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Abstract In this survey, we discuss various aspects of the minimal surface equation
in the three-sphere S3. After recalling the basic definitions, we describe a family of
immersedminimal tori with rotational symmetry.We then review the known examples
of embedded minimal surfaces in S3. Besides the equator and the Clifford torus,
these include the Lawson and Kapouleas-Yang examples, as well as a new family of
examples found recently by Choe and Soret. We next discuss uniqueness theorems
for minimal surfaces in S3, such as the work of Almgren on the genus 0 case, and
our recent solution of Lawson’s conjecture for embedded minimal surfaces of genus
1. More generally, we show that any minimal surface of genus 1 which is Alexandrov
immersed must be rotationally symmetric. We also discuss Urbano’s estimate for the
Morse index of an embedded minimal surface and give an outline of the recent proof
of the Willmore conjecture by Marques and Neves. Finally, we describe estimates for
the first eigenvalue of the Laplacian on a minimal surface.

1 Introduction

Minimal surfaces are among the most important objects studied in differential geom-
etry. Of particular interest are minimal surfaces in manifolds of constant curvature,
such as the Euclidean space R

3, the hyperbolic space H
3, and the sphere S3. The

case of minimal surfaces in R3 is a classical subject; see e.g. [39] for an introduction.
In this paper, we will focus on the case when the ambient space is the sphere. Through-
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134 S. Brendle

out this paper, we will identify S3 with the unit sphere in R4; that is,

S3 = {x ∈ R
4 : x21 + x22 + x23 + x24 = 1}.

Let� be a two-dimensional surface in S3, and let ν be a unit normal vector field along
�. In other words, we require that ν is tangential to S3, but orthogonal to the tangent
plane to �. The extrinsic curvature of � is described by a symmetric two-tensor h,
which is referred to as the second fundamental form of �. The second fundamental
form is defined by

h(ei , e j ) = 〈Dei ν, e j 〉,

where {e1, e2} is an orthonormal basis of tangent vectors to �. The eigenvalues of h
are referred to as the principal curvatures of�. The product of the principal curvatures
depends only on the intrinsic geometry of �; in fact, the Gauss equations imply that

K = 1 + λ1λ2,

where λ1, λ2 are the principal curvatures of � and K denotes the intrinsic Gaussian
curvature. Moreover, the sum of the principal curvatures is referred to as the mean
curvature of �:

H = λ1 + λ2 =
2∑

i=1

〈Dei ν, ei 〉.

Geometrically, the mean curvature can be viewed as an L2-gradient of the area func-
tional; more precisely, given any smooth function u on �, we have

d

dt
area(�t )

∣∣∣
t=0

=
∫

�

H u,

where

�t = {cos(t u(x)) x + sin(t u(x)) ν(x) : x ∈ �}.

This motivates the following definition:

Definition 1.1 A two-dimensional surface � in S3 is said to be a minimal surface if
the mean curvature of � vanishes identically.

The condition that � is minimal can be rephrased in several equivalent ways:

Theorem 1.2 Let� be a two-dimensional surface in S3. Then the following statements
are equivalent:

• � is a minimal surface.
• � is a critical point of the area functional.
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A survey of recent results 135

• The restrictions of the coordinate functions inR4 are eigenfunctions of the operator
−�� with eigenvalue 2; that is, ��xi + 2xi = 0 for i ∈ {1, 2, 3, 4}.
In the following, we will be interested in closed minimal surfaces. While there

are no closed minimal surfaces in R
3, there do exist interesting examples of closed

minimal surfaces in S3. The simplest example of such a surface is the equator, which
is defined by

� = {x ∈ S3 ⊂ R
4 : x4 = 0}.

The principal curvatures of this surface are both equal to zero. In particular, the result-
ing surface � is minimal. Moreover, the equator has constant Gaussian curvature 1,
and � equipped with its induced metric is isometric to the standard sphere S2.

Another basic example of a minimal surface in S3 is the so-called Clifford torus.
This surface is defined by

� =
{

x ∈ S3 ⊂ R
4 : x21 + x22 = x23 + x24 = 1

2

}
.

In this case, the principal curvatures are 1 and−1, so the mean curvature is again equal
to zero. Moreover, the intrinsic Gaussian curvature vanishes, and � equipped with its
induced metric is isometric to the flat torus S1( 1√

2
) × S1( 1√

2
).

In the 1960s, Lawson [36] constructed an infinite family of immersed minimal tori
in S3 which fail to be embedded (see also [24]). Moreover, immersed minimal tori in
S3 have been studied intensively using integrable systems techniques; see e.g. [6] or
[23]. In the remainder of this section, we describe a family of immersed minimal tori
in S3 which are rotationally symmetric. These surfaces are not embedded, but they
turn out to be immersed in the sense of Alexandrov.

Definition 1.3 A map F : � → S3 is said to be Alexandrov immersed if there exists
a compact manifold N and an immersion F̄ : N → S3 such that � = ∂ N and
F̄ |� = F .

The notion of an Alexandrov immersion was introduced by Alexandrov [1] in
connection with the study of constant mean curvature surfaces in Euclidean space,
and has since been studied by many authors; see e.g. [32–34]. Using the method
of moving planes, Alexandrov [1] was able to show that any closed hypersurface in
Euclidean space which has constant mean curvature and is Alexandrov immersedmust
be a round sphere.

The following result was pointed out to us by Robert Kusner:

Theorem 1.4 There exists an infinite family of minimal tori in S3 which are Alexandrov
immersed, but fail to be embedded.

Proof of Theorem 1.4 We consider an immersion of the form

F(s, t) =
(√

1 − r(t)2 cos s,
√
1 − r(t)2 sin s, r(t) cos t, r(t) sin t

)
,
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136 S. Brendle

where r(t) is a smooth function which takes values in the interval (0, 1). Clearly,

g

(
∂

∂s
,

∂

∂s

)
= 1 − r(t)2

and

g

(
∂

∂t
,

∂

∂t

)
= r ′(t)2 + r(t)2 (1 − r(t)2)

1 − r(t)2
.

Moreover, the unit normal vector field to the surface is given by

ν(s, t) = r(t)2
√
1 − r(t)2√

r ′(t)2 + r(t)2(1 − r(t)2)
(cos s, sin s, 0, 0)

− r(t)(1 − r(t)2)√
r ′(t)2 + r(t)2(1 − r(t)2)

(0, 0, cos t, sin t)

− r ′(t)√
r ′(t)2 + r(t)2(1 − r(t)2)

(0, 0, sin t,− cos t).

Hence, the second fundamental form satisfies

h

(
∂

∂s
,

∂

∂s

)
= r(t)2 (1 − r(t)2)√

r ′(t)2 + r(t)2 (1 − r(t)2)

and

h

(
∂

∂t
,

∂

∂t

)
= r(t) (1 − r(t)2) r ′′(t) − (2 − 3 r(t)2) r ′(t)2 − r(t)2 (1 − r(t)2)2

(1 − r(t)2)
√

r ′(t)2 + r(t)2 (1 − r(t)2)
.

Therefore, the mean curvature vanishes if and only if r(t) satisfies the differential
equation

(1 − r(t)2) r(t) r ′′(t) = (1 − 2 r(t)2) (2 r ′(t)2 + r(t)2 (1 − r(t)2)). (1)

The Eq. (1) implies that

d

dt

(
r ′(t)2

r(t)4 (1 − r(t)2)2
+ 1

r(t)2 (1 − r(t)2)

)
= 0,

hence

r ′(t)2

r(t)4 (1 − r(t)2)2
+ 1

r(t)2 (1 − r(t)2)
= 4

c2
(2)
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for some constant c. This conserved quantity can also be obtained in a geometric way
via Noether’s principle; to that end, one applies the formula for the first variation of
area to the ambient rotation vector field K = (0, 0, x4,−x3).

The function r(t) = 1√
2
is an equilibrium solution of (1), and the correspond-

ing minimal surface is the Clifford torus. In view of (2), any nearby solution of the
differential equation (1) is periodic. Moreover, the period is given by the formula

T (c) = 2

x(c)∫

x(c)

c

x
√
1 − x2

√
4x2(1 − x2) − c2

dx

where c < 1. Here, x(c) and x(c) are defined by

x(c) =
√
1 − √

1 − c2

2

and

x(c) =
√
1 + √

1 − c2

2
.

Note that T (c) → √
2π as c ↗ 1.

We now choose the parameter c < 1 in such a way that the ratio 2π
T (c) is rational.

