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Abstract Recent research on human nonverbal vocalizations has led to considerable

progress in our understanding of vocal communication of emotion. However, in contrast to

studies of animal vocalizations, this research has focused mainly on the emotional inter-

pretation of such signals. The repertoire of human nonverbal vocalizations as acoustic

types, and the mapping between acoustic and emotional categories, thus remain under-

explored. In a cross-linguistic naming task (Experiment 1), verbal categorization of 132

authentic (non-acted) human vocalizations by English-, Swedish- and Russian-speaking

participants revealed the same major acoustic types: laugh, cry, scream, moan, and pos-

sibly roar and sigh. The association between call type and perceived emotion was sys-

tematic but non-redundant: listeners associated every call type with a limited, but in some

cases relatively wide, range of emotions. The speed and consistency of naming the call

type predicted the speed and consistency of inferring the caller’s emotion, suggesting that

acoustic and emotional categorizations are closely related. However, participants preferred

to name the call type before naming the emotion. Furthermore, nonverbal categorization of

the same stimuli in a triad classification task (Experiment 2) was more compatible with

classification by call type than by emotion, indicating the former’s greater perceptual

salience. These results suggest that acoustic categorization may precede attribution of

emotion, highlighting the need to distinguish between the overt form of nonverbal signals

and their interpretation by the perceiver. Both within- and between-call acoustic variation
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rasmus.baath@gmail.com

Tomas Persson
tomas.persson@lucs.lu.se

1 Division of Cognitive Science, Department of Philosophy, Lund University, Box 192, 221 00 Lund,
Sweden

123

J Nonverbal Behav (2018) 42:53–80
https://doi.org/10.1007/s10919-017-0267-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191399493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10919-017-0267-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s10919-017-0267-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10919-017-0267-y&amp;domain=pdf
https://doi.org/10.1007/s10919-017-0267-y


can then be modeled explicitly, bringing research on human nonverbal vocalizations more

in line with the work on animal communication.

Keywords Emotion � Non-linguistic vocalizations � Semantic spaces � Cross-linguistic

naming study � Triad classification task

Introduction

Emotion is an essential part of being human and a matter of great theoretical and clinical

significance. It has justifiably attracted a lot of attention in psychology and neuroscience,

including research on facial expressions (Ekman et al. 1969; Izard 1994), prosody (Banse

and Scherer 1996), and non-linguistic vocalizations (Belin et al. 2008; Lima et al. 2013).

This abiding interest in nonverbal communication has shed light on how affective states

can be expressed without words; on the other hand, the most obvious level of analysis,

namely the surface form of the signals themselves, has received far less attention.

The relative neglect of alternative, non-affective categories in nonverbal communica-

tion may prove a liability, because such categories are both intuitively appealing and useful

for research. For example, when researchers analyze the differences between authentic and

posed laughter (Bryant and Aktipis 2014; Lavan et al. 2015), evolutionary adaptive value

of crying (Provine et al. 2009), or unique acoustic signatures of screaming (Arnal et al.

2015), they implicitly refer to these sounds as acoustic categories that are somehow dif-

ferent from each other and from other sounds. Using the terminology common in animal

research, laughter, vocal crying, and screaming are treated as distinct vocalizations, or

‘‘call types’’. Is this classification justified? In what sense is laughter a call type? What

other call types do humans have? A systematic analysis of these issues is the goal of this

study.

We begin by justifying the applicability of the concepts and methods of ethology to the

study of human non-linguistic vocalizations. We then review the available evidence on the

types of vocalizations in human vocal repertoire and present the results of two perceptual

experiments that contrast the classification of non-linguistic sounds in terms of emotion

and in terms of acoustic categories. Our key objective is to test the hypothesis that acoustic

categories (such as a laugh, a scream, etc.) are salient to listeners and not equivalent to

affective states.

Non-linguistic Vocalizations from an Ethological Perspective

Despite some important exceptions (Oller and Griebel 2008; Watson et al. 2015), the

acoustic structure of animal vocalizations is largely determined on a genetic level, so that

all members of a species produce essentially the same vocalizations (Owren et al. 2011;

Wheeler and Fischer 2012). In contrast, human language is not only unusually flexible and

powerful as a communicative tool (Devitt and Sterelny 1999), but it is also entirely

dependent on a socially transmitted, culture-specific code: We are not born speaking

English or Javanese. At the same time, the privileged status of language should not blind us

to the fact that many of the sounds humans produce in everyday life are non-linguistic

(Provine 2012). There is mounting evidence (reviewed below) that non-linguistic sounds

such as laughter are more similar to the vocalizations of other mammals than they are to

human language. This evidence comes from neurological research on vocal production and

psychological research on vocal perception.
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To begin with production, it is well established that the vocal flexibility associated with

mastery of language does not preclude the existence of separate, phylogenetically older

neural networks responsible for the production of non-linguistic vocalizations (Ackermann

et al. 2014; Jürgens 2009). Aphasic patients with lesions in motor cortex (Jürgens 2009) as

well as congenitally deaf (Scheiner et al. 2006) and even unencephalic (Newman 2007)

infants may laugh and moan just like typical infants. This is possible because non-linguistic

vocalizations are controlled by dedicated circuits deep in the brain stem, whereas speech

relies on a separate pathway leading from motor cortex directly to laryngeal motoneurons

(Jürgens 2009). This separate neural control mechanism explains why it is hard to laugh or

cry at will (Provine 2012)—these vocalizations are normally not under direct volitional

control. The currently available neurological evidence is not sufficiently detailed to

determine precisely how many species-typical vocalizations humans have and what these

vocalizations are. However, since the neural machinery controlling vocalizing in mammals

is known to be evolutionarily stable (Ackermann et al. 2014), at least some human

vocalizations should have direct analogs in the calls of other mammals, and some likely

candidates are being investigated (see below).

Moving on to perception, numerous studies have demonstrated that listeners can extract

a lot of useful information from sounds that contain little or no phonemic structure. At least

eight (Belin et al. 2008; Lima et al. 2013) and perhaps as many as 14–16 (Cordaro et al.

2016; Simon-Thomas et al. 2009) affective states can be correctly identified if a person is

instructed to portray them without resorting to language. In addition, listeners can dis-

criminate between authentic and posed emotion (Anikin and Lima 2017; Bryant and

Aktipis 2014) or judge whether two people laughing together are friends or strangers

(Bryant et al. 2016). Vocalizations of pain (Belin et al. 2008) and physical effort (Anikin

and Persson 2017) are also easily recognizable. The information available from non-

linguistic vocalizations is thus rich and not strictly limited to emotion.

Recognition accuracy in cross-cultural studies tends to be slightly higher when the

speaker belongs to the same group (Elfenbein and Ambady 2002; Koeda et al. 2013;

Laukka et al. 2013), demonstrating that even non-linguistic sounds have some culture-

specific component. Nevertheless, listeners in even the most isolated communities with

little exposure to Western media recognize the emotion expressed by non-linguistic

vocalizations of Westerners at above-chance levels (Cordaro et al. 2016; Sauter et al.

2010). The signal system involving laughs and moans is thus much more universal than the

expressions of a given language. This raises the question of what the meaningful units of

this signal system might be. Are they word-like, as in language?

