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Abstract We report on a systematic study of Boltzmann entropy as a function of state
space size. As the state space, characterized by the number of objects N , is increased
we find that identical entropies are shared bymany different state space configurations.
These degenerate states are called doppelgänger states. A calculus is developed to pre-
dict the occurrence of these states. Theoretical and numerical analysis shows that for
large N almost all configurations are doppelgängers. Boltzmann entropy is fundamen-
tal to disparate disciplines such as statistical mechanics, mixing theory, combinatorics,
and information theory. Our analysis then may have some broad interest.

Keywords Entropy · Statistical mechanics · Boltzmann systems · Mixing ·
Classical ensemble theory

1 Introduction

In a study of the evolution of a Boltzmann system of dimension N from lowest to
maximumentropy [1]wenoticed that for N ≥ 7 certain iso-entropy states are produced
by incomparable microstate configurations. For lack of a better term we call these
doppelgänger entropy states, or perhaps just doppelgängers. Since the number of
available states of a Boltzmann system goes as the integer partitions of N , (IP[N ]), we
first speculated this was a rare pathological phenomenon of no significance. However,
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it turns out that even for a relatively modest value of N = 50 where there are IP[50] =
204,226 states, only 10,417 (approximately 5%) are not doppelgängers.

The Boltzmann distribution defines the microcanonical ensemble in statistical
mechanics. This ensemble describes the distribution in state space of N particles
in an isolated system of volume V , with total energy E . This function is well known
as

Ω(N , V, E) = N !
∏N

i=1 ni !
. (1)

Ω has a simple physical interpretation. It is the number of ways N distinguishable
objects can be distributed in ni cells. It is fundamental to all classical canonical ensem-
bles, [2].

The entropy of an isolated system is well known as

S = k lnΩ(N , V, E). (2)

We have not found any discussion of iso-entropy states of (2) in the statistical mechan-
ical literature. Since this distribution is so pervasive in science and technology it may
be that doppelgäger Boltzmann entropies are of interest to a wide audience. This
motivates our goal here to develop a calculus to predict the occurrence of doppelgäger
entropies.

The next section introduces the necessary notation and definitions. This is applied to
some simple examples of multiple entropy states in low N systems. Section 3 provides
a detailed numerical analysis of cases up to N = 50. The paper concludes with a brief
synopsis and discussion.

2 Theory

Our starting point is the Boltzmann entropy given by (2), normalized by k

S(ni ) = ln

(
N !

∏N
1 ni !

)

. (3)

It is helpful to use a simpler notation for S(ni ) as

S(ni ) = [n1, n2, . . .]. (4)

For large N manycellsmay contain the samenumber of objects. Then (4) is abbreviated
as

S(ni ) = [n1, . . . nkp, . . .] (5)

where k is now the number of cells with n p objects. Equations (4) or (5) are the
signatures of the entropy states.
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Now consider two distributions S(ni ) and S(mi ) with the same number of objects.
Clearly the entropies will be the same iff

∏
ni ! =

∏
mi !. (6)

The goal here is to develop a calculus for determining cases when (6) is true. The key
is to find seed numbers whose factorials are the product of other factorials. Thus, we
look for some n j in (6) that can be expressed as the product of two or more factorials.
That is let

n j ! = n j−a !n j−b! . . . . (7)

Then
[n1, . . . n j , . . .] = [n1, . . . , (n j−a, n j−b, . . .), . . .]. (8)

Now n j−a + n j−b + · · ·− n j = Nd so Nd cells with 1 or more objects must be added
to S(ni ) to achieve a mass balance with S(mi ) in (6). An important ramification is that
more than Nd cells can be added to S(ni ) as long as the additional cells are added in
the same combination to S(mi ).

This idea is illustrated for small n j where the seeds are easy to establish. Consider
the following seeds

4! = 3!2!2!, 6! = 5!3!, 8! = 7!2!2!2!
9! = 7!3!3!2!, 10! = 7!6!, 10! = 7!5!3!