This implies that we can find a positive integer k such that 2πk
T (c) is an integer. As a result,

we obtain a solution r(t) of the differential equation (1) satisfying r(t + 2πk) = r(t).
Having chosen c and r(t) in this way, the map

F : [0, 2π ] × [0, 2πk] → S3,

(s, t) 
→
(√

1 − r(t)2 cos s,
√
1 − r(t)2 sin s, r(t) cos t, r(t) sin t

)

defines a minimal immersion of the torus S1 × S1 into S3.
It remains to show that F is an Alexandrov immersion. To see this, we consider the

map

F̄ : B2 × [0, 2πk] → S3,

(ξ, t) 
→
(√

1 − r(t)2 ξ1,
√
1 − r(t)2 ξ2, r(t) cos t, r(t) sin t

)

√
(1 − r(t)2) |ξ |2 + r(t)2

,

where B2 = {ξ ∈ R
2 : |ξ | ≤ 1}. Since r(t) is periodic with period 2πk, the map F̄

defines an immersion of the solid torus B2 × S1 into S3. Since F̄(cos s, sin s, t) =
F(s, t), the map F is an Alexandrov immersion.
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138 S. Brendle

2 Examples of embedded minimal surfaces in S3

While Theorem 1.4 provides a large family of Alexandrov immersedminimal surfaces
in S3, it is a difficult problem to construct examples of minimal surfaces which are
embedded. In fact, for a long time the equator and the Clifford torus were the only
known examples of embedded minimal surfaces in S3. This changed dramatically
in the late 1960s, when Lawson discovered an infinite family of embedded minimal
surfaces of higher genus:

Theorem 2.1 (Lawson [37]) Given any pair of positive integers m and k, there exists
an embedded minimal surface � in S3 of genus mk. In particular, there exists at least
one embedded minimal surface of any given genus g, and there are at least two such
surfaces unless g is a prime number.

Sketch of the proof of Theorem 2.1 For i ∈ Z2(k+1) and j ∈ Z2(m+1), we define

Pi =
(
cos

π i

k + 1
, sin

π i

k + 1
, 0, 0

)

and

Q j =
(
0, 0, cos

π j

m + 1
, sin

π j

m + 1

)
.

Moreover, let A = Z2(k+1) × Z2(m+1) and

Aeven = {(i, j) ∈ Z2(k+1) × Z2(m+1) : i and j are both even}
∪{(i, j) ∈ Z2(k+1) × Z2(m+1) : i and j are both odd}.

For each pair (i0, j0) ∈ A, we denote by ρi0, j0 the reflection across the geodesic
arc Pi0 Q j0 . Furthermore, we denote by G the subgroup of SO(4) generated by the
reflections {ρi0, j0 : (i0, j0) ∈ A}. It is easy to see that each of the sets {Pi : i is even},
{Pi : i is odd}, {Q j : j is even}, and {Q j : j is odd} is invariant under G. Hence, for
each pair (i, j) ∈ Aeven, there exists a unique element Ti, j ∈ G which maps the set
{P0, Q0, P1, Q1} to the set {Pi , Q j , Pi+1, Q j+1}. Moreover, we have ρi0, j0 ◦ Ti, j =
T2i0−i−1,2 j0− j−1 for all pairs (i0, j0) ∈ A and (i, j) ∈ Aeven.

For each pair (i, j) ∈ Aeven, we denote by 
i, j the geodesic quadrilateral with
vertices Pi , Q j , Pi+1, and Q j+1. Moreover, we define

Di, j =
{

x ∈ S3 : x1 sin
π i

k + 1
< x2 cos

π i

k + 1

}

∩
{

x ∈ S3 : x1 sin
π(i + 1)

k + 1
> x2 cos

π(i + 1)

k + 1

}

∩
{

x ∈ S3 : x3 sin
π j

m + 1
< x4 cos

π j

m + 1

}

∩
{

x ∈ S3 : x3 sin
π( j + 1)

m + 1
> x4 cos

π( j + 1)

m + 1

}
.
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The boundary of Di, j consists of four faces, each of which is totally geodesic. Thus,
Di, j is a geodesic tetrahedron with vertices Pi , Q j , Pi+1, and Q j+1. In particular, we
have 
i, j ⊂ ∂ Di, j for each pair (i, j) ∈ Aeven.

By Theorem 1 in [42], there exists an embedded least area disk �0,0 ⊂ D0,0 with
boundary ∂�0,0 = 
0,0. For each pair (i, j) ∈ Aeven, we denote by �i, j ⊂ Di, j the
image of �0,0 under the map Ti, j ∈ G. Clearly, �i, j is an embedded minimal disk in
Di, j with boundary ∂�i, j = 
i, j . Moreover, since ρi0, j0 ◦ Ti, j = T2i0−i−1,2 j0− j−1,
the reflection ρi0, j0 maps �i, j to �2i0−i−1,2 j0− j−1. Consequently, the union

� =
⋃

(i, j)∈Aeven

�i, j

is invariant under the group G. Moreover, � is a minimal surface away from the
geodesic arcs Pi0 Q j0 , where (i0, j0) ∈ A, and the density of � along the geodesic arc
Pi0 Qi0 is equal to 1. Since � is invariant under the reflection ρi0, j0 , we conclude that
� is smooth away from the set {Pi : i ∈ Z2(k+1)} ∪ {Q j : j ∈ Z2(m+1)}. Using the
removable singularities theorem for harmonic maps with finite energy, we conclude
that � is smooth. Finally, since each surface �i, j is embedded and the cells Di, j are
disjoint, it follows that the surface � is embedded as well.

Finally, let us compute the genus of �. The geodesic quadrilateral 
i, j has interior
angles π

m+1 ,
π

k+1 ,
π

m+1 , and
π

k+1 . Since �i, j is homeomorphic to a disk, the Gauss-
Bonnet theorem implies that

−
∫

�i, j

K = 2π − π

m + 1
− π

k + 1
− π

m + 1
− π

k + 1
= 2π(km − 1)

(k + 1)(m + 1)
.

Since the set Aeven has cardinality 2(k + 1)(m + 1), we conclude that

4π(g − 1) = −
∫

�

K = −
∑

(i, j)∈Aeven

∫

�i, j

K = 4π(km − 1),

where g denotes the genus of �. Thus, the surface � has genus g = km.

Theorem 2.2 (Karcher et al. [31]) There exist additional examples of embedded mini-
mal surfaces in S3, which are not part of the family obtained by Lawson. These surfaces
have genus 3, 5, 6, 7, 11, 19, 73, and 601.

The construction in [31] is similar in spirit to Lawson’s construction; it uses tesse-
lations of S3 into cells that have the symmetry of a Platonic solid in R3.

Very recently, Choe and Soret [14] announced a new construction of embedded
minimal surfaces in S3 which are obtained by desingularizing a union of Clifford tori.
The proof of Choe and Soret is inspired by Lawson’s construction, and uses reflection
symmetries in a crucial way. There is an alternative construction by Kapouleas and
Wiygul [29] which relies on gluing techniques and the implicit function theorem.
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140 S. Brendle

Theorem 2.3 (Choe and Soret [14]) There exists a family of embedded minimal sur-
faces �m,l in S3 of genus 1+ 4m(m − 1)l. Moreover, the surface �m,l can be viewed
as a desingularization of the union

⋃m−1
j=0 Tj , where

Tj =
{

x ∈ S3 : (x1x4 + x2x3) cos
π j

m
= (x1x3 − x2x4) sin

π j

m

}
.

Sketch of the proof of Theorem 2.3 Let us define

Pi =
(
cos

π i

2lm
, sin

π i

2lm
, 0, 0

)

and

Qi, j = 1√
2

(
cos

π i

2lm
, sin

π i

2lm
, cos

π(i − 2l j)

2lm
,− sin

π(i − 2l j)

2lm

)

for i ∈ Z4ml and j ∈ Z2m . Moreover, let

Aeven = {(i, j) ∈ Z4ml × Z2m : iand jare both even}
∪{(i, j) ∈ Z4ml × Z2m : iand jare both odd}.

For each pair (i, j) ∈ Aeven, we denote by �i, j the geodesic polygon with vertices
Qi, j Pi Qi, j+1Qi+1, j+1Pi+1Qi+1, j . Note that the geodesic arc Pi Qi, j is contained in
the intersection

Tj ∩
{

x ∈ S3 : x1 sin
π i

2ml
= x2 cos

π i

2ml

}
.

Moreover, the geodesic arc Qi, j Qi+1, j is contained in the intersection

Tj ∩ {x ∈ S3 : x21 + x22 = x23 + x24 }.

Given any pair (i, j) ∈ Aeven, we define

Ui, j =
{

x ∈ S3 : x1 sin
π i

2ml
< x2 cos

π i

2ml

}

∩
{

x ∈ S3 : x1 sin
π(i + 1)

2ml
> x2 cos

π(i + 1)

2ml

}

∩
{

x ∈ S3 : (x1x4 + x2x3) cos
π j

m
> (x1x3 − x2x4) sin

π j

m

}

∩
{

x ∈ S3 : (x1x4 + x2x3) cos
π( j + 1)

m
< (x1x3 − x2x4) sin

π( j + 1)

m

}

∩ {x ∈ S3 : x21 + x22 > x23 + x24 }.
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Note that Ui, j is a mean convex domain in S3. In fact, the boundary of Ui, j consists
of five faces: two of these faces are totally geodesic, and each of the other three faces
is congruent to a piece of the Clifford torus. Moreover, it is straightforward to verify
that �i, j ⊂ ∂Ui, j .