To answer this question, we need to understand what makes non-linguistic sounds

meaningful. A commonly used method is to investigate the communicative significance of

particular acoustic features. For example, pitch, intensity, and duration increase with

arousal in both human (Scheiner et al. 2002) and animal (Briefer 2012) vocalizations;

harsh, noisy sounds are perceived as more aggressive compared to tonal sounds (Anikin

and Persson 2017; August and Anderson 1987); authentic vocalizations have more acoustic

variability than posed vocalizations (Anikin and Lima 2017; Lavan et al. 2015), and so on.

However, it must still be determined how all this potentially available acoustic information

is processed. One possibility is that listeners go from acoustic features directly to a model

of the speaker’s emotional state and intentions, perhaps mapping sounds to discrete

emotional states (e.g., Ekman’s basic emotions, 1992) or dimensions such as valence and

arousal (Briefer 2012; Russell 1980). Alternatively, the interpretation of a vocalization

could be mediated by its acoustic classification: first we recognize that we hear a laugh and
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then decide whether this is a laugh of genuine amusement, mere social politeness, an

‘‘evil’’ laugh, etc. (Provine 2001).

If acoustic classification indeed mediates interpretation of vocalizations, acoustic cat-

egories should be highly salient. In several studies of non-linguistic vocalizations (Anikin

and Persson 2017; Gendron et al. 2014a) participants sometimes hesitated to attribute any

particular emotion to the caller, while confidently naming the sound (e.g., as a laugh or a

scream). In the visual domain, a similar dissociation has been observed between naming a

facial expression and interpreting its emotional significance (Boster 2005; Gendron et al.

2014b). The receiver of a communicative display, such as a vocalization or a facial

expression, may thus recognize and classify the signal itself (e.g., as a laugh or a scowl)

without attributing any particular emotion to the signaler. As a result, descriptions of

signals in terms of their surface form (a laugh, a scowl) and in terms of their meaning

(merriment, annoyance) are complementary rather than redundant. A possible theoretical

interpretation is that the identification of a communicative display precedes its attribution

to a particular social or emotional cause. According to this view, sometimes known as the

Identification-Attribution model, these two processes may reflect a neurological division of

labor between different systems (Sperduti et al. 2014; Spunt and Lieberman 2012).

There are thus some indications that affective states may not be the only, or even the

most appropriate, categories for describing the repertoire of nonverbal communicative

displays. In the case of non-linguistic vocalizations, there is also a natural alternative to

emotional categories, namely acoustic categorization of sounds in terms of call types.

Human Call Types

Despite its central significance in studies of animal communication, the concept of call

type has no generally accepted definition. It refers to distinguishable acoustic units

(‘‘calls’’) that together comprise a species’ vocal repertoire, but the exact nature and

number of such units depend on whether the main interest is in production or perception,

on the chosen method of classification, on the extracted acoustic variables, and so on

(Fischer et al. 2016; Kershenbaum et al. 2014). Primate vocalizations are particularly

challenging to categorize, because they tend to grade into each other acoustically (Marler

1976; van Hooff and Preuschoft 2003), and because they possess a high amount of within-

call variability, complicating the task of identifying discrete vocalizations with objective

statistical measures (Fischer et al. 2016; Wadewitz et al. 2015). Following the ethological

tradition, we provisionally define call types as distinct species-typical vocalizations whose

basic spectral-temporal structure is innate (not learned).

What ultimately makes vocalizations ‘‘distinct’’ is their unique neurological production

mechanism. In practice, however, animal researchers seldom have access to this infor-

mation, so they have little choice but to record a large number of vocalizations and deduce

the underlying call types, normally by means of comparing the acoustic structure and

typical context in which each sound occurs (Kershenbaum et al. 2014). Some distinctions

that are salient to the animals themselves may be lost in the process, because the human ear

or the analytic technique misses them (lumping), and some spurious distinctions may be

found between what is actually a single vocalization (splitting). Likewise, it is unclear to

what extent perceptual distinctions, whether they are made by the researcher or by the

animal itself, correspond to call types defined by their unique production mechanism. The

task of studying human vocal behavior is further complicated by the fact that species-

typical vocalizations such as laughter coexist with language and semi-linguistic interjec-

tions (such as urgh, ouch, etc.). The silver lining for researchers working with human
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sounds is that they have more methodological options at their disposal: unlike animal

subjects, human participants can be asked to label the stimuli verbally or to classify them in

some other way, providing direct access to perceptual categories distinguished by the

listeners.

The research on production and perception of human vocalizations reviewed in the

previous section indicates that some vocalizations such as laughter are innate—that is, their

acoustic form and, to some extent, meaning are predetermined by our genetic endowment.

As a result, researchers are increasingly looking for the evolutionary roots of such

vocalizations, usually by comparing them with the vocal repertoire of other primates

(Provine 2001; Sauter et al. 2010; Scheumann et al. 2014). By definition, the unit of

analysis in such phylogenetic reconstructions is an acoustic category rather than an

emotion, and the two best-known examples are laughter and vocal crying.

Laughter presumably originated in mammalian social play (van Hooff and Preuschoft

2003; Provine 2001). Acoustically, this vocalization is recognizable above all by its dis-

tinct rhythm with approximately five syllables per second (Bryant and Aktipis 2014;

Provine 2001). Unlike the ingressive–egressive laughter of the great apes, humans laugh

with several syllables produced on a single exhalation (Provine 2001). Nevertheless,

acoustic and contextual similarities are sufficiently strong to claim that laughter is a

vocalization that humans share with other great apes (Ross et al. 2009) and perhaps even

with rats (Panksepp 2007). Vocal crying is another human vocalization with clear evo-

lutionary parallels. Several studies have indicated that crying in humans is related to

mother-infant separation or distress calls, which are common in many mammalian species

(Lingle et al. 2012; Newman 2007; Provine 2012). In contrast to laughter, crying consists

of longer voiced syllables repeated at intervals approximately corresponding to respiratory

cycles (Provine 2012). The sound of crying is typically tonal, with a pronounced harmonic

structure, but it may also include noisy episodes (Lingle et al. 2012). This variation within

the same basic acoustic template (within-call variation) is highly informative in cries of

human infants (Scheiner et al. 2002) as well as animals (Lingle et al. 2012).

Laughter and vocal cry are thus two call types whose species-typical nature in humans

is widely accepted and whose evolutionary origins are relatively clear. But to complete the

puzzle, we have to learn what other call types, if any, the human vocal repertoire includes.

Naming studies offer a powerful method for identifying perceptually salient acoustic

categories and their meaning, and we utilized this technique in addition to performing

acoustic analysis (Experiment 1). However, a linguistic approach is not without its pitfalls

(see the Introduction to Experiment 2), and therefore we also performed a triad classifi-

cation study, which allowed us to investigate the categorization of non-linguistic vocal-

izations without using any verbal labels (Experiment 2). It is worth reiterating that

perceptual studies can only reveal the categories distinguished by listeners, which may or

may not correspond to the underlying ‘‘true’’ call types (i.e., vocalizations with unique,

genetically determined neurological production mechanisms and evolutionary histories).

Clustering based on acoustic measurements is likewise not guaranteed to produce an

‘‘objective’’ classification, because call types may be graded and because the choice of

acoustic variables affects the outcome. In this regard, human acoustic research is not very

different from the studies of vocal communication in other mammals, and the same caution

is needed when interpreting its results.