12! = 11!3!2!, 16! = 15!2!2!2!2!, 16! = 14!5!2!
24! = 23!4! (9)

The simplest case is 4! = 3!2!2!. In (7) take j = 4, a = 1, b = c = 2. Then the
deficit number in this case is Nd = −3. So a mass balance is achieved if 3 or more
objects are added to left hand side of (8) to achieve

[4, 13] = [3, 22]. (10)

The total number of particles is N = 7, which is this lowest dimensional state space
that has a doppelgänger entropy! In the same fashion the seeds in (9) give rise to other
doppelängers. Inspection shows that another doppelgänger occurs at N = 8 two at
N = 13 and another two at N = 15, just to name a few.

Note that (10) is a DNA fingerprint that will reappear for state dimensions N > 7.
It is readily seen that

[4,qk, 13] = [3,qk, 22] (11)

where qk is any combination of integer q and k that satisfy

qk = N − 7. (12)

Here qk = qk11 , qk22 , . . .. Thus the qk in (11) are seeds for doppelgängers that grow
with N as IP[N − 7]. The same analysis applies to all seeds. Of course as N increases
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new doppelgänger seeds will arise. For example when N = 10, in addition to the five
doppelgängers that come from N = 7 and N = 8, the doppelgänger [6, 22] = [5, 4, 1]
arises.

Since the number of doppelgängers with the same entropy increases as an IP it is
obvious that for even a modest value of N the number of states with the same entropy
will exceed the state size. Recall that for N = 13 there are two new doppelgängers,
six more arising from the smallest seed N − 7, and five additional from the second
seed N −8. For N = 14 the number of doppelgängers arising from just the seed N −7
is 15.

In addition, we have found that doppelgängers from different seeds will intersect
at sufficiently large N to produce vielgänger entropy states. This is illustrated by
the intersection of the two lowest seeds in (9); namely [4,qk, 13] = [3,qk, 22] and
[6,qk, 12] = [5,qk, 3]. One intersection occurs when [3, qk11 , 22] = [5, qk22 , 3]. This
is solved by qk11 = 5 and qk22 = 22. Then

[5, 4, 13] = [5, 3, 22] = [6, 22, 12] (13)

a dreigänger! Note that another dreigänger occurs at the intersection given by the
solution to [4, qk11 , 13] = [6,qk22 , 12]. This is qk11 = 6 and qk22 = 4, 1. The former first
occurs at N = 12,while the latter occurs at N = 13.Apparently N = 12 is the smallest
state size where a dreigänger occurs. As the previous analysis shows the DNA of these
dreigängers grow with N as I P[N − 12] and I P[N − 13] respectively. Of course
as N increases dreigängers will intersect with doppelgängers and other dreigängers
to produce vielgänger states all of which propagate into higher dimensional states as
appropriate IPs. Moreover, for even modest values of N the number of of vielgängers
increases dramatically as readily seen for just the lowest seed (11).

These conclusions raise the question: how many states will have unique entropies
for large N? To answer this recall the famous asymptotic formula given by Hardy and
Ramanujan [3] for the number of partitions of the integer N :

I P[N ] ∼ 1/(4N
√
3) exp

(
π

√
2N/3

)
. (14)

The fraction of independent entropy states of size N is

N = N∗(I P[N ])−1 (15)

where

N∗ = I P[N ] −
∑

j=7

Γ j I P[N − j] = I P[N ]
⎛

⎝1 −
∑

j=7

Γ j
I P[N − j]
I P[N ]

⎞

⎠ (16)

is the number of independent entropy states, j is a doppelgänger seed number, i.e.
j = 7, 8, 12, 13, . . ., and Γ j is the number of vielgänger states for individual seed
numbers. Using (14) it is straightforward to establish
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I P[N − j]
I P[N ] ≈

(

1 − j

N

)−1

exp
[
π

√
2N/3

(√
1 − j/N − 1

)]
. (17)

Substituting into (15) gives

N ≈ 1 −
∑

j=7

Γ j

(

1 − j

N

)−1

exp
[
π

√
2N/3

(√
1 − j/N − 1

)]
. (18)

For N � j one has exp
[
π

√
2N/3

(√
1 − j/N − 1

)] ≈ 1 − π j (6N )−1/2. Thus
the fraction of independent entropy states approximates

N ≈ π (6N )−1/2
jmax�N∑

j=7

jΓ j . (19)

We are surprised that the number of unique entropy states asympotes as N−1/2. Nev-
ertheless for a finite N it is always possible to find unique entropy states.