Let S0,0 ⊂ U 0,0 be an embedded least area disk with boundary ∂S0,0 = �0,0. The
reflection across the geodesic arc Pi0 Qi0, j0 maps the region Ui, j to U2i0−i−1,2 j0− j−1
and the polygon �i, j to �2i0−i−1,2 j0− j−1. Hence, by successive reflection across
geodesic arcs on the boundary, one obtains a family of embedded least area disks
Si, j ⊂ Ui, j with boundary ∂Si, j = �i, j . The union

S =
⋃

(i, j)∈Aeven

Si, j

is a smooth minimal surface which is contained in the region {x ∈ S3 : x21 + x22 ≥
x23 + x24 }. Moreover, the boundary of S lies on the Clifford torus {x ∈ S3 : x21 + x22 =
x23 + x24 }. Choe and Soret then show that the union

� = S ∪ {(x3,−x4, x1,−x2) : (x1, x2, x3, x4) ∈ S}
is a smooth minimal surface in S3. This surface is clearly embedded.

It remains to compute the genus of �. The interior angles of the geodesic polygon
�i, j are π

2 ,
π
m , π

2 ,
π
2 ,

π
m , and π

2 . Therefore,

−
∫

Si, j

K = 4π − π

2
− π

m
− π

2
− π

2
− π

m
− π

2
= 2π(m − 1)

m

by the Gauss-Bonnet theorem. Since the set Aeven has cardinality 4m2l, it follows that

4π(g − 1) = −
∫

�

K = −2
∑

(i, j)∈Aeven

∫

Si, j

K = 16πm(m − 1)l.

Consequently, g = 1 + 4m(m − 1)l, as claimed.

In the remainder of this section, we describe another family of embedded minimal
surfaces in S3, which was constructed by Kapouleas and Yang [30] using gluing
techniques. The idea here is to take two nearby copies of the Clifford torus, and
join them by a large number of catenoid bridges. In this way, one obtains a family
of approximate solutions of the minimal surface equation, and Kapouleas and Yang
showed that these surfaces can be deformed to exact solutions of the minimal surface
equation by means of the implicit function theorem.

In the following, we sketch the construction of the initial surfaces in [30]. The
Clifford torus can be parametrized by a map F : R2 → S3, where

F(s, t) = 1√
2

(cos(
√
2 s), sin(

√
2 s), cos(

√
2 t), sin(

√
2 t)).

123



142 S. Brendle

The map F can be extended to a map � : R2 × (−π
4 , π

4 ) → S3 by

�(s, t, u) = sin
(

u + π

4

)
(cos(

√
2 s), sin(

√
2 s), 0, 0)

+ cos
(

u + π

4

)
(0, 0, cos(

√
2 t), sin(

√
2 t))

(see [30], equation (2.1)). Note that F(s, t) = �(s, t, 0). Moreover, the pull-back of
the round metric on S3 under the map � can be expressed as

g = (1 + sin(2u)) ds ⊗ ds + (1 − sin(2u)) dt ⊗ dt + du ⊗ du.

The approximate solutions constructed in [30] depend on two parameters, an integer
m (which is assumed to be very large) and a real number ζ (which lies in a bounded
interval). Following [30], we put

τ = 1

m
e− m2

4π +ζ .

Let ψ : R → [0, 1] be a smooth cutoff function such that ψ = 1 on (−∞, 1] and
ψ = 0 on [2,∞). Kapouleas and Yang then define

Mcat =
{

�(s, t, u) : τ ≤
√

s2 + t2 ≤ 1

m
and

|u|
τ

= arcosh

√
s2 + t2

τ

}

and

Mtor =
{
�(s, t, u) :

√
s2 + t2 ≥ 1

m
,max{|s|, |t |} ≤ π√

2m
,

and
|u|
τ

= ψ(m
√

s2 + t2) arcosh

√
s2 + t2

τ

+(1 − ψ(m
√

s2 + t2)) arcosh
1

mτ

}
.

The union M = Mcat ∪ Mtor is a smooth surface with boundary. By gluing together
m2 rotated copies of the surface M , we obtain a closed, embedded surface in S3 of
genus m2 + 1. This surface depends on the parameters m and ζ , and will be denoted
by �m,ζ . Since the catenoid in R3 has zero mean curvature, the mean curvature of the
surface�m,ζ is small when m is sufficiently large (see [30], Lemma 3.18, for a precise
statement).

The key issue is to deform the surface �m,ζ to an exact solution of the minimal
surface equation. This is a difficult problem, since the linearized operator has a non-
trivial kernel. Taking into account the symmetries of the problem, the approximate
kernel turns out to be one-dimensional. In fact, Kapouleas and Yang show that the
approximate kernel stems from the constant functions on Mtor (see [30], Proposition
4.14), and this obstacle can be overcome by a suitable choice of the parameter ζ :
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A survey of recent results 143

Theorem 2.4 (Kapouleas and Yang [30]) If m is sufficiently large, then there exists a
real number ζm with the property that �m,ζm can be deformed to an embedded minimal
surface �̂m of genus m2 + 1.

While the construction of Kapouleas and Yang is not explicit, the estimates in [30]
provide a very precise description of the surfaces �̂m whenm is large. In particular, the
surfaces �̂m converge, in the sense of varifolds, to the Clifford torus with multiplicity
2 as m → ∞. Finally, we note that Kapouleas [28] has recently announced a similar
doubling construction for the equator.

3 Uniqueness questions for minimal surfaces and the Lawson conjecture

In this section, we discuss uniqueness results for minimal surfaces of genus 0 and 1.
In 1966, Almgren proved the following uniqueness theorem in the genus 0 case:

Theorem 3.1 (Almgren [2]) The equator is the only immersed minimal surface in S3

of genus 0 (up to rigid motions in S3).

Proof of Theorem 3.1 The proof relies on a Hopf differential argument. To explain
this, let F : S2 → S3 be a conformal minimal immersion, and let h denote its second
fundamental form. We will identify S2 with C ∪ {∞}, where the north pole on S2

corresponds to the point at infinity. It follows from the Codazzi equations that the

function h
(

∂
∂z ,

∂
∂z

)
is holomorphic. Moreover, since the immersion F is smooth at

the north pole, the function h
(

∂
∂z ,

∂
∂z

)
vanishes at the north pole. By Liouville’s

theorem, the function h
(

∂
∂z ,

∂
∂z

)
vanishes identically. On the other hand, we have

h
(

∂
∂z ,

∂
∂ z̄

)
= 0 since the mean curvature of F vanishes. Thus, F is totally geodesic,

hence congruent to the equator.

In 1970, Lawson conjectured a similar uniqueness property for minimal tori in S3.
Specifically, Lawson conjectured the following:

Conjecture 3.2 (Lawson [38]) The Clifford torus is the only embedded minimal sur-
face in S3 of genus 1 (up to rigid motions in S3).

Note that Lawson’s conjecture is false if the surface if we allow the surface to have
self-intersections (see [36] or Theorem 1.4 above).

In March 2012, we gave an affirmative answer to Lawson’s conjecture (cf. [9]).
One of the main difficulties is that any proof of Lawson’s conjecture has to exploit the
assumption that � is embedded, as well as the condition that � has genus 1. In order
to exploit the latter condition, we make use of the following result due to Lawson:

Proposition 3.3 (Lawson [37]) An immersed minimal surface in S3 of genus 1 has
no umbilic points; in other words, the second fundamental form is non-zero at each
point on the surface.

Proof of Proposition 3.3 Let F : � → S3 be a conformal minimal immersion of
genus 1, and let h denote its second fundamental form. We may write � = C/�,
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where � is a lattice in C. As above, the Codazzi equations imply that the expression
h
(

∂
∂z ,

∂
∂z

)
defines a holomorphic function on C/�. By Liouville’s theorem, we have

h
(

∂
∂z ,

∂
∂z

)
= c for some constant c. If c = 0, then the surface is a totally geodesic

two-sphere, contradicting our assumption that � has genus 1. Thus, c �= 0, and the
second fundamental form is non-zero at each point on the surface. This completes the
proof of Proposition 3.3.

Moreover, we will need the following result, which is a consequence of the well-
known Simons identity (cf. [49]):

Proposition 3.4 Suppose that F : � → S3 is an embedded minimal torus in S3. Then
the norm of the second fundamental form satisfies the partial differential equation

��(|A|) − |∇|A||2
|A| + (|A|2 − 2) |A| = 0.

Sketch of the proof of Proposition 3.4 Using the Simons identity

��(|A|2) − 2 |∇ A|2 + 2 (|A|2 − 2) |A|2 = 0,

we obtain

��(|A|) + |∇|A||2
|A| − |∇ A|2

|A| + (|A|2 − 2) |A| = 0.

On the other hand, the Codazzi equations imply that |∇ A|2 = 2 |∇|A||2. From this,
the assertion follows.