To the best of our knowledge, no study has systematically analyzed the repertoire of

human non-linguistic vocalizations from this acoustic perspective, only the emotional

states that they convey. As a result, there is little empirical data on our chosen research

questions:
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1. What acoustic categories do listeners distinguish in the wide variety of human non-

linguistic vocalizations?

2. To what extent is this acoustic categorization language-specific?

3. How closely does acoustic categorization map onto emotional categorization?

4. What cognitive model best describes the relation between acoustic and emotional

categorization of vocalizations?

Source of Sounds

Our research questions require that we compare acoustic and emotional categorizations of

non-linguistic vocalizations. In particular, we would like to learn whether these classifi-

cations are relatively independent or redundant (e.g., whether each acoustic category

closely corresponds to a single emotion), and whether one of them precedes the other. This

task calls for a novel approach to collecting the audio material. Vocalizations in most

existing corpora are either elicited from people who are verbally instructed to portray a

particular emotion, or they are induced by an experimental manipulation (Scherer 2013).

For a project aiming to describe the repertoire of non-linguistic vocalizations and inves-

tigate their association with emotion, this type of material presents three problems:

(1) There is evidence that listeners can distinguish between authentic and acted

vocalizations (Anikin and Lima 2017; Bryant and Aktipis 2014; Gervais and Wilson

2005). This raises concerns about the latter’s ecological validity, suggesting that

voluntarily produced vocalizations in some cases may deviate from the natural,

spontaneous form.

(2) Listeners can extract more information from vocalizations produced by members of

the same cultural group, indicating that there is important cultural variation in

human non-linguistic vocalizations (Elfenbein and Ambady 2002; Koeda et al.

2013; Laukka et al. 2013). This may be problematic if the research interest concerns

species-specific, rather than culture-specific, vocalizations.

(3) Acted vocalizations are typically elicited by providing participants with short

vignettes or asking them to imagine a scenario targeting a particular emotion

(Scherer 2013), and the recordings are then validated in a multiple-choice task, often

preserving only a subset with the highest recognition rate. Each vocalization in the

final corpus is thus designed to be a maximally transparent vehicle for the expression

of a single emotional state. This excludes sounds—presumably abundant in real

life—that accompany a complex, mixed emotional experience (e.g., a blend of fear,

anger, and pain experienced by someone in a fight) as well as vocal expressions not

typically associated with affect (e.g., grunts of physical effort or the trembling whine

of a person freezing at a bus stop).

To avoid these limitations of most available corpora, the ideal source of sounds for the

current project would be a large corpus of observational material, recorded in culturally

diverse locations and not tied to particular emotional states. To our knowledge, no such

‘‘perfect’’ collection of human vocalizations exists. As a reasonable compromise, we chose

to work with the observational corpus compiled from social media and validated by Anikin

and Persson (2017), which contains 260 authentic vocalizations from a wide variety of

contexts. It has the advantage of containing many intense and potentially hard-to-fake

(Anikin and Lima 2017) vocalizations associated with acute fright, injury, genuinely funny

incidents, etc. This makes it more likely that the available material extends to extreme and
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socially inappropriate vocalizations. Many of these sounds may be associated with mixed

emotional states (Anikin and Persson 2017), making them more realistic objects for

investigating the mapping between acoustic and emotional categorizations compared to

actor portrayals of discrete emotions. This corpus also goes beyond the traditional range of

contexts in emotion research and includes vocalizations of pain and physical effort (for a

list of contexts and audio files, see Electronic Supplementary Materials).

Experiment 1

In this cross-linguistic naming study, participants heard non-linguistic vocalizations from

real-life interactions and chose one or more verbal labels to describe each sound in terms of

its acoustics (e.g., a laugh, a moan, etc.) and emotion (e.g., amusement, pleasure). To our

knowledge, naming studies have not been used in this manner to compare categorizations

of emotional displays in different languages. The research on facial expressions (Ekman

et al. 1969; Izard 1994) is different in that it focused on cross-cultural recognition of

particular emotions, rather than on the categorization of facial behavior in each language.

More relevant to our purpose, there is a growing body of cross-linguistic research in

domains other than emotion, such as color (Berlin and Kay 1991), body parts (Enfield et al.

2006), locomotion (Malt et al. 2010), and verbs of breaking-cutting (Majid et al. 2008).

The principal technique, known as the Nijmegen method (Slobin et al. 2014), is to elicit

free descriptions of events or objects. The more often participants apply the same name to

two stimuli, the more similar these two stimuli are assumed to be. A low-dimensional

representation of these similarities together with lexical information may be referred to as a

conceptual space, semantic space, or semantic map (on terminological distinctions, see

Zwarts 2010). Languages are compared in terms of the overall structure of their respective

semantic spaces as well as the extensions and prototypical core meanings of particular

words (Zwarts 2010).

Semantic spaces may include both gradients and discontinuities. Where important

natural discontinuities exist, languages are likely to make a categorical distinction. For

instance, speakers of different languages agree on the exact transition point between

walking and running, demonstrating a clear categorical distinction between these two

modes of locomotion (Malt et al. 2010). In contrast, the distinctions are more likely to be

language-specific in domains containing gradients with no abrupt discontinuities. For

example, within each of the two basic gaits of walking and running, there is a continuum

carved up differently by different languages (Slobin et al. 2014). Despite this general rule,

continuous domains may also have natural attractors, so that categories in different lan-

guages may have the same best exemplars. For instance, while the range of hues falling

under the local term for ‘‘red’’ varies considerably across languages, people in most

societies agree on what constitutes a good example of pure red. It is therefore generally

accepted that focal colors are universal, probably because of the physiology of human

vision (Berlin and Kay 1991; Lindsey and Brown 2009).

By applying this linguistic method combined with acoustic analysis to non-linguistic

vocalizations, we aimed to address the first two research questions, namely to identify the

most salient call types distinguished by listeners and to compare this categorization in

different languages. If some human vocalizations are species-typical, as is often suggested

(Provine 2001; Ross et al. 2009; Sauter et al. 2010; Scheumann et al. 2014), we hypoth-

esized that they should be recognized cross-culturally as distinct perceptual categories. The
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semantic spaces of sound names should thus have comparable global configurations in

different languages, although the number of subdivisions within each major category and

the extensions of different terms could be language-specific.

In addition to naming each sound, we also asked participants to interpret it emotionally.

This allowed us to explore the mapping of call types to emotions and to address research

question 3, namely to test whether: (a) there is a close correspondence between the per-

ceived call type and the perceived emotion, or (b) acoustic and emotional categorizations

are relatively independent (non-redundant).

Finally, to shed some light on the cognitive processes involved in the interpretation of

non-linguistic vocalizations (research question 4), we tested whether there would be any

preference to perform the acoustic and emotional categorization of vocalizations in a

particular order, and whether these naming decisions would differ in speed, subjective

certainty, and consistency. The Identification-Attribution model predicts that the surface

form of the communicative signal—its call type—should be identified first, followed by a

more elaborate interpretation in terms of the feelings and goals of the vocalizer. Alter-

natively, acoustic and emotional categorizations could represent two independent pro-

cesses that run in parallel rather than sequentially. In this case we should not find a

consistent temporal relationship or a strong correlation between the ease of categorizing a

particular sound by acoustic type and by emotion.

