accordance with UK Guidelines
in The Operation of Animals (Scientific Procedures) Act,
1986. Left ventricular (LV) papillary muscles or trabeculae
(0.5–0.9 mm diameter, 5–7 mm long) were dissected imme-
diately for experiments.

Control Tyrode’s solution contained mM NaCl 118, KCl
4.0, NaHCO3 24, MgCl2 1.0, CaCl2 1.8, NaH2PO4 0.4, glu-
cose 6.1, and Na pyruvate 5.0, gassed with 95%O2/5%CO2,
pH 7.40 ± 0.03. Low-Na Tyrode’s (29.4 mM Na) was similar
except that NaCl was replaced by TrisCl (pH to 7.4 with 1 M
HCl). Two Cn inhibitors were used: (i) cyclosporin-A (CysA;
Calbiochem, UK), diluted from a 10 mM DMSO stock solu-
tion to a final concentration of 5 μM and (ii) the highly selec-
tive, cell-permeable Cn autoinhibitory peptide (CAIP;
Calbiochem, UK), a peptide with similar amino acid sequence
to the Cn autoinhibitory domain. A final concentration of
50 μM was freshly prepared from an aqueous 100 mM stock
solution. The PKC inhibitor, chelerythrine (2 μM), was pre-
pared from a DMSO stock solution (20 mM). PP1 inhibitor,
tautomycin (5 nM), was prepared from a PBS stock solution
(65.2 μM). PP2A inhibitor, fostriecin (100 nM), was prepared
from a PBS stock solution (22.1 μM). All chemicals were
from Sigma-Aldrich (UK) unless otherwise stated.

Experimental protocols Two interventions were used to in-
crease [Ca2+]i,:(i) superfusion with low-Na Tyrode’s solution
to elevate [Ca2+]i via the Na

+/Ca2+ exchanger; ii) an increase
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of electrical stimulation frequency from 1 up to 5 Hz. The
effects of Cn, PKC or PP1 inhibitors on GJ conductance
(Gj) and Cx43 phosphorylation status were measured in con-
trol conditions and during raised [Ca2+]i.

Measurement of longitudinal impedance Gj was measured
with preparations in an oil-gap chamber and calculated from
the frequency-dependent (0.02–300 kHz) total longitudinal
impedance, zi—the method and its validation have been de-
tailed elsewhere [3, 8]. After control readings in Tyrode’s so-
lution, preparations were exposed to low-Na solution to raise
the intracellular [Ca2+], with or without Cn or PP1/PP2A in-
hibitors, for 20–30 min before new readings were taken.
Tyrode’s solution was then reapplied for final control
measurements.

Western blots Western blot analysis was performed, as
previously described with slight modification [40]. Hearts
were perfused, using a Langendorff technique, for 10 min
with Tyrode’s or low-Na Tyrode’s solutions in the absence
or presence of Cn, PKC, PP1 or PP2A inhibitors. The LV
was then rapidly cut off and snap frozen in liquid N2.
Whole tissue protein lysate (30 μg) from each sample
was prepared and then resolved by 12 % polyacrylamide
SDS-PAGE and transferred to polyvinylidene difluoride
membranes (PVDF; Invitrogen, UK). Membranes were
blocked with an Odyssey blocking buffer (LI-COR
Biosciences, Ltd., UK), probed with primary antibody
(1:1000 dilution), then washed and incubated with second-
ary antibodies (1:10,000 dilution). Membranes were then
stripped with a stripping buffer, washed and probed with
another primary antibody followed by a secondary anti-
body. Resolved protein bands were imaged using an
Odyssey infrared imaging system (UK) and then quanti-
fied with the Image-J software (NIH, version 1.4 K) in
arbitrary units. The quantified band densities of pS368-
Cx43 and pS365-Cx43 were normalised to corresponding
total Cx43 bands. Similarly, the band densities of phos-
phorylated PP1 inhibitor-1 at threonine 35 (pThr35-I1)
were normalised to total inhibitor-1. Total protein bands
were normalised to corresponding glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) band density (used
as a loading control). Faint GAPDH bands were apparent
in figures illustrating stripped membranes. Each sample is
shown in triplicate in the relevant figures.