The proof of the Lawson conjecture in [9] involves an application of the maximum
principle to a function that depends on a pair of points. This technique was pioneered
by Huisken [25] in his work on the curve shortening flow for embedded curves in the
plane. Specifically, Huisken was able to give a lower bound for the chord distance in
terms of the arc length. This gives a new proof ofGrayson’s theorem,which asserts that
any embedded curve shrinks to a point in finite time and becomes round after rescaling
(cf. [21,22]). Using a similar method, Andrews [3] obtained an alternative proof of
the noncollapsing property for mean curvature flow. The noncollapsing theorem for
the mean curvature flow was first stated in a paper by Sheng and Wang in [48]; the
result is a direct consequence of the work of White on the structure of singularities in
the mean curvature flow (cf. [54–56]).

The argument in [9] uses a different quantity, which involves the norm of the second
fundamental form. Amajor difficulty we encounter in this approach is that the Simons
identity for the norm of the second fundamental form contains a gradient term, which
turns out to have an unfavorable sign. As a result, the calculation becomes extremely
subtle and we need to make use of every available piece of information. We will
describe the details below. Suppose that F : � → S3 is a minimal immersion of a
genus 1 surface into S3. Moreover, let ν(x) ∈ TF(x)S3 be a unit normal vector field.
For abbreviation, we define a smooth function � : � → R by

123



A survey of recent results 145

�(x) = 1√
2

|A(x)|,

where |A(x)| denotes the norm of the second fundamental form. Since F is a minimal
immersion, the principal curvatures at the point x satisfy |λ1| = |λ2| = �(x). Note
that the function � is strictly positive by Proposition 3.3.

Given any number α ≥ 1, we define a function Zα : � × � → R by

Zα(x, y) = α �(x) (1 − 〈F(x), F(y)〉) + 〈ν(x), F(y)〉. (3)

We begin by compute the gradient of the function Zα . To that end, we fix two distinct
points x̄, ȳ ∈ �. Moreover, let (x1, x2) be a system of geodesic normal coordinates
around x̄ , and let (y1, y2) be a geodesic normal coordinates around ȳ. Without loss of
generality, we may assume that the second fundamental form at x̄ is diagonal, so that
h11(x̄) = λ1, h12(x̄) = 0, and h22(x̄) = λ2.

The first derivatives of the function Zα are given by

∂ Zα

∂xi
(x̄, ȳ) = α

∂�

∂xi
(x̄) (1 − 〈F(x̄), F(ȳ)〉)

−α �(x̄)

〈
∂ F

∂xi
(x̄), F(ȳ)

〉
+ hk

i (x̄)

〈
∂ F

∂xk
(x̄), F(ȳ)

〉
(4)

and

∂ Zα

∂yi
(x̄, ȳ) = −α �(x̄)

〈
F(x̄),

∂ F

∂yi
(ȳ)

〉
+

〈
ν(x̄),

∂ F

∂yi
(ȳ)

〉
. (5)

We next consider the second order derivatives of Z at the point (x̄, ȳ).

Lemma 3.5 The Laplacian of Zα with respect to x satisfies an inequality of the form

2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ)

≤ 2α �(x̄) − α2 − 1

α

�(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2
(6)

+�1(|F(x̄) − F(ȳ)|)
(

|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣
∂ Zα

∂xi
(x̄, ȳ)

∣∣∣∣

)
,

where �1 : (0,∞) → (0,∞) is a continuous function. Moreover, the Laplacian of
Zα with respect to y satisfies

2∑

i=1

∂2Zα

∂y2i
(x̄, ȳ) ≤ 2α �(x̄) + 2 |Zα(x̄, ȳ)|. (7)
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Proof of Lemma 3.5 By the Codazzi equations, we have

2∑

i=1

∂

∂xi
hk

i (x̄) = 0.

Using this identity, we compute

2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ) = α

2∑

i=1

∂2�

∂x2i
(x̄) (1 − 〈F(x̄), F(ȳ)〉)

− 2α
2∑

i=1

∂�

∂xi
(x̄)

〈
∂ F

∂xi
(x̄), F(ȳ)

〉

+ 2α �(x̄) 〈F(x̄), F(ȳ)〉 − |A(x̄)|2 〈ν(x̄), F(ȳ)〉
= α

(
���(x̄)+(|A(x̄)|2 − 2)�(x̄)

)
(1−〈F(x̄), F(ȳ)〉)+2α �(x̄)

− 2α
2∑

i=1

∂�

∂xi
(x̄)

〈
∂ F

∂xi
(x̄), F(ȳ)

〉
− |A(x̄)|2 Zα(x̄, ȳ).

Proposition 3.4 implies that

��� − |∇�|2
�

+ (|A|2 − 2)� = 0.

This gives

2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ) = α

|∇�(x̄)|2
�(x̄)

(1 − 〈F(x̄), F(ȳ)〉) + 2α �(x̄)

− 2α
2∑

i=1

∂�

∂xi
(x̄)

〈
∂ F

∂xi
(x̄), F(ȳ)

〉
− |A(x̄)|2 Zα(x̄, ȳ).

The expression on the right hand side can be rewritten as

2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ) = α

�(x̄) (1 − 〈F(x̄), F(ȳ)〉)

×
2∑

i=1

(
∂�

∂xi
(x̄) (1 − 〈F(x̄), F(ȳ)〉) − �(x̄)

〈
∂ F

∂xi
(x̄), F(ȳ)

〉)2

+ 2α �(x̄) − α �(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2

− |A(x̄)|2 Zα(x̄, ȳ).
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Using the relation (4), we conclude that

2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ) ≤ 1

α �(x̄) (1 − 〈F(x̄), F(ȳ)〉)
2∑

i=1

λ2i

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2

+ 2α �(x̄) − α �(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2

+�1(|F(x̄) − F(ȳ)|)
(

|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣
∂ Zα

∂xi
(x̄, ȳ)

∣∣∣∣

)
,

where �1 : (0,∞) → (0,∞) is a continuous function. Since λ21 = λ22 = �(x̄)2, the
identity (6) follows. Finally, we have

2∑

i=1

∂2Zα

∂y2i
(x̄, ȳ) = 2α �(x̄) 〈F(x̄), F(ȳ)〉 − 2 〈ν(x̄), F(ȳ)〉

= 2α �(x̄) − 2 Zα(x̄, ȳ).

This proves (7).

Finally, we estimate the mixed partial derivatives of Zα .

Lemma 3.6 For a suitable choice of the coordinate system (y1, y2), we have

2∑

i=1

∂2Zα

∂xi ∂yi
(x̄, ȳ)

≤ −2α �(x̄) + �4(|F(x̄) − F(ȳ)|)
⎛

⎝|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣
∂ Zα

∂xi
(x̄, ȳ)

∣∣∣∣+
2∑

i=1

∣∣∣∣
∂ Zα

∂yi
(x̄, ȳ)

∣∣∣∣

⎞

⎠,

where �4 : (0,∞) → (0,∞) is a continuous function.

Proof of Lemma 3.6 Letwi denote the reflection of the vector ∂ F
∂xi

(x̄) across the hyper-
plane orthogonal to F(x̄) − F(ȳ), so that

wi = ∂ F

∂xi
(x̄) − 2

〈
∂ F

∂xi
(x̄),

F(x̄) − F(ȳ)

|F(x̄) − F(ȳ)|
〉

F(x̄) − F(ȳ)

|F(x̄) − F(ȳ)| .

If Zα(x̄, ȳ) = 0 and ∂ Zα

∂yi
(x̄, ȳ) = 0, then we have

span

{
∂ F

∂y1
(ȳ),

∂ F

∂y2
(ȳ)

}
= span{w1, w2}.

Hence, in this case, we may choose the coordinate system (y1, y2) so that ∂ F
∂yi

(ȳ) = wi

for i = 1, 2.
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We now return to the general case. We may choose the coordinate system (y1, y2)
in such a way that

2∑

i=1

∣∣∣∣
∂ F

∂yi
(ȳ) − wi

∣∣∣∣ ≤ �2(|F(x̄) − F(ȳ)|)
(

|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣
∂ Zα

∂yi
(x̄, ȳ)

∣∣∣∣

)
,

where �2 : (0,∞) → (0,∞) is a continuous function. For this choice of the coordi-
nate system (y1, y2), we have

∂2Zα

∂xi ∂yi
(x̄, ȳ) = −α

∂�

∂xi
(x̄)

〈
F(x̄),

∂ F

∂yi
(ȳ)

〉
+ (λi − α �(x̄))

〈
∂ F

∂xi
(x̄),

∂ F

∂yi
(ȳ)

〉

= (λi − α �(x̄))

〈
∂ F

∂xi
(x̄),

∂ F

∂yi
(ȳ)

〉

+ 1

1 − 〈F(x̄), F(ȳ)〉 (λi −α �(x̄))

〈
∂ F

∂xi
(x̄), F(ȳ)

〉 〈
F(x̄),

∂ F

∂yi
(ȳ)

〉

− 1

1 − 〈F(x̄), F(ȳ)〉
〈
F(x̄),

∂ F

∂yi
(ȳ)

〉
∂ Zα

∂xi
(x̄, ȳ)

= (λi − α �(x̄))

〈
wi ,

∂ F

∂yi
(ȳ)

〉

− 1

1 − 〈F(x̄), F(ȳ)〉
〈
F(x̄),

∂ F

∂yi
(ȳ)

〉
∂ Zα

∂xi
(x̄, ȳ).