In pilot tests we initially followed the Nijmegen method (Slobin et al. 2014) and elicited

free-text descriptions of each sound. With this design, sounds are classified in an inductive

manner: each participant creates their own categories for classifying the stimuli. Our

participants volunteered a manageable number of sound names, but emotion names con-

tained many synonyms, and there was a tendency to provide complex descriptions of the

hypothetical context in which vocalizing took place instead of monolexemic labels (cf.

Boster 2005). We strove to keep the two naming tasks compatible and therefore opted to

provide participants with a list of monolexemic sound names and emotion names that were

commonly used by participants in the pilot study.

By analogy with Berlin and Kay’s (1991) technique for eliciting basic color terms, we

were less interested in polylexemic descriptions, very low-frequency words, terms that are

mostly applicable to animal but not human sounds, and recent foreign loans. To make sure

the list of sound names was comprehensible, we also checked the frequencies of all

potential sound names in English, Swedish, and Russian, whether or not these words were

actually used by participants in the pilot study. All high-frequency words were included in

the labels (see Electronic Supplementary Materials). Eventually we chose 16 sound names

in English, but in Swedish and Russian this would have required including some

uncommon words, so we reduced the number of sound names to 12. The list of emotion

labels in all three languages included 16 terms (see Fig. 3 for a complete list of labels for

each language).

Materials and Methods

Stimuli

The experimental stimuli consisted of 132 authentic non-linguistic vocalizations (63 by

men, 69 by women and children), which were selected by stratified random sampling from

a larger, previously validated corpus (Anikin and Persson 2017). This corpus was compiled

from online videos of people engaged in a variety of emotionally charged and easily

interpretable activities, such as cleaning a blocked toilet or eating exotic foods (disgust),
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playing with distorting web cameras or watching a friend take a spectacular tumble

(amusement), lifting heavy weights (effort), and so on, for a total of nine categories:

amusement, anger, disgust, effort, fear, joy, pain, pleasure, and sadness. Strictly speaking,

these categories are contextual-emotional, since we only know in what context the

vocalization was emitted, not the ‘‘true’’ affective state of the caller. The sounds were on

average 2.2 ± 1.8 s in duration. The callers were primarily English speakers, but we tried

to avoid language-specific emblems such as ouch, yuck, etc. For the most part, the tested

sounds are thus free from any phonemic structure.

Participants

Participants (N = 64) were mono- or bilingual speakers of Swedish (n = 20), English

(n = 19), or Russian (n = 25). The Swedish- and English-speaking participants were

recruited among students and junior staff at Lund University and tested in person, ensuring

that every participant rated all 132 stimuli. Russian participants were recruited and tested

online, resulting in some incomplete reports (18 out of 25 Russian participants completed

over 85% of trials).

Procedure

The experiment was performed in a web browser (See Electronic Supplementary Materials,

Figure A1). Participants chose one or more suitable sound names and emotion names from

a list of alternatives. This task is different from the inductive categorization in the pilot

tests, since participants chose among a limited number of provided categories. They could

change their minds and correct their answers as many times as needed, until they clicked

the Next button and moved on to the next sound. It took 30–40 min to rate 132 sounds.

To assess the facility of naming acoustic types and emotions, participants could have

been asked to do these two tasks sequentially, in random order. However, responses were

generally slow (mean total time for both tasks 25 s), making it hard to know which

processes might be responsible for differences in response times. We therefore opted to

present both sound names and emotion names on the same screen, which allowed us not

only to measure response times, but also to evaluate individual preferences for starting by

naming either the sound or the emotion. To control for the general tendency to start with

the left-hand side of the screen, for half of the participants in each language sound names

were on the left-hand side, and emotion names were on the right-hand side of the screen.

For the other half of participants, this order was reversed.

Statistical Analysis

All analyses were performed in R (R Core Team 2016).

Semantic Space of Sound Names In order to construct semantic spaces representing the

perceptually salient acoustic categories and dimensions along which they are distinguished,

we calculated pairwise Euclidean distances between all stimuli based on how often par-

ticipants chose the same name for two sounds. This was done separately for each language,

after which the resulting distance matrices were averaged across languages. Distance

matrices were analyzed using principal components analysis (PCA) and multi-dimensional

scaling (MDS). We defined a cluster as a group of stimuli with the same most commonly
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chosen name. Centroids were calculated by taking a weighted mean of the coordinates of

all sounds in a cluster, using as weights a product of (1) the average subjective certainty

with which each sound was named by participants and (2) the proportion of the most

common sound name out of all sound names applied to the same stimulus by different

participants. This ensured that cluster centroids were close to the most representative

sounds in each category.

We also performed affinity propagation clustering of the semantic distance matrix using

apcluster R package (Bodenhofer et al. 2011). To find optimal clustering solutions, we

varied the parameter q (sample quantile of the preference with which a data point becomes

a centroid), which modulates the propensity of clustering algorithm for splitting or

lumping. We then examined the quality of the resulting clustering solution by measuring

(1) the average Silhouette Index, which is a measure of compactness and purity of clusters,

and (2) the similarity of the clustering solution to the clusters defined by the most common

name of each sound chosen by the participants (cf. Gamba et al. 2015).

Analysis of Acoustic Data All acoustic measurements were taken from the original

acoustic analysis of the corpus as reported in Anikin and Persson (2017) and Anikin and

Lima (2017). They included measures (median and standard deviation) of amplitude,

fundamental frequency (pitch), distribution of energy in the spectrum, harmonics-to-noise

ratio, proportion of voiced frames, and several temporal measures, such as the number,

spacing and regularity of syllables. We aimed to define the acoustic space that would

optimally preserve the structure of the semantic space of sound names. To do this, we

chose a subset of acoustic variables and their weights iteratively, trying to maximize the

correlation between the acoustic distance matrix (Euclidean distances between stimuli

based on a weighted linear combination of acoustic predictors) and a reference distance

matrix derived from the participants’ judgments.

A subset of twelve acoustic predictors listed and explained in Table 1 proved optimal

for maximizing the correlation with the semantic distance matrix (based on sound names in

all three languages). In practice, the weights of acoustic variables did not have to be

adjusted much to achieve optimal correlation with any of the other explored distance

matrices (Table 2, first column): Cronbach’s alpha for weights optimized for different

targets was 0.95; 95% CI [0.91, 0.99]. We then employed two classification algorithms to

predict the chosen sound names in each language. The more easily interpreted multinomial

regression was trained on the first two principal components of the acoustic matrix in order

to visualize the acoustic space in each language (Fig. 2), while the more powerful Random

Forest classifier, which builds and cross-validates a large ‘‘forest’’ of decision trees

(Breiman 2001), was trained on the 12 individual predictors to estimate the extent to which

objective acoustic measurements were sufficient to predict the perceived acoustic type.

Relation Between Call Types and Emotions Contingency tables describing co-occurrence

of sound names and emotion names were analyzed using Random Forest. This allowed us

to estimate to what extent we could predict the perceived emotion knowing the chosen

sound name(s) of a sound.