Measurement of AP morphology and conduction velocity
Preparations were secured at one end to a fixed hook and the
other to an isometric force transducer in a horizontal tissue
bath and superfused at 4 mL/min with Tyrode’s solution.
Preparations were electrically stimulated with 50–100 μs
pulses via Ag/AgCl bipolar electrodes on one end of the prep-
aration [18]. Stimulating conditions were 1, 2 or 5 Hz in

Tyrode’s solution and 1 Hz in low-Na solution. Conducted
APs were recorded with multiple, separate downstream im-
palements using 3 M KCl-filled microelectrodes at known
distances, d, from the stimulating electrodes. Conduction ve-
locity (CV) was calculated from the difference in latency (Δt)
recorded by two separate microelectrode impalements, dis-
tance Δd apart, as the ratio Δd/Δt. At least five separate mea-
surement pairs were made per preparation. To elicit APs in
low-Na solution, stimulus duration (0.5–1.0 ms) was in-
creased. In all preparations, CV was measured with a stimulus
voltage 1.5 times the threshold value. Values of the maximum
rate of depolarisation during the AP upstroke (dV/dtmax) and
the time constant of the AP subthreshold region (AF foot, τap,
[8]) were also recorded.

Measurement of the intracellular [Ca2+] ([Ca2+]i) The
change of [Ca2+]i with low-Na solution was measured in tra-
beculae with Ca2+-selective microelectrodes, filled with the
Ca2+-ionophore ETH 1001 (Fluka Chemicals, UK) and in
conjunction with 3 M-KCl-filled microelectrodes to record
separately the membrane potential. Methods of manufacture,
recording and calibration have been reported previously [16].
Dynamic changes to [Ca2+]i with pacing were measured in
freshly dispersed ventricular myocytes prepared by collage-
nase enzymatic dispersion using a Langendorff technique.
Ventricular myocytes were loaded with Fura-2 (5 μM),
superfused at 36 °C with Tyrode’s solution in a chamber on
the stage of an inverted microscope. Cells were illuminated
from a xenon-arc lamp that produces a continuous and uni-
form spectrum across the visible region. Excitation of the
fluorochrome alternately at 340 and 380 nm was provided
by interposing spectral band-pass filters (340 ± 5 and
380 ± 5 nm) within the light path, mounted in a wheel spin-
ning at 32 Hz. Fluorescent light was recorded between 410
and 510 nm with a photomultiplier tube and output sample-
and-hold amplifiers coordinated to the frequency of the spin-
ning wheel. The ratio of emission intensity when illuminated
at the two frequencies (R340/380) was used as an index of the
intracellular [Ca2+] [41].

Statistical analyses and calculations Electrophysiological
data are mean ± SEM (n preparations), as several measure-
ments of all variables were made in each preparation. For
Western blots, data are mean ± SD as one observation per
preparation was made. Group comparisons used two-way
ANOVA, with post hoc Bonferroni’s tests. The null hypothe-
sis was rejected at p < 0.05: * vs control (Tyrode’s solution), #
vs low-Na solution; **p < 0.01, ***p < 0.001. Cable calcula-
tions (see BDiscussion^ section) used Eq. 1 [7].

Gi ¼ 2:τap:Cm:CV2
� �

=a ð1Þ
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where Gi is the total intracellular conductance, τap is the
time constant of the subthreshold base of the AP, Cm is the
specific membrane capacitance (1 μF/cm2) and a is the cell
radius (10.5 μm). Gap junction conductance, Gj, was calcu-
lated from 1/Gj = 1/Gi − 1/Gc, where Gc is the cytoplasmic
conductance (5.9 mS/cm—see BResults^ section).

Results

Gj with raised intracellular [Ca2+], [Ca2+]i—action of cal-
cineurin inhibitors The central hypothesis under test is that a
raised [Ca2+]i decreases Gj via a Cn-dependent pathway.
Direct measurement of Gj in a multicellular preparation
showed a reversible reduction when [Ca2+]i was raised by
superfusion with a low-Na solution (Fig. 1a). The attached
supplement shows that the [Ca2+]i as measured in similar
preparations with ion-selective microelectrodes was signifi-
cantly increased from 85 ± 10 to 405 ± 105 nM (n = 4) in
the low-Na solution. This rise was sustained in these prepara-
tions for the period used to measure changes to Gj and con-
duction velocity, i.e. 20–30 min. In low-Na solution, the mean
value of Gj was reversibly reduced from 3.80 ± 0.16 to
2.00 ± 0.09 mS/cm, n = 20, p < 0.0001, a change to
53.5 ± 2.5 % of that in Tyrode’s solution. Cytoplasmic

conductance, Gc, was unaffected by low-Na solution
(5.94 ± 0.71 vs 5.65 ± 1.01 mS/cm, n = 20) or by any other
intervention. The reduction ofGj in low-Na solution was part-
ly prevented by cyclosporin-A (CysA; n = 5; Fig. 1b) or
completely prevented by the more selective Cn inhibitor
CAIP (n = 5; Fig. 1c); CysA and CAIP had no significant
effect on Gj in Tyrode’s solution.