Clearly low doppelänger seeds such as N − 7 and N − 8 have more impact on N
than higher doppelänger seeds. However, veilgänger seeds, which don’t occur until
N ≥ 12 have a multiplicative effect. Thus the cumulative effect on the fraction of
independent entropy states for any N will be the agreegate of all doppelgänger and
veilgängers states.

Conceptually the theory outlined above is simple. For a given N one can calculate
the number of vielgänger states iteratively from lower values of N and from any new
seeds that become available. But for even modest values of N the calculations quickly
become exponentially tedious. In the next section we focus on numerical results for
cases up to N = 50.

3 Numerical results

In this section we summarize numerical calculations for finite N up to N = 50.
We used an extremely fast recursive C++ algorithm developed by Monsi Terdex to
generate integer partitions [4]. This code generated the 204,226 partitions for N = 50
in under a second on a MacBook Pro.

The entropies for all partitions were obtained from (3), sorted and the vielgängers
identified. Table 1 shows the total number of partitions that do not have at least one
doppelgänger as a function of N . In Fig. 1 we plot the fraction of these unique entropy
states versus N−1/2. This figure supports (19).

Next we consider the frequencies of occurrence of the various vielgänger states.
Figure 2 shows the frequencies of occurrence for the vielgängers for N = 50. The
top panel suggests an approximate exponential decrease in vielgänger frequency as a
function of degeneracy as expected from our analysis. The bottom panel depicts the
same information on a semi-log scale. This shows some modest variability at large
degeneracies from an exponential fit. We attribute this to a sampling bias since small
degeneracies are much more frequent than large degeneracies.
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Table 1 Non-degenerate
entropy state counts

N # of partitions # of non-degenerate
entropy states

10 42 30 0.71429

20 627 214 0.34131

30 5604 950 0.16952

40 37,338 3362 0.09004

50 204,226 10,417 0.05101

Fig. 1 Fraction of non-degenerate, unique entropy states, N / IP[N]—solid line is fit to Eq. (17)

We next consider the maximum degeneracy values. The results for finite N up
to 50 are listed in Table 2 and plotted in Fig. 3. In view of Fig. 2 we observe that
the maximum degeneracy increases exponentially with

√
N , while its frequency of

occurrence decreases exponentially with −√
N .

4 Discussion

The analytic analysis in Sect. 2 and the numerical analysis in Sect. 3 demonstrated
that the number of veilgängers increases as the I P[N ], which asymptotes as exp

√
N .

Moreover, as shown by (19) the non degenerate states asymptote as N−1/2. Thus for
even a modest state size of N = 50 only 5% are non degenerate. Surprisingly the
numerical analysis showed a similar exp

√
N increase in the maximum degeneracy

dmax . For N > 40 dmax exceeds the state size! Simultaneously, for a given N, there
is a near exponential decrease in the number of vielegängers as a function of their
degeneracy.

All of these attributes are purely mathematical characteristics of the Boltzmann
distribution. This distribution arose from Boltzmann’s pioneering work on statistical
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(a)

(b)

Fig. 2 a Frequency decrease with degeneracy, b Logarithmic plot showing frequency decreasing as
exp(−√

N )

mechanics where N may be is at least of the order of Avogrado’s number and phase
space is partitioned by energy levels. We show here that for large N there is a vanish-
ingly small percentage of Boltzmann states with unique entropies. The vast number
of entropy states are degenerate with many degeneracies exceeding N . Energy and
entropy are fundamental concepts in statistical mechanics and thermodynamics. We
are unaware of any study that relates energy partitions to these mathematical entropy
degeneracies.