To compare the speed with which participants named the acoustic type and emotion of

each stimulus, we recorded the delay between sound onset and (1) choosing the first sound

name, (2) choosing the first emotion name, and (3) clicking the Next button to proceed to

the next sound. Response times greater than 60 s were occasionally (* 4% of trials)

recorded among Russian participants, who took the test online without supervision.
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Presumably, such long delays were related to technical problems or participants taking a

break, and they were removed from the analysis of response times. Time measures were

log-transformed due to a right skew in their distribution and analyzed using a Gaussian

model with two random effects: sound and participant. This and other linear models were

fit using Markov chain Monte Carlo in the Stan computational framework (Stan Devel-

opment Team 2014).

Subjective certainty in the chosen answer was indicated separately for emotion name

and sound name as, ‘‘Don’t know’’, ‘‘Unsure’’, or ‘‘Sure’’. It was analyzed using ordinal

logistic regression, again with two random effects. The consistency of participants’ choices

was operationalized as normalized entropy of all names chosen for a particular stimulus by

all participants who had rated it, separately for sound names and for emotion names:

entropy ¼ �sumðlog2ða=sumðaÞÞ � a=sumðaÞÞ= log2ðnumber alternativesÞ � 100%;

where a was a vector of the same length as the number of alternative answers (num-

ber_alternatives, which was either 12 or 16) consisting of the number of times each sound

name or emotion name was chosen. Because both the number of alternatives and the total

number of responses per term varied, entropy was normalized to range from 0 to 100%.

The distribution of entropy of 132 sounds was approximately normal, and therefore it was

analyzed using Gaussian models.

The sounds, R scripts, raw data, additional tables and graphs can be accessed at http://

cogsci.se/publications.html.

Results

Perceptually and Acoustically Distinct Call Types

In each language, we identified the most common name for each of 132 sounds and

constructed a language-specific semantic space, in which the relative distance between any

two stimuli depends on how often they were described with the same word. In all three

languages, the first three principal components explained[ 80% of variance in the

resulting distance matrix, suggesting that three-dimensional solutions were adequate.

Figure 1 (top panel) shows the semantic spaces of sound names for English, Swedish, and

Russian. Each text label represents a single sound, labeled with its most commonly chosen

name. The closer two sounds are in the graph, the more often they were given the same

name by different participants. In addition, for each sound name the central location of

stimuli with this name—cluster centroid—is shown in bold letters. For example, the

centroids for the English words scream and shriek are close to each other, indicating that

this distinction was not particularly consistent.

Based on visual inspection, semantic spaces of sound names are remarkably similar for

all three languages: one dimension separates moan-like from scream-like sounds, while

two more dimensions separate laughing and crying from all other sounds. More formally,

the distance matrices for English, Swedish and Russian sound names are strongly corre-

lated: r[ 0.8 for all three pairs of languages (see Table 2).

As shown in the cladograms in the bottom panel of Fig. 1, in all three languages the

most fundamental distinction was made between laughing, crying, and the remaining

vocalizations. Beyond these three major groups, the order of separation between clusters

was more language-specific. The languages also differed in the depth of classification:

English appears to have the richest sound vocabulary with at least ten consistently labeled
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acoustic types, compared to as few as six in Swedish and seven or eight in Russian. The

exact number is hard to determine, since measures of clustering quality indicated several

valid clustering solutions. The cladograms in Fig. 1 are merely one possible interpretation

of the major call types based on the naming data in these three languages.

We also performed acoustic analysis to determine how subjective categorization of non-

linguistic vocalizations related to objective acoustic differences between these sounds.

Since the semantic spaces of sound names were so similar in English, Swedish, and

Russian, we averaged the corresponding distance matrices from all three languages and

used this averaged matrix to find an acoustic space of non-linguistic vocalizations that

would represent, as faithfully as possible, the acoustic distinctions observed by speakers of

these languages. As shown in Table 1, a subset of 12 weighted acoustic variables maxi-

mized the correlation between acoustic and semantic distance matrices (r = 0.50).

In other words, we asked the following question: What acoustic characteristics do we

have to measure in order to separate the sounds into the same groups as did our participants

when they named the sounds? The matrix of the chosen 12 (scaled and weighted) acoustic

variables had only two strong principal components, which together explained 64% of

variance. The first principal component correlated primarily with median pitch and the

second with the number of vocal bursts (Table 1; Fig. 2). Based on the available acoustic

measurements, it appears that participants distinguished between call types primarily based

on their pitch, the number and irregularity of syllables, the balance between voiced and

unvoiced parts, and some spectral characteristics.

It is also interesting to determine to what extent the classification of sounds into call

types can be reproduced using objective acoustic measurements. Adjusted Rand Index

demonstrates a much higher agreement of the actual naming with a clustering solution

based on distances in the averaged semantic space (0.46, 0.48, and 0.49 for English,

Table 1 Variables used to construct the acoustic space and their weights optimized for maximum corre-
lation between acoustic and semantic spaces

Variable Interpretation Weight Loadings

PC1 PC2

Amplitude, median Median root square amplitude (loudness) 0.61 0.13 -0.17

Proportion of voiced
frames

How much of the sound is voiced 1.28 0.24 -0.41

Pitch, median Fundamental frequency or perceived pitch (manually
checked)

1.89 0.75 0.19

Pitch, SD 0.79 0.21 0.1

First quartile, median First quartile of spectral energy distribution 1.42 0.53 0.04

First quartile, SD 0.74 0.15 0.16

Spectral entropy, SD SD of the entropy of spectral energy distribution 0.9 0.03 0.16

Interburst interval,
median

Time between vocal bursts (amplitude peaks) 0.58 0.01 -0.03

Interburst interval, SD 1.73 0.04 -0.07

Number of bursts Total number of amplitude peaks per sound 1.61 -0.11 0.81

Syllable length, median Length of continuous vocal segments 0.77 0 -0.16

Syllable length, SD 0.48 0.04 -0.08
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Swedish, and Russian, respectively) than with a clustering solution based on distances in

the acoustic space (0.14, 0.15, and 0.13). The reason is that acoustically the stimuli are

highly graded. As can be seen in the scatterplot in Fig. 2, sounds form a single cloud, with

no clear clusters and a lot of overlap between call types. This contrasts with the relatively

well-separated clusters in Fig. 1. Using the 12 acoustic variables listed in Table 1, a

Random Forest classifier correctly predicted the chosen sound name approximately 40% of

the time in English, 62% in Swedish, and 54% in Russian. We also repeated Random

Forest classification after pooling sound names into six major categories (laugh, cry,

scream, moan, sigh, and roar) plus one residual unclassified ‘‘other’’ category. With these

seven categories, classification accuracy was approximately 60% for all three languages.

Our findings thus indicate that participants classified sounds into call types more con-

sistently than could be expected given the available acoustic measures. This result should

be treated with some caution, however, since several call types were represented by only a

few sounds (e.g., gasp, howl, etc.). The most common types, such as laughs and screams,

also had high recognition rates in Random Forest models (75% and better), suggesting that

classification accuracy by acoustic models might improve with a larger training sample.

How Do Call Types Map onto Emotion?