Low-Na solution and S368-Cx43 phosphorylation
(pS368)—action of Cn or PKC inhibitors The possible role
of Cx43 phosphorylation, in particular at pS368, was exam-
ined as an underlying mechanism mediating decreased Gj in
low-Na solution. A significant increase of pS368-Cx43, nor-
malised to total Cx43 (T-Cx43), was measured in low-Na
solution when compared to Tyrode’s. The increase was re-
versed, partially with CysA (n = 5) and completely with
CAIP (n = 3, Fig. 2a), suggesting a role for Cn in this rise.
T-Cx43 protein quantity was similar in all conditions, and
when themselves, they were normalised to GAPDH levels
were similar in all interventions.

The actions of the PKC inhibitor, chelerythrine (CHE,
2 μM), on pS368-Cx43 protein expression levels were mea-
sured in low-Na Tyrode’s. CHE reversed the increase of pS368-
Cx43 expression induced by low-Na solution to values not
significantly different from control Tyrode’s solution (n = 5,
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Fig. 1 Low-Na solution on gap
junction conductance (Gj): effect
of calcineurin inhibitors. a Values
of Gj in Tyrode’s (control) before
and after exposure to low-Na
solution, data from 20 separate
preparations. b Effect of
cyclosporin-A (CysA, 5 μM) in
Tyrode’s or low-Na solution on
Gj, data expressed as a percentage
of the value in Tyrode’s solution
(control), n = 5. c Effect of
calcineurin-inhibitory peptide
(CAIP, 50 μM) in Tyrode’s or
low-Na solution on Gj, n = 5
*p < 0.05 vs Tyrode’s; **p < 0.01
vs Tyrode’s; ***p < 0.001 vs
Tyrode’s; #p < 0.05 vs low-Na;
###p < 0.0001 vs low-Na
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Fig. 2b). In addition, the action of CHE on Gj was tested. CHE
had no effect on Gj in control Tyrode’s solution. However, the
significant reduction of Gj by low-Na solution was also re-
versed by CHE (n = 5, Fig. 2c). These data show that in low-
Na solution, there is increased Cx43 phosphorylation at S368,
associated with a decrease of Gj. A cooperative role for PKC
and Cn is suggested, whereby a Cn-dependent pathway enables
PKC to phosphorylate Cx43 at S368 and reduce Gj.

Cn inhibitors and S365-Cx43 (pS365-Cx43) phosphoryla-
tion in low-Na solution Phosphorylated S365-Cx43 has been
proposed as a gatekeeper site that regulates S368 phosphoryla-
tion [39]. Therefore, it was tested if Cn had a role in the de-
phosphorylation of pS365-Cx43. The level of pS365-Cx43 was
significantly lower in low-Na solution compared with Tyrode’s
(n = 3; Fig. 3a, b). Moreover, CysA or CAIP, when added to the
low-Na solution, reversed this decline, completely with CAIP
and partially with CysA. These data are consistent with a Cn-
dependent pathway dephosphorylating pS365-Cx43 when

[Ca2+]i is raised, which allows PKC to then phosphorylate
S368 and hence reduce Gj.

A direct or indirect action of Cn activation on Cx43 phos-
phorylation status The data thus far do not distinguish be-
tween a direct or indirect effect of Cn on pS365-Cx43 dephos-
phorylation. Ca2+-independent PP1 is bound in an inactive
state to phosphorylated I1 (pThr35-I1). One target for Cn is
pThr35-I1, which when dephosphorylated will release activat-
ed PPI [11]. This potential pathway was examined by measur-
ing the effect of Cn inhibitors on pThr35-I1 levels when
[Ca2+]i was raised.