Thus, we conclude that

∂2Zα

∂xi ∂yi
(x̄, ȳ) ≤ λi − α �(x̄)

+�3(|F(x̄) − F(ȳ)|)
(

|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣∣
∂ Zα

∂xi
(x̄, ȳ)

∣∣∣∣∣+
2∑

i=1

∣∣∣∣∣
∂ Zα

∂yi
(x̄, ȳ)

∣∣∣∣∣

)
,

where �3 : (0,∞) → (0,∞) is a continuous function. Hence, the assertion follows
by summation over i . This completes the proof of Lemma 3.6.

Combining Lemmas 3.5 and 3.6, we can draw the following conclusion:

Proposition 3.7 (Brendle [9]) For a suitable choice of the coordinate system (y1, y2),
we have
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2∑

i=1

∂2Zα

∂x2i
(x̄, ȳ) + 2

2∑

i=1

∂2Zα

∂xi ∂yi
(x̄, ȳ) +

2∑

i=1

∂2Zα

∂y2i
(x̄, ȳ)

≤ −α2 − 1

α

�(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2

+�5(|F(x̄) − F(ȳ)|)
(

|Zα(x̄, ȳ)| +
2∑

i=1

∣∣∣∣
∂ Zα

∂xi
(x̄, ȳ)

∣∣∣∣ +
2∑

i=1

∣∣∣∣
∂ Zα

∂yi
(x̄, ȳ)

∣∣∣∣

)
,

where �5 : (0,∞) → (0,∞) is a continuous function.

After these preparations, we now state the main result in [9]:

Theorem 3.8 (Brendle [9]) Let F : � → S3 be an embedded minimal surface in S3

of genus 1. Then F is congruent to the Clifford torus.

Proof of Theorem 3.8 Since � is embedded and has no umbilic points, we have

κ := sup
x,y∈�, x �=y

|〈ν(x), F(y)〉|
�(x) (1 − 〈F(x), F(y)〉 < ∞.

We now distinguish two cases:

Case 1 Suppose first that κ = 1. In this case, we have Z1(x, y) ≥ 0 for all points
x, y ∈ �. Let us fix a point x̄ ∈ �, and let {e1, e2} be an orthonormal basis of Tx̄�

such that h(e1, e1) = �(x̄), h(e1, e2) = 0, and h(e2, e2) = −�(x̄). Moreover, we
define

ξ = �(x̄) F(x̄) − ν(x̄) ∈ R
4.

Finally, we assume that σ : R → � is a geodesic such that σ(0) = x̄ and σ ′(0) = e1.
The function

f (t) = Z1(σ (0), σ (t)) = �(x̄) − 〈ξ, F(σ (t))〉

is nonnegative for all t . A straightforward calculation gives

f ′(t) = −〈ξ, d Fσ(t)(σ
′(t))〉,

f ′′(t) = 〈ξ, F(σ (t))〉 + h(σ ′(t), σ ′(t)) 〈ξ, ν(σ (t))〉,

and

f ′′′(t) = 〈ξ, d Fσ(t)(σ
′(t))〉 + h(σ ′(t), σ ′(t)) 〈ξ, Dσ ′(t)ν〉

+(D�
σ ′(t)h)(σ ′(t), σ ′(t)) 〈ξ, ν(σ (t))〉.

In particular, for t = 0, we have f (0) = f ′(0) = f ′′(0) = 0. Since the function f (t)
is nonnegative, we conclude that f ′′′(0) = 0. This implies that (D�

e1h)(e1, e1) = 0.
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Thus, 〈∇�(x̄), e1〉 = 0. Replacing ν by −ν, we obtain 〈∇�(x̄), e2〉 = 0. Since the
point x̄ is arbitrary, the function � is constant, and the intrinsic Gaussian curvature
of � vanishes identically. By a result of Lawson [36], the surface is congruent to the
Clifford torus.

Case 2 Suppose next that κ > 1. After replacing ν by −ν, we may assume that

κ = sup
x,y∈�, x �=y

(
− 〈ν(x), F(y)〉

�(x) (1 − 〈F(x), F(y)〉)
)

.

By definition of κ , the function Zκ is nonnegative, and the set

� = {x̄ ∈ � : there exists a point ȳ ∈ � \ {x̄} such that Zκ(x̄, ȳ) = 0}

is non-empty. Using Proposition 3.7 and Bony’s maximum principle for degenerate
elliptic equations (cf. [7]), we conclude that the set � is open.

We claim that ∇�(x̄) = 0 for each point x̄ ∈ �. Indeed, if x̄ ∈ �, then we can find
a point ȳ ∈ �\{x̄} satisfying Zκ(x̄, ȳ) = 0. Therefore, Proposition 3.7 implies that

0 ≤
2∑

i=1

∂2Zκ

∂x2i
(x̄, ȳ) + 2

2∑

i=1

∂2Zκ

∂xi ∂yi
(x̄, ȳ) +

2∑

i=1

∂2Zκ

∂y2i
(x̄, ȳ)

≤ −κ2 − 1

κ

�(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2
,

where (x1, x2) and (y1, y2) are suitable coordinate systems around x̄ and ȳ, respec-
tively. This gives

〈
∂ F

∂xi
(x̄), F(ȳ)

〉
= 0

for i = 1, 2. Using (4), it follows that ∂�
∂xi

(x̄) = 0 for i = 1, 2. Thus, the gradient of
� vanishes at each point in �. By the unique continuation theorem for elliptic partial
differential equations (cf. [5]), the gradient of � vanishes identically. From this, we
deduce that the surface is congruent to the Clifford torus. This completes the proof of
Theorem 3.8.

The proof of the Lawson conjecture can be extended to give a classification of all
Alexandrov immersed minimal tori in S3:

Theorem 3.9 (Brendle [10]) Let F : � → S3 be an immersed minimal surface in S3

of genus 1. Moreover, we assume that F is an Alexandrov immersion in the sense of
Definition 1.3 above. Then � is rotationally symmetric.

In the remainder of this section, we will describe the proof of Theorem 3.9. As
usual, we will identify S3 with the unit sphere in R

4. By assumption, there exists a
compactmanifold N and an immersion F̄ : N → S3 such that ∂ N = � and F̄ |� = F .
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It will be convenient to put a Riemannian metric on N so that F̄ is a local isometry.
Since F is a local isometry, we can find a real number δ > 0 so that F̄(x) �= F̄(y) for
all points x, y ∈ N satisfying dN (x, y) ∈ (0, δ).

For each point x ∈ �, we denote by ν(x) ∈ TF(x)S3 the push-forward of the
outward-pointing unit normal to � at the point x under the map F̄ . Given any point
x ∈ � and any number α ≥ 1, we define

Dα(x) =
{

p ∈ S3 : α �(x) (1 − 〈F(x), p〉) + 〈ν(x), p〉 ≤ 0
}

.

Note that Dα(x) is a closed geodesic ball in S3 with radius less than π
2 . Moreover, the

point F(x) lies on the boundary ∂ Dα(x), and the outward-pointing unit normal vector
to ∂ Dα(x) at the point F(x) is given by ν(x).

Let I denote the set of all points (x, α) ∈ � × [1,∞) with the property that there
exists a smooth map G : Dα(x) → N such that F̄ ◦ G = idDα(x) and G(F(x)) = x .

Lemma 3.10 Let us fix a pair (x, α) ∈ I . Then there is a unique map G : Dα(x) → N
such that F̄ ◦ G = idDα(x) and G(F(x)) = x.

Proof of Lemma 3.10 It suffices to prove the uniqueness statement. Suppose that G
and G̃ are twomapswhich have the required properties. Then F̄(G(p)) = F̄(G̃(p)) =
p for all points p ∈ Dα(x). This implies dN (G(p), G̃(p)) /∈ (0, δ) for all p ∈ Dα(x).
By continuity, we either have G(p) = G̃(p) for all p ∈ Dα(x) or we have G(p) �=
G̃(p) for all p ∈ Dα(x). Since G(F(x)) = G̃(F(x)) = x , the second case cannot
occur. Thus, we conclude that G(p) = G̃(p) for all p ∈ Dα(x).

Lemma 3.11 The set I is closed. Moreover, the map G depends continuously on the
pair (x, α).

Proof of Lemma 3.11 Let us consider a sequence of pairs (x (m), α(m)) ∈ I such
that limm→∞(x (m), α(m)) = (x̄, ᾱ). For each m, we can find a smooth map G(m) :
Dα(m) (x (m)) → N such that F̄ ◦ G(m) = idD

α(m) (x (m)) and G(m)(F(x (m))) = x (m).