To explore the correspondence between naming the sound and naming the speaker’s

emotion, we analyzed contingency tables of sound and emotion names (Fig. 3). For

example, the cell in the top left corner for English shows that a sound was simultaneously

labeled scream and anger in 29 individual trials, whereas the combination of scream and

fear was more common (191 trials). A Chi square test performed on this table proved that

these acoustic-emotional classifications were not independent (English: v2 = 8568,

df = 256; Swedish: v2 = 7761, df = 192; Russian: v2 = 7102, df = 192; p\ 10-15 for

all three). However, the association between naming the acoustic type of a vocalization

(e.g., a scream) and naming its emotion (e.g., fear) was far from perfect. Based on the

chosen sound name, a Random Forest classifier correctly predicted the chosen emotion

name approximately 60% of the time in English, 50% in Swedish, and 60% in Russian.

Knowing what speakers called a sound thus provided roughly half the information needed

to predict its perceived emotion.

Fig. 2 Acoustic models for classifying vocalizations based on sound names chosen by English, Swedish,
and Russian participants. Shaded areas show the acoustic class predicted by a multinomial regression model
using two first principal components of 12 acoustic features (see Table 1). Small labels show the position of
individual stimuli and their call type
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Of course, perfect correspondence is less likely when there are more emotion names

than sound names, as was the case in Swedish and Russian. However, the association

between call type and emotion was similarly imperfect in English, which had 16 sound

names and 16 emotion names. Furthermore, the lack of one-to-one mapping is not only due

to the presence of close synonyms among the available verbal labels. For example, when a

participant classified a sound as a scream, the perceived emotion varied widely and

included quite distinct contexts, such as fear, pain, delight, surprise, etc. Moans, grunts,

and sighs also varied considerably in their emotional interpretation. In contrast, laughing

and crying were more closely associated by participants with a particular emotional state

(amusement/joy and sadness, respectively; see Fig. 3).

Ease and Consistency of Naming the Sound Versus Naming the Emotion

Participants started by naming the emotion in * 3% of trials when emotion names were

on the right, but they started by naming the sound in * 27% of trials when sound names

were on the right: odds ratio = 28, 95% CI [7, 141]. If the relative position of sound names

and emotion names on the screen was the only factor affecting the order of responses, the

probability of answering left-to-right should have been the same regardless of whether

sound names or emotion names were on the left. Instead, we observed a bias to name the

sound before naming the emotion.

Median time needed to name both the sound and its emotion was 14 s, and median time

needed to choose the first of these names was 5 s. Controlling for the order in which the

two blocks were presented on the screen, it took 850 ms [740, 960] longer to choose the

first emotion name versus the first sound name. This observation confirms that participants

preferred to name the sound before naming its emotion.

Subjective certainty in the given answers, measured on a scale of 1–3 (Don’t know—

Unsure—Sure), was on average 2.76 [2.75, 2.78] for sound names and 2.54 [2.52, 2.56] for

emotion names. The proportion of ‘‘Sure’’ ratings was higher for sound names, while the

proportions of ‘‘Don’t know’’ and ‘‘Unsure’’ ratings were higher for emotion names

(Fig. 4). The results were similar for all three languages (not shown). Furthermore, there

were 7.4% of trials in which participants named the sound but not the emotion, whereas the

reverse pattern of naming the emotion but not the sound occurred in only 1.7% of trials:

odds ratio = 5.2 [4.2, 6.5]. Participants thus named the sound with more certainty than

they named the emotion.

Normalized entropy was considerably lower for sound names than for emotion names

(49 vs. 59%, difference = 9.6% [7.7, 11.6], Cohen’s d = 0.76). Low entropy means that

participants mostly agreed on what to call a particular stimulus, whereas high entropy

means that different participants chose many different terms for the same stimulus. Our

Fig. 4 The probability of
expressing different levels of
certainty in the chosen sound
names and emotion names for all
three language groups combined.
Median of the posterior
distribution and 95% CI
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results thus suggest that sound names were chosen more consistently than emotion names.

In Swedish and Russian, this could be due to the smaller number of available alternatives:

12 sound names versus 16 emotion names. However, we corrected for the number of

alternatives and used normalized entropy. Moreover, in English there were equal numbers

of sound names and emotion names (16 of each), but the entropy of sound names was still

7.3% [5.0, 9.5%] lower.

We expected that it would be easier to name the call type than to name the emotion only

for those sounds that were the most distinct acoustically (e.g., laughs), while for other

sounds it would be easier to name the emotion than to name the call type. However, the

average certainty in the given sound names was higher than the average certainty in the

given emotion names for all 40 (12 ? 12 ? 16) sound names in the three languages and

for all but one emotion (disgust). Sound names were also chosen faster than emotion names

for all call types in all languages except flämtning (gasp) in Swedish, snort in English, and

p/d (roar) in Russian. In addition, there was a strong positive correlation between the speed

of naming each sound and naming its emotion: r = 0.75, 95% CI [0.62, 0.85]. Similarly,

the certainty in the choice of sound name (averaged per sound) correlated with the cer-

tainty in the choice of emotion name: r = 0.75, 95% CI [0.63, 0.86]. There was also a

positive correlation between the entropy of sound names and emotion names: r = 0.59

(95% CI [0.44, 0.72]). The speed, certainty and consistency of naming a particular sound

were thus strongly correlated with the speed, certainty and consistency of naming the

emotion that it expressed.

To summarize, English-, Swedish-, and Russian-speaking participants in Experiment 1

demonstrated a high level of agreement when classifying non-linguistic vocalizations into

approximately six major call types, which could also be defined in terms of objectively

measured acoustic features. More fine-grained classification into acoustic subtypes was

generally less consistent both across and within languages. The classifications of a sound in

terms of its acoustic type and emotion were neither totally independent nor redundant:

some call types were strongly associated with a single emotion, while others were per-

ceived to express a variety of states. It seemed more natural to name the sound before

naming its emotion, apparently for most call types and emotions. However, these two

processes were not independent: sounds that were easy to classify acoustically were also

easy to interpret in terms of the caller’s emotion, while acoustically unnameable sounds

remained emotionally opaque.

Experiment 2

Cross-linguistic naming studies, such as the one above, have their limitations. One problem

is that the availability of verbal labels in a language is not a prerequisite for distinguishing

categories of stimuli. For example, Yucatec Maya does not possess two separate words for

disgust and anger, but there is evidence that speakers still perceive the corresponding facial

expressions as two distinct categories (Sauter et al. 2011). Often modifiers allow speakers

to make subtle distinctions despite a paucity of basic lexemes (Malt et al. 2010). In other

cases the abundance of language-specific lexical distinctions may exaggerate the apparent

complexity and culture-specificity of a cognitive domain and obfuscate its underlying

universality. For example, similarities between household utensils based on direct non-

linguistic comparisons are more consistent across languages compared to similarities

derived from verbal labeling of such objects (Ameel et al. 2005; Malt et al. 1999).
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In other words, the presence or absence of a linguistic distinction in several languages

can be suggestive, but in itself it can neither prove nor falsify the universality of the

corresponding conceptual distinction. It is therefore desirable to obtain language-inde-

pendent evidence. Moreover, in Experiment 1 participants were forced to choose among 12

or 16 pre-given labels, further restricting the possible patterns of classification. Given these

limitations, we also tested the same 132 sounds in another experiment, avoiding verbal

labels altogether and aiming to obtain an estimate of ‘‘naked’’ perceived similarity between

stimuli.