Total I1 protein, normalised to GAPDH, was similar in
control and low-Na solutions and also in the presence of
CysA or CAIP (n = 3, Fig. 4a, b); T-Cx43 was also constant
throughout. In low-Na solution, pThr35-I1 levels were signif-
icantly reduced. This reduction was partially attenuated by
CysA and completely prevented by CAIP (n = 3, Fig. 4c).
These data are consistent with a Cn-mediated increase of
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Fig. 2 S368-Cx43 phosphorylation and gap junction conductance, Gj, in
low-Na solution: effect of calcineurin and PKC inhibitors. aWestern blots
of phosphorylated pS368-Cx43 (pS368-Cx43) in control and low-Na
solution, effect of CysA (left panels) and CAIP (right panels). Band
densities normalised to total Cx43 (T-Cx43) levels in the lower panel. b
Western blots of phosphorylated S368-Cx43 (pS368-Cx43) in control
Tyrode’s and low-Na solution, effect of chelerythrin (CHE, 2 μM).

Band densities normalised to total Cx43 (T-Cx43) levels in the lower
panel. GAPDH levels are also shown as a housekeeping protein. c
Effect of chelerythrine (CHE, 2 μM) in Tyrode’s or low-Na solution on
Gj and normalised to levels in Tyrode’s solution. *p < 0.05 vs Tyrode’s;
**p < 0.01 vs Tyrode’s; ***p < 0.001 vs Tyrode’s; #p < 0.05 vs low-Na
solution; ##p < 0.01 vs low-Na; ###p < 0.001 vs low-Na (n = 4)
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PP1 activity in low-Na solution to dephosphorylate pS365-
Cx43 and hence increase phosphorylation of S368-Cx43.

Tautomycin (TTM) at a low concentration (5 nM) inhibits
PP1 activity [13] and thus should prevent changes to Cx43
phosphorylation status in low-Na solution and consequent ef-
fects on Gj. In low-Na solution, TTM prevented phosphory-
lation of S368-Cx43 (n = 3, Fig. 5a) and dephosphorylation of

S365-Cx43 (n = 3, Fig. 5b). TTM had no significant effect on
Gj in Tyrode’s solution; however, the decrease ofGj in low-Na
solution was prevented by TTM (n = 6, Fig. 5c). This suggests
a role for PP1 to decrease Gj when [Ca2+]i is raised, through
modulating Cx43 phosphorylation at S365.

It is important to consider also a role for PP2A, another
Ca2+-independent protein phosphatase, that itself may influ-
ence the I1 pathway, in a way similar to that of Cn [11].
However, the PP2A-selective inhibitor fostriecin (FST,
100 nM) had no effect on pThr35-I1 levels (normalised to T-
I1) in low-Na solution (n = 3, Fig. 5d). In addition, FST also
had no effect on pThr35-I1 suggesting also that it did not
affect PP2A activity. Therefore, a role for PP2A may be
excluded.

AP configuration and CV with raised [Ca2+]i—role of Cn
The above data show that a Cn-dependent pathway regulates
Gj when [Ca

2+]i is raised. It has been shown previously when
using thin trabeculae, as used forGj measurement, and bipolar
stimulation at one end that there is one-dimensional (1-D) AP
conduction along the longitudinal axis [18]. Under these spe-
cific conditions, AP conduction is described accurately by 1-D
cable theory whereGj is proportional to the square root on CV
[7, 16]. This gave the opportunity to test if predictable changes
to CV occurred under conditions when Gj was altered, as
shown above, and investigate the role of calcineurin in any
changes.

AP duration was slightly but significantly increased by the
Cn-inhibitor CysA in all conditions (Table 1). The latency
between stimulus artefact and arrival of the AP was increased
in low-Na Tyrode’s solution (Fig. 6a). CysA partially reversed
this increase although it had no effect in control. Measurement
of latency itself cannot be used to calculate CV because the
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conduction pathway is uncertain near the stimulation site—
and also where the preparation is attached to the force trans-
ducer. Therefore, multiple simultaneous microelectrode im-
palements were made at distances greater than 1 mm from
the stimulation site and more than 1 mm from the attached
end. CV was calculated from the ratio Δd/Δt, where Δt is the
difference in latencies between separate microelectrode im-
palements Δd apart—see BMaterials and methods^ section.
Low-Na solution reduced CV and this was partially reversed
by CysA. Values of AP duration, CV as well as dV/dtmax and
τap are listed in Table 1—dV/dtmax was reduced in low-Na
solution but further reduced when CsA was added; τap was
increased in low-Na solution but unaffected by CysA. Thus,
under conditions where Gj was reduced (low-Na Tyrode’s),
CV was also reduced. Moreover, CysA was able to partially
reverse both these reductions.