In addition to statistical mechanics and thermodynamics, the Boltzmann entropy
is relevant to a wide variety of areas that include communications theory, probability,
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Table 2 Largest degeneracy,
dmax

N dmax

10 2

20 6

30 16

40 37

50 87

Fig. 3 Exponential growth of dmax

mixing, and even biology and ecology. Consequently it is presumptuous for us to gauge
the impact these results may have on these disciplines. Instead we now comment on
one of interest to us, namely mixing.

When a set of N objects is classified according to some principle, one obtains
a subdivision in subsets without objects in common. Each of these subsets can be
represented by an integer partition vector, which can be equivalently displayed as a
diagram. These diagrams, sometimes called Young Diagrams, are in 1:1 correspon-
dence with the Boltzmann macrostates. Ruch [5] proved that the appropriate measure
for comparing mixedness of partitions is the majorization or dominance partial order.
Thus, majorization describes the fundamental mixing character of Boltzmann states.
The majorization partial order is sometimes represented as a lattice of partitions with
the least mixed state [N] at the top and the most mixed state [1N ] at the bottom, [6].
This lattice is known as the Young Diagram Lattice (YDL) or simply Young’s lattice.

Previously [1] we pointed out that mixedness and entropy of macrostates are com-
plementary concepts. The fact that mixing is only partially ordered by majorization
necessarily implies that many Boltzmann entropy states are incomparably mixed. We
argued that for N ≥ 6, the extent of the incomparability of each state (i.e. the number
of states to which it is not comparable by mixing) of the system provides a qualita-
tive measure of the complexity of the system [1]. Seitz [7] previously had suggested

123



1950 J Math Chem (2016) 54:1942–1951

Fig. 4 Growth of dmax

that complexity of a state is related to the length of the maximal antichain containing
that state (An anti-chain is defined mathematically as a set of mutually incompatible
partitions [8].). Whether either maximal antichain length or incomparability number
is plotted versus entropy one obtains a plot of complexity versus entropy in close
agreement with the complexity arguments of Huberman and Hogg [9]. Thus, both
incomparability number and maximal antichain length arguments show the comple-
mentarity of complexity and entropy. It is noted that maximum incomparability and
maximal anti-chain lengths occur for Boltzmann states with entropies that are inter-
mediate between total order and disorder.

Further, vielgängers obviously form an anti-chain in the Young Diagram Lattice.
Finding the largest anti-chain in the lattice is a long-standing open mathematical
question. Unfortunately, the maximum degeneracy vilegänger, while an anti-chain,
is not maximal as is easily seen from N = 15 where the maximal antichain length
is known to be 9 while 4 is the maximum degeneracy vielgänger. Nevertheless, we
find that the largest degeneracy vilegängers occur at intermediate entropies. Early
has shown [10] that the length of the maximal antichain for N is bounded by
N−5/2eπ

√
2N/3 ≤ aN ≤ N−1eπ

√
2N/3. This is consistent with Fig. 3, which also

showed that the logarithm of the maximum degeneracy value increases with
√
N .

However the results here are limited to N ≤ 50.
Regardless of whether incomparability numbers or maximal antichain lengths are

employed, [1] incomparability qualitatively “measures” complexity. It is trivial to
establish from the formulae developed in Sect. 2 that the members of every set of
vielgängers are incomparable by mixing (as are the members of maximal antichains).
Thus, the findings here suggest a deep relationship between degeneracy of Boltzmann
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entropy states and complexity since the degeneracy of an vielegänger is related to it’s
incomparability number. Figure 4 shows is a plot of degeneracyvs. entropy for N = 40.
We note that this general form is similar to other curves that seek to qualitatively
relate complexity to entropy, ([1,9,11]). This view of complexity regards completely
ordered (low entropy) systems as “simple”. Also high entropy (very mixed) systems
are similarly simple since they as are essentially random. Consequently “complexity”
occurs at intermediate entropies. The roots of complexity in nature are embedded in
the the Boltzmann distribution.
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