To do this, we used the triad classification task, which is an established tool for studying

the categorization of multidimensional stimuli (Alvarado 1996; Raijmakers et al. 2004).

Participants in a triad task are presented with three stimuli at a time and select two that are

the most similar. These decisions can be used to estimate the perceived ‘‘distances’’

between stimuli. Since in Experiment 1 we discovered that call types were highly salient to

listeners, we hypothesized that this distance matrix would be more compatible with the

distance matrix calculated in Experiment 1 based on the chosen sound names, rather than

with the distance matrix based on emotion names. Participants’ choices in a triad task

depend on the instructions: they have to be told on what basis they are supposed to

compare the stimuli in each triad. We loaded the dice against the hypothesis and specif-

ically asked participants to choose based on the similarity of underlying emotional states,

not the similarity of acoustic characteristics.

The triad task has previously been applied to the classification of emotional vocaliza-

tions: Green and Cliff (1975) tested 11 sounds, one for each emotion. However, it is

impossible to discover an alternative clustering with so few stimuli. Besides, Green and

Cliff worked with artificial and speech-like material (recited letters of the alphabet) rather

than natural vocalizations. Our study is thus the first to use the triad task for label-free

classification of human vocalizations.

Materials and Methods

Stimuli

We used the same 132 sounds as in Experiment 1.

Participants

Participants in the triad task were recruited on the campus of Lund University or online,

through advertisements and personal contacts. All participants who performed at least ten

out of forty-two trials were included in the analysis (N = 241). The experiment was

available in three languages: Swedish (n = 156 participants), English (n = 77) and Rus-

sian (n = 8). Since the Russian sample was too small to construct a distance matrix, we

only present the results for the Swedish and English samples.

Procedure

The experiment was written in html/javascript and made available online. Participants

performed the test in common rooms at the university or at home. It took approximately

10–15 min to complete the entire test (132 sounds in 42 triads), although incomplete tests
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were also accepted. All data was completely anonymous and the online test could be

interrupted at any time.

A standard version of the triad classification task (Raijmakers et al. 2004) was used.

Participants were presented with three sounds at a time, and they could replay each sound

as many times as they needed before indicating which two sounds in the triad were

emotionally more similar. Just like Nijmegen method of free-text labeling in the pilot

version of Experiment 1, categorization in the triad task is inductive, in the sense that the

nature of categories is not predetermined and their number is not limited. The instructions,

visible throughout the experiment, specifically asked to choose based on the emotional

state of the caller. Each of 132 sounds was presented once in random order.

Statistical Analysis

The output of the triad task was analyzed using a Bayesian model. The model assumes that

each sound is embedded in a d-dimensional space and that for every triad the participant’s

choice is a function of the relative distances between the three sounds. The pair of sounds

with the smallest distance is the one most likely to be chosen by the participant. To find the

posterior distribution of the embedding in d-dimensional space, the model was fit using

Markov chain Monte Carlo in the Stan computational framework (Stan Development Team

2014).

Since dimensionality was hard-coded in the generative model, we explored models with

different numbers of dimensions and estimated how well each described the actual

responses of participants. Watanabe-Akaike Information Criterion (WAIC), which is an

approximation to leave-one-out cross-validation, was used as a measure of overall fit

(Watanabe 2010). In addition, we calculated the correlation between the distance matrices

based on linguistic labeling in Experiment 1 (either sound names or emotion names,

averaged across three languages) and the distance matrix in Experiment 2 estimated by a

generative model with d dimensions, separately for Swedish and English (Fig. 5).

Results and Discussion

The first step was to determine how many dimensions were necessary to represent the

configuration of stimuli corresponding to the distinctions made by participants in the triad

task. A three-dimensional model achieved optimal correlation with the distance matrices

from Experiment 1 based on naming both the sound and its emotion for both English and

Swedish data (Fig. 5). WAIC suggested that three dimensions were optimal for Swedish

and two or three for English; we therefore focused on three-dimensional models.

For both English and Swedish, the distance matrix from the triad task was more similar

to the distance matrix from Experiment 1 based on sound names (r = 0.69 for English and

0.73 for Swedish data) than to the distance matrix from Experiment 1 based on emotion

names (r = 0.50 and 0.57, respectively; Table 2). A visual inspection of the configuration

of stimuli that best represented similarity judgments made by participants in the triad task

(Fig. 6) confirmed that this configuration was qualitatively similar to the semantic space of

sound names in Fig. 1. Once again, laughs and cries formed clearly separated clusters,

while the remaining sounds were spread out in a cloud from sighs and moans to screams.

The main difference between this configuration and semantic spaces in Experiment 1 was

that the clusters were less compact in the triad task. The reason may be that participants in

Experiment 1 had to choose among a few available verbal labels, whereas similarity

judgments in the triad task were unrestrained, allowing more subtle distinctions.
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Since so few Russian-speaking participants took part in the triad classification task, no

comparison could be made for this language. Moreover, the English group in the online-

based triad task is not guaranteed to consist entirely of native speakers (in contrast to

Experiment 1, where participants were tested in person and were native speakers),

potentially limiting the compatibility of English data from the two studies. Despite these

limitations, Experiment 2 has demonstrated that, overriding the explicit instructions to

choose based on emotion, participants made similarity judgments that were more com-

patible with verbal classification of stimuli into acoustic categories than into emotional

categories. This convergent evidence highlights the perceptual salience of acoustic cate-

gories and confirms that linguistic labeling in Experiment 1 provided valid information

about the underlying cognitive representation of non-linguistic vocalizations.

General Discussion

To investigate the relation between acoustic categories (e.g., laughter or moan) and per-

ceived emotion, we analyzed acoustically 132 sounds from a corpus of authentic non-

linguistic vocalizations (Anikin and Persson 2017) and compared their verbal classification

by acoustic category and emotion by native speakers of English, Swedish, and Russian

(Experiment 1). We found strong parallels across all three languages in the distinguished

acoustic categories, which was further confirmed using a nonverbal classification test

(Experiment 2). In line with acoustic research in other primates (Fischer et al. 2016),

human vocalizations appear to be highly graded, and all sounds apart from laughing and

crying can be roughly aligned along a single dimension, which acoustically corresponds to

pitch. Based on the analyzed sample of sounds and languages, the conceptual space of non-

linguistic vocalizations thus appears to be three-dimensional, and the most salient acoustic

categories are: laughing, crying, screaming, and moaning. We suggest that these categories

Fig. 5 Model fit as a function of its dimensionality for the triad classification task. Shown: Pearson’s
correlation with distance matrices from Experiment 1 based on naming the sound or emotion and normalized
negative WAIC (larger is better)
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may correspond to species-typical call types—innate vocalizations that are produced and

recognized in all cultures. Roaring and sighing are two more candidate call types, but the

evidence in their case is less conclusive.

This list of perceptually distinct vocalizations can only be regarded as preliminary, since

it critically depends on the range of tested sounds. For example, there were no completely

voiceless sounds in the corpus, likely influencing the apparent semantic extension of the

word sigh. Moreover, we only examined three languages from the Indo-European family,

and the variation in sound-related vocabulary may become larger if more distantly related

languages are compared. However, even with only three languages, it is already clear that

the number of ‘‘basic’’ (i.e., perceptually and acoustically distinct) call types is consid-

erably smaller than the number of available lexemes for acoustic categories in the general

vocabulary.