A disadvantage of the above experiment with low-Na so-
lution is that CV will be slowed not only by a reduction of Gj.
but also by attenuated inward currents in the AP upstroke

which would limit the magnitude of local circuit currents.
This could explain why recovery of CV with CysAwas only
partial. Alternatively, [Ca2+]i was raised by increasing the
stimulation rate. Increasing the rate from 1 to 2 or 5 Hz also
decreased CV (and latency; Fig. 6b for 5 Hz example), and in
this instance, these changes were completely reversed by
CysA (Table 1). The inset shows that in isolated myocytes
the intracellular Ca2+ transient was augmented at increased
rates. With the increased rate AP duration was reduced.
Moreover, dV/dtmax was increased and τap slightly reduced,
both reversed by CysA (Table 1).

Discussion

Intracellular [Ca2+], gap junction conductance and Cx43
phosphorylation status—the role of Cn A low-Na solution
was used to raise the intracellular [Ca2+] to about 400 nM and
is sufficient to activate calcineurin [36]. Phosphorylation of
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Fig. 5 Effect of tautomycin
(TTM) on Cx43 and I1
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junction conductance, Gj. a
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TTM. Band densities normalised
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Cx43 at S368 is PKC-dependent and associated with
both decreased intercellular communication and reduced
CV [19, 27, 39]. We confirmed this pathway in guinea-
pig ventricular myocardium by showing that the PKC
inhibitor CHE reversed the increase of Cx43-pS368
and the reduction of Gj by low-Na solution. Of interest
also, under control conditions, CHE slightly increased
resting Gj whereas Cn inhibitors had no effects. This
implies that under resting conditions the value of Gj is
modulated by PKC but not by Cn-dependent pathways.
The role of Cn was investigated when [Ca2+]i was
raised as Cn inhibitors reversed the decrease of pS365,
the increase of pS368 and the decrease of Gj.

One explanation for the ability of a kinase and a phospha-
tase to exert the same effect on Cx43 phosphorylation at S368
and Gj is that they have different targets on the protein. A
nearby site, S365, has been proposed as a gatekeeper for ac-
cess to S368 so that dephosphorylation of pS365 is required to
phosphorylate S368 [39]. This study identified Cn as the prin-
cipal phosphatase which regulates this pathway.

A direct or indirect effect of Cn on Cx43 phosphorylation
andGj The twomajor Ca2+-independent serine-threonine pro-
tein phosphatases in myocardium, PP1 and PP2A, co-localise
with Cx43 at intercalated discs [1]. PP1 normally exists in an
inactive complex with an inhibitor protein (I1) that in turn is

Table 1 Conducted AP variables in low-Na solution or at increased rate: influence of CysA

Intervention APD, ms dV/dtmax, V/s τap, ms CV, cm/s Calculated Gj, mS/cm

Low-Na solution, 1 Hz stimulation Control 218 ± 9 (9) 214 ± 15 (9) 0.24 ± 0.04 (9) 74.3 ± 6.2 (6) 4.41

Control + CsA 228 ± 14 (9)# 213 ± 15 (9) 0.24 ± 0.04 (9) 72.9 ± 7.1 (6) 4.13

Low-Na 127 ± 8 (9)* 87 ± 10 (9)* 0.53 ± 0.10 (9)* 41.8 ± 3.1 (6)* 2.52

Low-Na + CsA 133 ± 5 (9)*# 71 ± 4 (9)*# 0.49 ± 0.09 (9)*# 55.3 ± 3.2 (6)*# 5.53

Altered stimulation rate 1 Hz 219 ± 10 (11) 215 ± 10 (11) 0.24 ± 0.04 (11) 74.3 ± 6.2 (6) 4.41

1 Hz + CsA 228 ± 14 (11)# 209 ± 13 (11) 0.24 ± 0.04 (11) 72.9 ± 7.1(6) 4.13

2 Hz 186 ± 9 (3)* 227 ± 17 (3)* 0.25 ± 0.04 (3) 62.9 ± 5.2 (3)* 2.77

2 Hz + CsA 193 ± 9 (3) *# 202 ± 8 (3)# 0.25 ± 0.04 (3) 73.0 ± 6.1 (3)# 4.45

5 Hz 115 ± 7 (11)* 245 ± 21 (11)* 0.26 ± 0.05 (11) 47.3 ± 6.9 (6)* 1.36

5 Hz + CsA 121 ± 4 (11)*# 199 ± 9 (11) # 0.25 ± 0.05 (11) 73.1 ± 6.5 (6)# 4.47

The final column lists the calculated values of Gj from mean values of CV and τap (see BDiscussion^ section). Data are mean ± SEM; number of
preparations are in parenthesis