Since F̄ is a smooth immersion, the maps G(m) are uniformly bounded in C2 norm.
Hence, after passing to a subsequence, the maps G(m) converge in C1 to a map
G : Dᾱ(x̄) → N satisfying F̄ ◦ G = idDᾱ (x̄) and G(F(x̄)) = x̄ . It is easy to
see that the map G is smooth. Thus, (x̄, ᾱ) ∈ I , and the assertion follows.

In the next step, we show that the set I is non-empty.

Lemma 3.12 We have (x, α) ∈ I if α is sufficiently large.

Proof of Lemma 3.12 By Proposition 3.3, the function � is strictly positive. Hence,
the radius of the geodesic ball Dα(x) ⊂ S3 will be arbitrarily small if α is sufficiently
large. Hence, ifα is large enough, we can use the implicit function theorem to construct
a smooth map G : Dα(x) → N such that F̄ ◦ G = idDα(x) and G(F(x)) = x . This
proves Lemma 3.12.

We now continue with the proof of Theorem 3.9. Let

κ = inf{α : (x, α) ∈ I for all x ∈ �}.
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Clearly, κ ∈ [1,∞). For each point x ∈ �, there is a unique map Gx : Dκ(x) → N
such that F̄ ◦Gx = idDκ (x) and Gx (F(x)) = x . For each point x ∈ �, the map Gx and
the map F̄ |Gx (Dκ (x)) are injective. To complete the proof, we distinguish two cases:

Case 1 We first consider the special case that κ = 1. We begin with a lemma:

Lemma 3.13 Given any point x̄ ∈ �, there exists an open set V containing x̄ such
that Z1(x̄, y) ≥ 0 for all y ∈ V .

Proof of Lemma 3.13 We argue by contradiction. Suppose that there exists a sequence
of points y(m) ∈ � such that limm→∞ y(m) = x̄ and Z1(x̄, y(m)) < 0 for all m. Since
Z1(x̄, y(m)) < 0, the point F(y(m)) lies in the interior of the geodesic ball D1(x̄).
Therefore, the point ỹ(m) := Gx̄ (F(y(m))) lies in the interior of N . Since y(m) lies on
the boundary ∂ N = �, it follows that

ỹ(m) �= y(m).

On the other hand, we have

F̄(ỹ(m)) = F(y(m))

and

lim
m→∞ ỹ(m) = lim

m→∞ Gx̄ (F(y(m))) = Gx̄ (F(x̄)) = x̄ = lim
m→∞ y(m).

This contradicts the fact that F̄ is an immersion.

Lemma 3.14 Fix a point x̄ ∈ �, and let {e1, e2} is an orthonormal basis of Tx̄� such
that h(e1, e1) = �(x̄), h(e1, e2) = 0, and h(e2, e2) = −�(x̄). Then 〈∇�(x̄), e1〉 =
0.

Proof of Lemma 3.14 For abbreviation, we define a vector ξ ∈ R
4 by

ξ = �(x̄) F(x̄) − ν(x̄).

Note that ξ is orthogonal to the tangent plane to d Fx̄ (e1) and d Fx̄ (e2). Let σ : R →
� be a geodesic such that σ(0) = x̄ and σ ′(0) = e1. By Lemma 3.13, we have
Z1(x̄, y) ≥ 0 if y is sufficiently close to x̄ . Consequently, the function

f (t) = Z1(σ (0), σ (t)) = �(x̄) − 〈ξ, F(σ (t))〉

is nonnegative when t is sufficiently small. As above, we compute

f ′(t) = −〈ξ, d Fσ(t)(σ
′(t))〉,

f ′′(t) = 〈ξ, F(σ (t))〉 + h(σ ′(t), σ ′(t)) 〈ξ, ν(σ (t))〉,
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and

f ′′′(t) = 〈ξ, d Fσ(t)(σ
′(t))〉 + h(σ ′(t), σ ′(t)) 〈ξ, Dσ ′(t)ν〉

+ (D�
σ ′(t)h)(σ ′(t), σ ′(t)) 〈ξ, ν(σ (t))〉.

Setting t = 0, we conclude that f (0) = f ′(0) = f ′′(0) = 0. Since the function f (t)
is nonnegative in a neighborhood of 0, it follows that f ′′′(0) = 0. This implies that
(D�

e1h)(e1, e1) = 0. From this, the assertion follows easily.

Using Lemma 3.14, we conclude that the function � is constant along one set of
curvature lines on �. This implies that � is rotationally symmetric.

Case 2 We next consider the case κ > 1. In order to handle this case, we need several
auxiliary results:

Lemma 3.15 There exists a constant β > 0 with the following property: if x ∈ � and
p ∈ ∂ Dκ(x) are two points satisfying |p− F(x)| ≤ β, then we have dN (Gx (p),�) ≥
β |p − F(x)|2.

Proof of Lemma 3.15 Let us fix a point x̄ ∈ �. We consider the function

ρ : ∂ Dκ(x̄) → R, p 
→ dN (Gx̄ (p),�).

Clearly, ρ(F(x̄)) = 0, and the gradient of the function ρ at the point F(x̄) vanishes.
Moreover, since κ > 1, the Hessian of the function ρ at the point F(x̄) is positive
definite. Hence, we can find a positive constant β > 0 such that ρ(p) ≥ β |p− F(x̄)|2
for all points p ∈ ∂ Dκ(x̄) satisfying |p − F(x̄)| ≤ β. This completes the proof of
Lemma 3.15.

Lemma 3.16 There exists a point x̂ ∈ � such that � ∩ Gx̂ (∂ Dκ(x̂)) �= {x̂}.
Proof of Lemma 3.16 Suppose this is false. Then � ∩ Gx (∂ Dκ(x)) = {x} for all
x ∈ �. This implies that dN (Gx (p),�) > 0 for all x ∈ � and all points p ∈
∂ Dκ(x)\{F(x)}. Using Lemma 3.15, we conclude that there exists a positive constant
γ > 0 such that dN (Gx (p),�) ≥ γ |p − F(x)|2 for all points x ∈ � and all points
p ∈ ∂ Dκ(x). Hence, if ε > 0 is sufficiently small, then the map Gx : Dκ(x) → N
can be extended to a smooth map G̃x : Dκ−ε(x) → N satisfying F̄ ◦ G̃x = idDκ−ε(x).
Consequently, (x, κ − ε) ∈ I for all x ∈ �. This contradicts the definition of κ .

Let x̂ ∈ � be chosen as in Lemma 3.16. Moreover, let us pick a point ŷ ∈ � ∩
Gx̂ (∂ Dκ(x̂)) such that x̂ �= ŷ. Since ŷ ∈ Gx̂ (∂ Dκ(x̂)), we conclude that F(ŷ) ∈
∂ Dκ(x̂) and Gx̂ (F(ŷ)) = ŷ. Moreover, we claim that F(x̂) �= F(ŷ); indeed, if
F(x̂) = F(ŷ), then x̂ = Gx̂ (F(x̂)) = Gx̂ (F(ŷ)) = ŷ, which contradicts our choice
of ŷ.

Lemma 3.17 We can find open sets U, V ⊂ � such that x̂ ∈ U, ŷ ∈ V , and
Zκ(x, y) ≥ 0 for all points (x, y) ∈ U × V .

Proof of Lemma 3.17 We argue by contradiction. Suppose that there exist sequences
of points x (m), y(m) ∈ � such that limm→∞ x (m) = x̂ , limm→∞ y(m) = ŷ, and
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Zκ(x (m), y(m)) < 0. Since Zκ(x (m), y(m)) < 0, the point F(y(m)) lies in the interior
of the geodesic ball Dκ(x (m)). Therefore, the point ỹ(m) := Gx (m) (F(y(m))) lies in the
interior of N . Since the point y(m) lies on the boundary ∂ N = �, we conclude that

ỹ(m) �= y(m).

On the other hand, we have

F̄(ỹ(m)) = F(y(m))

and

lim
m→∞ ỹ(m) = lim

m→∞ Gx (m) (F(y(m))) = Gx̂ (F(ŷ)) = ŷ = lim
m→∞ y(m)

by Lemma 3.11. This contradicts the fact that F̄ is an immersion. Thus, Zκ(x, y) ≥ 0
if (x, y) is sufficiently close to (x̂, ŷ). This completes the proof of Lemma 3.17.

Since F(x̂) �= F(ŷ), we can choose the sets U and V small enough so that F(Ū )∩
F(V̄ ) = ∅. We now define

� = {x ∈ U : there exists a point y ∈ V such that Zκ(x, y) = 0}.

Since F(ŷ) ∈ ∂ Dκ(x̂), we have Zκ(x̂, ŷ) = 0. Consequently, x̂ ∈ �. In particular, the
set � is non-empty. Using Proposition 3.7 and Bony’s version of the strict maximum
principle (cf. [7]), we conclude that the set � is open.