To understand why this is so, it is helpful to distinguish between extension and con-

notation of sound names. For example, the words for breathy sounds in English, Swedish,

and Russian appear to differ primarily in their extensions: only English has a consistent

ingressive–egressive distinction at the level of basic lexemes (sigh versus gasp), the

Russian dplox (sigh) apparently allows for relatively more voicing, etc. There are also

sound names that differ primarily in their connotations, such as groan/moan in English or

rop/vrål in Swedish. These words were often applied to the same sound by different

participants, depending on which emotion they perceived. They are therefore not fully

synonymous, but it may still be unwarranted to claim that they represent two different

vocalizations, since these semantic distinctions are neither acoustically robust nor con-

sistent across languages. Finally, words like laughing/giggling/chuckling, crying/sobbing,

and screaming/shrieking/yelling, as well as the equivalent terms in Swedish and Russian,

are close synonyms that overlap in both extension and connotation in all three languages.

In such cases, the likely interpretation is that these words refer to subtypes of what is

perceptually a single vocalization.

As a result, we are left with only a handful of cross-culturally recognized and acous-

tically definable call types, perhaps as few as four to six. This relatively small number may

come as a surprise, considering the larger number of lexemes for non-linguistic vocal-

izations and of emotions that can be correctly detected based on vocal cues (9–16 emotions

in Cordaro et al. 2016; 14 emotions in Simon-Thomas et al. 2009). The number of call

types we identified also falls far short of that ascribed to the great apes. Estimates vary, but

gorillas may have about 16 call types (Fossey 1972), bonobos 12–19 (Bermejo and

Omedes 2000; de Waal 1988), chimpanzees 13–24 (Goodall 1986; Marler 1976), and

orangutans 32 (Hardus et al. 2009). An intriguing possibility is that these estimates of the

size of vocal repertoire in apes are inflated, because within-call acoustic variation is easily

mistaken for distinct call types. For example, by simply varying the amount of nonlin-

earities such as subharmonics and deterministic chaos, a nearly tonal vocalization can be

made bark-like and almost unrecognizable as an instance of the same call (Fitch et al.

2002). Once the production mechanism of each call is better understood, some ape

vocalizations may thus be reclassified as variations of the same basic type.

The relatively small number of identified human call types does not contradict the well-

established fact that a rich variety of affective states can be recognized from non-linguistic

vocalizations. Even a few distinct vocalizations may still be sufficient for expressing a

wide range of meanings, provided that within-type acoustic variation is meaningful

(Scheiner et al. 2002; Wadewitz et al. 2015). For instance, the exact manner of laughing

may tell the listener as much as the fact that this is a laugh rather than, say, a grunt.

Consistent with this explanation, the distinction between tonal and noisy sounds did not
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appear to contribute to the categorization of sounds by call type in this study, whereas this

acoustic parameter is of major importance for the categorization of the same sounds by

emotion (Anikin and Persson 2017). Relatively tonal and noisy vocalizations of the same

basic acoustic type may thus be associated with different emotions. The expressive range

of each call type may be further enhanced by contextual information and integration of

sound with input from other sensory modalities. For example, visible tears make crying

less ambiguous and enhance the impression of sadness (Provine 2012; Provine et al. 2009).

It is also quite possible that humans possess more call types than we have identified, but

these vocalizations lack monolexemic labels, at least in the investigated Indo-European

languages. These call types may also fail to be consistently distinguished by participants

and acoustic models, perhaps because the boundaries between them are blurred. In fact, our

acoustic analysis revealed that most call types were highly graded, complicating their

clustering based on the extracted acoustic features and limiting the accuracy with which

acoustic models could predict the sound name in each language. A possible objection is

that the acoustic characteristics we measured do not describe the sounds comprehensively.

However, even fewer acoustic variables sufficed for machine learning algorithms to

achieve accuracy on a par with human raters when classifying the original corpus by

emotion (Anikin and Persson 2017). A more serious limitation of the current research is

that our sample of 132 sounds may not be large enough or comprehensive enough to be

considered representative of the range of non-linguistic vocalizations people produce. Our

analysis needs to be extended, using a larger and more diverse collection of vocalizations,

ideally recorded from an even broader range of contexts and from several cultural groups.

The interpretation we favor is that humans do possess species-typical vocalizations, but

these are graded and further masked by the great variety of culturally learned non-linguistic

vocalizations. Only the most salient and involuntary vocalizations remain universal and

distinct enough to be perceived categorically in all cultures, with laughter being the

paradigmatic example. We did not test for categorical perception per se, but the compact

clustering of laughing and crying in the naming task, and particularly in the triad classi-

fication task, strongly suggests that at least these two vocalizations are perceived as

qualitatively different from all other sounds, which is in line with previous studies of these

two vocalizations (Lingle et al. 2012; Provine 2012). The fact that the separation between

acoustic types made by participants was more consistent than might be expected based on

acoustic measurements also implies their categorical perception, which can be verified in

future studies. Ultimately, it would be also be illuminating to analyze the neurological and

physiological processes involved in the production of each call type putatively identified in

perceptual studies. This would both verify the validity of suggested acoustic categories and

determine whether their universality is due to innateness or some other processes driving

cross-cultural convergence.

In addition to identifying the major call types and their meaning, it is important to

specify a cognitive model of the relation between sound and emotion classification by the

listener. As a step in this direction, we compared the two tasks—naming the sound and

naming its emotion—in terms of decision time, preferred order, subjective certainty, and

consistency. Naming a sound acoustically (as a laugh, a scream, etc.) was associated with

faster responses, greater certainty and higher consistency across participants compared to

naming its emotion (Experiment 1). Intriguingly, this was the case for practically all

analyzed vocalizations, not only for some particular classes. Furthermore, asked to com-

pare the sounds based on the underlying affective state of the caller, participants still

appeared to think largely in terms of acoustic categories (Experiment 2). At the same time,

there was a close relation between the ease of acoustic and emotional interpretations. If a
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sound could not be named, its emotion could not be determined, and vice versa: sounds that

were easy to name were also more easily and consistently interpreted in terms of the

underlying emotion.

A parsimonious explanation for these observations is that every vocalization is initially

categorized acoustically and then interpreted in terms of the caller’s emotion or intention,

in accordance with the identification-attribution model (Spunt and Lieberman 2012). This

task is streamlined when the vocalization belongs to a common and acoustically well-

defined category, such as laughing or screaming. This would explain the strong correlation

between the ease of naming the sound and the ease of naming its emotion: the identifi-

cation of a particular call type carries useful information for the receiver, since each call

type is associated with only a restricted range of emotions. Nevertheless, the association

between call type and emotion is not redundant; instead, it turns out to be considerably

more complex than might have been expected.

This calls for a complementary approach to the study of non-linguistic vocalizations—

one mindful of acoustic types as such, rather than solely their potential for expressing

emotion. We hope that this approach may provide a more comprehensive and phyloge-

netically informed account of vocal behavior, shedding new light on human nonverbal

communication and bringing it more in line with research on vocal communication in other

animals.
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