APD action potential duration, dV/dtmax maximum upstroke rate of the AP, τap time constant of the AP foot, CV conduction velocity

*p < 0.05 intervention vs control at 1 Hz stimulation
# CysA vs same intervention
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and increased stimulation rate on
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phosphorylated at Thr35 (pThr35-I1) [12, 13]; dephosphory-
lation of I1 then releases an active form of PP1.
Phosphorylated I1 (pThr35-I1) is a target for activated Cn
[37] and thus potentially provides an indirect mode of action
for Cn. Low-Na solution decreased pThr35-I1 levels, which in
turn were reversed by CysA and CAIP. Thus, Cn-mediated
dephosphorylation of S365-Cx43 could be indirectly mediat-
ed by PP1. This was corroborated by the actions of the PP1
inhibitor, TTM. It reversed the effects of low-Na solution on
pS365-Cx43 dephosphorylation and S368-Cx43 phosphory-
lation and also predominantly reversed the reduction of Gj.
The pathway whereby Cn regulates Cx43 phosphorylation
and the electrophysiological properties of ventricular gap
junctions is summarised in Fig. 7.

TTM was used at a low concentration (5 nM) that should
mainly inhibit PP1 but with potentially a smaller effect on
PP2A [29]. PP2A also targets pThr35-I1 [11] and a significant
rise of [Ca2+]i may also activate this phosphatase. However,
the inability of the PP2A inhibitor, fostrecin, to reverse the
reduction of pThr35-I1 in low-Na solution suggests it had no
role in this pathway. Moreover, there is no evidence that 5 nM
TTM affects the PP2A pathway. Thus, we consider that PPI is
the major downstream target activated by Cn to control gap
junction phosphorylation and conductance.

Role of protein phosphatases in modulating Cx43 phos-
phorylation in cardiac pathologies The identity of the pro-
tein phosphatase(s) targeting pS365 site under pathological
conditions is unclear, although some studies have proposed
roles for PP1 and PP2A. Moreover, their relative importance
varies with different cardiac pathologies and animal species;
for example, PP1 mediates Cx43 dephosphorylation in isch-
aemic rat heart, but PP2A does not [22]. Alternatively, en-
hanced activity of PP2A, but not PP1, has been associated
with human and rabbit heart failure [1]. However, in these

studies, their downstream consequences on gap junction elec-
trical properties were not measured.

Because increased Cn expression and activity occur in
most cardiac pathologies, it is plausible it contributes to the
final effects of PP1 and/or PP2A, as both Cn and PP2A share
similar substrates, such as I1, which once dephosphorylated at
Thr35 activates PP1. Moreover, increased Cx43-
dephosphorylation was observed in mouse cardiomyocytes
overexpressing Cn [15]. This study has clarified that in
guinea-pig myocardium when [Ca2+]i is raised, there is an
interplay between Cn and PP1 to influence gap junction elec-
trical properties and AP conduction velocity; no role for PP2A
is suggested. Moreover, this study has provided new evidence
for an interplay between Cn-dependent dephosphorylation of
Cx43 at S365 and phosphorylation at S368 by PKC. A con-
sequence of this is that in normal and abnormal conditions AP
conduction velocity is regulated through control of gap junc-
tion conductance.

AP conduction velocity, intracellular [Ca2+] and Gj

Reduced CV is a crucial determinant of re-entrant arrhythmias
and occurs with rapid pacing [23, 24]. With isolated prepara-
tions, as used here, AP conduction is constrained to a single
dimension to allow precise delineation of the conduction path-
way [7]. Moderate attenuation of CV was associated with
reduction of intracellular conductance,Gj. Here, it was shown
that with raised [Ca2+]i, slowed conduction and reduced Gj

were mediated by the Ca2+-CaM dependent phosphatase cal-
cineurin. Use of the cardiac glycoside ouabain or imposition
of hypoxia to presumably raise [Ca2+]i has been shown to
reduce CVas well as decrease total intracellular conductance,
Gi [44, 45]. The latter is determined both by the sarcoplasmic
and also gap junction conductances, and these original studies
could not unequivocably attribute changes to Gj, as was pos-
sible in this study. Here, two interventions were used to raise
[Ca2+]i: a low-Na solution and rapid pacing, where CVand Gj

could be independentlymeasured; the former interventionwas
more convenient to raise [Ca2+]i in the oil-gap chamber.