As above, we will show that the gradient of � vanishes at each point x̄ ∈ �. To see
this, we consider a pair of points x̄ ∈ U and ȳ ∈ V satisfying Zκ(x̄, ȳ) = 0. Using
Proposition 3.7, we obtain

0 ≤
2∑

i=1

∂2Zκ

∂x2i
(x̄, ȳ) + 2

2∑

i=1

∂2Zκ

∂xi ∂yi
(x̄, ȳ) +

2∑

i=1

∂2Zκ

∂y2i
(x̄, ȳ)

≤ −κ2 − 1

κ

�(x̄)

1 − 〈F(x̄), F(ȳ)〉
2∑

i=1

〈
∂ F

∂xi
(x̄), F(ȳ)

〉2
,

where (x1, x2) and (y1, y2) are suitable coordinate systems around x̄ and ȳ, respec-
tively. From this, we deduce that

〈
∂ F

∂xi
(x̄), F(ȳ)

〉
= 0

for i = 1, 2. Using (4), we conclude that ∇�(x̄) = 0 for each point x̄ ∈ �. Hence,
it follows from standard unique continuation arguments (cf. [5]) that the gradient of
� vanishes identically. This implies that F is congruent to the Clifford torus. This
completes the proof of Theorem 3.9.
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We note that all the results in this section have analogues for surfaces with constant
mean curvature. For example, the proof of Almgren’s theorem (Theorem 3.1) can be
adapted to show that an immersed constant mean curvature surface in S3 of genus
0 is a geodesic sphere. Similarly, there is a generalization of Proposition 3.3 which
asserts that a constant mean curvature surface of genus 1 has no umbilic points, and
the norm of the trace-free part of the second fundamental form still satisfies a Simons-
type identity. Andrews and Li [4] observed that the proof of Theorem 3.8 can be
adapted to show that any embedded constant mean curvature surface of genus 1 is
rotationally symmetric. More generally, it was shown in [10] that any Alexandrov
immersed constant mean curvature surface in S3 is rotationally symmetric.

Finally, in a recent paper [8], we obtained a uniqueness theorem for embedded
constant mean curvature surfaces in certain rotationally symmetric spaces. This result
generalizes the classical Alexandrov theorem in Euclidean space. Moreover, there
is a rich literature on constant mean curvature surfaces in asymptotically flat three-
manifolds; see e.g. [11,17,19,20,26,43].

4 Estimates for the Morse index and area of a minimal surface
and the Willmore conjecture

The Willmore energy of a two-dimensional surface � in S3 is defined by

W (�) =
∫

�

(
1 + H2

4

)
, (8)

where H denotes the mean curvature of �. Note that W (�) = 4π for the equator,
and W (�) = 2π2 for the Clifford torus.

We first collect some classical facts about the Willmore functional. The Gauss
equations imply that

1 + H2

4
= K + | Å|2

2
,

where K is the intrinsic Gaussian curvature of � and Å denotes the trace-free part of
the second fundamental form. Thus,

W (�) = 2πχ(�) +
∫

�

| Å|2
2

(9)

by the Gauss–Bonnet theorem. The identity (9) shows that the Willmore functional
is invariant under conformal transformations in S3. More precisely, let us consider a
conformal transformation ψ : S3 → S3 of the form

ψ(x) = a + 1 − |a|2
1 + 2 〈a, x〉 + |a|2 (x + a),
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where a is a vector a ∈ R
4 satisfying |a| < 1. Then

W (ψ(�)) = W (�)

for any surface � ⊂ S3.
The following result is well-known (see e.g. [40]):

Proposition 4.1 Let � be an immersed surface in S3, and let p be a point on �. Then
W (�) ≥ 4πm, where m is the multiplicity of � at p. In particular, W (�) ≥ 4π .
Moreover, if W (�) < 8π , then � is embedded.

Sketch of the proof of Proposition 4.1 Let ψ : S3 → S3 be a conformal transforma-
tion of the form

ψ(x) = a + 1 − |a|2
1 + 2 〈a, x〉 + |a|2 (x + a),

where a is a vector a ∈ R
4 satisfying |a| < 1. The conformal invariance of the

Willmore functional implies

∫

�

(
1 − |a|2

1 + 2 〈a, x〉 + |a|2
)2

= area(ψ(�)) ≤ W (ψ(�)) = W (�).

If we put a = −(1−ε) p and take the limit as ε → 0, we conclude that 4πm ≤ W (�),
as claimed.

In [46], Ros discovered a connection between the Willmore energy of a surface �

and the area of a distance surface:

Proposition 4.2 (Ros [46]) Let � be an immersed surface in S3. Moreover, let ν(x)

be the unit normal vector field along �, and let

�t = {cos t x + sin t ν(x) : x ∈ �}.

Then

area(�t ) ≤ W (�)

for t ∈ (−π, π).

Sketch of the proof of Proposition 4.2 The area of �t is given by

area(�t ) =
∫

�

(cos t + sin t λ1) (cos t + sin t λ2),

123



A survey of recent results 157

where λ1 and λ2 denote the principal curvatures of �. We next compute

(cos t + sin t λ1) (cos t + sin t λ2)

= 1 +
(

λ1 + λ2

2

)2

− sin2 t

(
λ1 − λ2

2

)2

−
(
sin t − cos t

λ1 + λ2

2

)2

≤ 1 + H2

4
.

Thus,

area(�t ) ≤
∫

�

(
1 + H2

4

)
= W (�),

as claimed.

Combining Theorem 4.2 with the solution of the isoperimetric problem in RP
3 in

[44], Ros was able to give a sharp lower bound for the Willmore energy when � has
antipodal symmetry:

Theorem 4.3 (Ros [46]) Suppose that � is an embedded surface of genus 1 which is
invariant under antipodal reflection. Then W (�) ≥ 2π2.

Sketch of the proof of Theorem 4.3 The surface � divides S3 into two regions, which
we denote by N and Ñ . Since the genus of � is odd, the quotient of � under the
natural Z2 action is an orientable surface in RP

3. Hence, there exists a unit normal
vector field ν along � which is invariant under antipodal reflection. Consequently,
both N and Ñ are invariant under antipodal reflection.

Without loss of generality, we may assume that vol(N ) ≤ 1
2 vol(S3). Hence, we

can find a real number t ∈ [0, π) such that vol(Nt ) = 1
2 vol(S3), where

Nt = {x ∈ S3 : d(x, N ) ≤ t}.

By a theorem of Ritoré and Ros, any region in S3 which has volume 1
2 vol(S3) and is

invariant under antipodal symmetry has boundary area at least 2π2 (see [44] or [47],
Corollary 5). Therefore, area(∂ Nt ) ≥ 2π2. On the other hand, the boundary of Nt is
contained in the set

�t = {cos t x + sin t ν(x) : x ∈ �}.

Using Proposition 4.2, we conclude that

W (�) ≥ area(�t ) ≥ area(∂ Nt ) ≥ 2π2,

as claimed.
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In 1965,Willmore proposed the problemofminimizing theWillmore energy among
surfaces of genus 1. This led him to the following conjecture:

Conjecture 4.4 (Willmore [57,58]) Let � be a surface in S3 with genus 1. Then
W (�) ≥ 2π2.

Theorem 4.3 shows that the Willmore conjecture holds for tori with antipodal
symmetry. We note that Topping [51] has obtained an alternative proof of Theorem
4.3, which is based on techniques from integral geometry. In 2012,Marques andNeves
[41] verified the Willmore conjecture in full generality. Their proof relies on the min-
max theory for minimal surfaces. The argument in [41] also uses a sharp estimate for
the Morse index of a minimal surface in S3, which we describe below. Recall that
the Jacobi operator of a minimal surface in S3 is defined by L = −�� − |A|2 − 2.
Moreover, the Morse index of a minimal surface is defined as the number of negative
eigenvalues of the Jacobi operator, counted according to multiplicity.

The following theorem, due toUrbano, characterizes theClifford torus as the unique
minimal surface in S3 which has genus at least 1 and Morse index at most 5.

Theorem 4.5 (Urbano [52]) Let � be an immersed minimal surface in S3 of genus
at least 1. Then the Morse index of � is at least 5. Moreover, the Morse index of � is
equal to 5 if and only if � is congruent to the Clifford torus.

Proof of Theorem 4.5 Let U ⊂ C∞(�) be the space of all functions of the form
〈a, ν〉, where a is a fixed vector in R

4 and ν denotes the unit normal vector to �.
Since � is not totally geodesic, we have dimU = 4. Moreover, every function u ∈ U
satisfies��u +|A|2 u = 0, hence Lu = −2u. Thus,−2 is an eigenvalue of the Jacobi
operator L , and the associated eigenspace has dimension at least 4. However, the first
eigenvalue λ1 of L has multiplicity 1. Therefore, λ1 < −2, and L has at least five
negative eigenvalues.