The Cn inhibitor, CysA, entirely reversed the slowed CV
with rapid pacing and was partially effective in the low-Na
solution. A slowed CV in low-Na solution would in part be
due to reduced availability of Na+ current and increased de-
pendence of inward Ca2+ current, so it would be expected that
CysA, through an action on Gj, should only partially restore
CV. However, these observations are consistent with the inde-
pendent demonstration that CysA, or the more specific CAIP,
reversed the decrease of Gj when [Ca2+]i was raised. Thus,
these data are consistent with the hypothesis that when
[Ca2+]i is raised, Cn-dependent pathways reduce CV through
a decrease of Gj. It has been previously shown that rapid
pacing of myocardium between 4 and 6 Hz to significantly
raise [Ca2+]i activates calcineurin [21, 43].

Fig. 7 Schema of proposed Cn-dependent intracellular pathways
mediating changes to Cx43 phosphorylation and gap junction
conductance, Gj. Under control conditions, Cx43 is highly
phosphorylated at S365 which prevents phosphorylation of Cx43 at
S368 by PKC—under this condition, Gj is high. Raised intracellular
[Ca2+] activates Cn to dephosphorylate inhibitor 1 (I1) at Thr35
(pThr35) and the dissociation of PP1 from I1. This results in activation
of PP1 to dephosphorylate pS365 enhance phosphorylation of S368 by
PKC and thus decrease Gj
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The actions of CysA on CV during rapid pacing and in low-
Na solution are consistent with the biophysical basis of conduc-
tion [7, 8]. Rapid pacing, which reduced Gj, was associated
with increased dV/dtmax as local circuit current is concentrated
nearer the propagating action potential (AP) wavefront. CysA
reversed the increase of dV/dtmax as Gj was in turn normalised.
In low-Na solution, dV/dtmax was decreased, due to reduced
Na+ current during the AP upstroke, but was further reduced
by CysA as CV itself partially recovered. This is also consistent
with CysA increasing Gj under this condition.

Estimation of changes to Gj when CV when is altered in
low-Na and rapid pacing conditions, in the presence and ab-
sence of CysA and under the above experimental conditions,
may be made from 1-D cable theory (Eq. 1, BMaterials and
methods^ section) and compare them when possible to actual
changes of Gj. CysA had no effect under control conditions
but approximately halved the value in low-Na solution, as also
measured in the BResults^ section. CysA returned the calcu-
lated Gj to control, also consistent with the near return to
normal in the BResults^ section. During an increase of rate,
the reduction of Gj was returned to control with CysA. Thus,
the electrophysiological changes observed with increased in-
tracellular [Ca2+] are consistent with calcineurin-mediated ef-
fects—reversed by CysA.

LimitationsMeasurements of AP conduction velocity and gap
junction conductance, Gj, of necessity used multicellular prep-
arations. Care was taken throughout to ensure that the prepara-
tions did not develop a hypoxic core during the experiments,
and a previous study found no changes to histology, ATP con-
tent or AP conduction velocity using similar preparations and
over the time course of experiments carried out in this study
[17]. The increase of [Ca2+]i through rapid pacing was mea-
sured in isolated myocytes and not multicellular preparations as
used to measure CV and Gj; however, ion-selective electrodes
do not have the temporal resolution for such measurements.
CAIP was not used at as an alternative Cn inhibitor in the rapid
pacing experiments where CV was slowed due to the prohibi-
tive cost of using the agent in a rapid flow superfusion system.
It is possible that in low-Na solution, there was some Ca2+

influx into mitochondria through its permeability transition
pore (mPTP), which could lead to mitochondrial swelling and
eventual cell death. However, we suggest that this is not a
significant effect as all interventions using low-Na solutions
had reversible effects on electrophysiological function, suggest-
ing no damaging effects to myocytes. Although CysA blocks
the mPTP, the involvement of this mechanism may not impact
significantly on the results presented here.
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