Suppose now that the Jacobi operator L has exactly five negative eigenvalues. Let
ρ denote the eigenfunction associated with the eigenvalue λ1. Note that ρ is a positive
function. We consider a conformal transformation ψ : S3 → S3 of the form

ψ(x) = a + 1 − |a|2
1 + 2 〈a, x〉 + |a|2 (x + a),

where a is a vector a ∈ R
4 satisfying |a| < 1. We can choose the vector a in a such a

way that

∫

�

ρ ψi (x) = 0

for i ∈ {1, 2, 3, 4}, where ψi (x) denotes the i-th component of the vector ψ(x) ∈
S3 ⊂ R

4.
By assumption, L has exactly five negative eigenvalues. In particular, L has no

eigenvalues between λ1 and 2. Since the functionψi is orthogonal to the eigenfunction
ρ, we conclude that
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∫

�

(|∇�ψi |2 − |A|2 ψ2
i ) =

∫

�

ψi (Lψi + 2ψi ) ≥ 0 (10)

for each i ∈ {1, 2, 3, 4}. On the other hand, the conformal invariance of the Willmore
functional implies that

4∑

i=1

∫

�

|∇�ψi |2 = 2 area(ψ(�)) ≤ 2W (ψ(�)) = 2W (�) = 2 area(�). (11)

Moreover, it follows from the Gauss–Bonnet theorem that

4∑

i=1

∫

�

|A|2 ψ2
i =

∫

�

|A|2 = 2
∫

�

(1 − K ) ≥ 2 area(�). (12)

Combining the inequalities (11) and (12) gives

4∑

i=1

∫

�

(|∇�ψi |2 − |A|2 ψ2
i ) ≤ 0. (13)

Putting these facts together, we conclude that all the inequalities must, in fact, be
equalities. In particular, we must have W (ψ(�)) = area(ψ(�)). Consequently, the
surface ψ(�) must have zero mean curvature. This implies that 〈a, ν〉 = 0 at each
point on �. Since � is not totally geodesic, it follows that a = 0. Furthermore,
since

∫
�

ρ ψi = 0 and
∫
�

(|∇�ψi |2 − |A|2 ψ2
i ) = 0, we conclude that the function

ψi is an eigenfunction of the Jacobi operator with eigenvalue −2. Consequently,
��ψi + |A|2 ψi = 0 for each i ∈ {1, 2, 3, 4}. Since a = 0, we conclude that
��xi + |A|2 xi = 0. Since ��xi + 2 xi = 0, we conclude that |A|2 = 2 and
the Gaussian curvature of � vanishes. This implies that � is the Clifford torus.

Finally, it is straightforward to verify that the Jacobi operator on the Clifford torus
has exactly five negative eigenvalues. This completes the proof of Theorem 4.5.

Theorem 4.5 gives a lower bound for the number of negative eigenvalues of the
Jacobi operator L = −�� − |A|2 − 2. It is an interesting problem to understand
the nullspace of L . Clearly, if K is an ambient rotation vector field, then the function
〈K , ν〉 lies in the nullspace of L . It is a natural to conjecture that the nullspace of L
should consist precisely of the functions 〈K , ν〉 where K is an ambient rotation vector
field.

We now describe the min-max procedure of Marques and Neves [41]. Let us fix an
embedded surface � in S3, and let ν be the unit normal vector field along �. Given
any point a in the open unit ball B4, we consider the conformal transformation

ψ(x) = a + 1 − |a|2
1 + 2 〈a, x〉 + |a|2 (x + a).
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For each t ∈ (−π, π), we denote by �(a,t) the parallel surface to ψ(�) at distance
t . This defines a five-parameter family of surfaces in S3, which is parametrized by
B4 × (−π, π). However, the map (a, t) 
→ �(a,t) does not extend continuously to
B̄4 × [−π, π ].

In order to overcome this obstacle, Marques and Neves consider the map

� : � × [0, 1] × [−π, π ] → B̄4, (x, r, s) 
→ (1 − r) (cos s x + sin s ν(x)).

For abbreviation, let

�ε = {�(x, r, s) : x ∈ �, r ≥ 0,
√

r2 + s2 ≤ ε}.

Moreover, let T : B̄4 → B̄4 be a continuous map with the following properties:

• T = id on B̄4 \ �2ε.
• T maps the point �(x, r, s) ∈ �2ε \ �ε to the point �(x, r̃ , s̃) ∈ �2ε, where

r̃ = (
√

r2+s2
ε

− 1) r and s̃ = (
√

r2+s2
ε

− 1) s.
• T maps the point �(x, r, s) ∈ �ε to the point x ∈ �.

Given any pair (a, t) ∈ B4 × (−π, π), one can define a surface �̂(a,t) in the following
way:

• Suppose first that a ∈ B4 \ �ε. In this case, one defines �̂(a,t) = �(T (a),t).
• Suppose next that a ∈ �ε. Let a = �(x, r, s), where x ∈ � and

√
r2 + s2 ≤

ε. In this case, one defines �̂(a,t) to be a geodesic sphere centered at the point
− sin θ x − cos θ ν(x) of radius π

2 − θ + t , where θ = arcsin( s
ε
) ∈ [−π

2 , π
2 ].

The family of surfaces �̂(a,t) is called the canonical family associated with�. Its main
properties are summarized in the following proposition:

Proposition 4.6 (Marques and Neves [41]) The canonical family has the following
properties:

• The map (a, t) 
→ �̂(a,t) extends to a continuous map from B̄4 ×[−π, π ] into the
space of surfaces (equipped with the flat topology).

• For each point a ∈ S3, there is a unique number τ(a) such that �̂(a,τ (a)) is a
totally geodesic two-sphere in S3. For abbreviation, let Q(a) ∈ RP

3 denote the
unit normal vector to the surface �̂(a,τ (a)).

• If � has genus at least 1, then the map Q : S3 → RP
3 has non-zero degree.

To see that themap (a, t) 
→ �̂(a,t) is continuous, one considers a sequence of points

of the form ai = �(x, ri , si ), where x ∈ � and
√

r2i + s2i ↘ ε. Let ãi = �(x, r̃i , s̃i ),

where r̃i = (

√
r2i +s2i

ε
−1) ri and s̃i = (

√
r2i +s2i

ε
−1) si . As i → ∞, the surfaces �̂(ai ,t) =

�(ãi ,t) converge to a geodesic sphere centered at the point − sin θ x − cos θ ν(x) of

radius π
2 − θ + t , where θ ∈ [−π

2 , π
2 ] is defined by tan θ = limi→∞ s̃i

r̃i
= limi→∞ si

ri
.

In other words, sin θ = limi→∞ si√
r2i +s2i

= limi→∞ si
ε
. From this, the continuity

property follows.
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Finally, using the conformal invariance of the Willmore functional and a result of
Ros [46] (cf. Proposition 4.2 above), one obtains

sup
(a,t)∈B4×(−π,π)

area(�(a,t)) ≤ W (�),

hence

sup
(a,t)∈B̄4×[−π,π ]

area(�̂(a,t)) ≤ W (�). (14)

We now state the main result in [41]:

Theorem 4.7 (Marques and Neves [41]) If � is an immersed minimal surface in S3

of genus at least 1, then area(�) ≥ 2π2. Moreover, if � is an arbitrary immersed
surface in S3 of genus at least 1, then W (�) ≥ 2π2.

The proof in [41] is rather technical. In the following, we will merely sketch the
main ideas. Suppose first that there exists an immersed minimal surface in S3 which
has genus at least 1 and area less than 2π2. By Proposition 4.1 above, any such surface
must be embedded. LetC denote the set of all embeddedminimal surfaces in S3 which
have genus at least 1 and area less than 2π2. Clearly, C �= ∅. Moreover, it follows
from results in [35] that the genus of a minimal surface in C is uniformly bounded
from above (cf. Theorem 4.8 below). Using a theorem of Choi and Schoen [15], we
conclude that C is compact (see also Theorem 5.2 below). Consequently, there exists
an embedded minimal surface � ∈ C which has smallest area among all surfaces
in C .

Let F be the set of all continuous five-parameter families of surfaces {S(a,t) :
(a, t) ∈ B̄4 × [−π, π ]} with the property that S(a,t) = �̂(a,t) for (a, t) ∈ ∂(B̄4 ×
[−π, π ]). Marques and Neves then define

� = inf
S∈F

sup
(a,t)∈B̄4×[−π,π ]

area(S(a,t)). (15)

It is easy to see that � ≥ 4π . Moreover, since � is minimal, the inequality (14) gives

sup
(a,t)∈B̄4×[−π,π ]

area(�̂(a,t)) ≤ area(�).

Note that area(�) < 2π2, so � cannot be congruent to the Clifford torus. Conse-
quently, ind(�) ≥ 6 by Urbano’s theorem. By perturbing the canonical family �̂(a,t),
one can construct a newfive-parameter family of surfaces S ∈ F with the property that

sup
(a,t)∈B̄4×[−π,π ]

area(S(a,t)) < area(�).

Thus,

� < area(�). (16)
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There are two cases now:

Case 1 Suppose first that � > 4π . In this case, Marques and Neves show that
there exists an embedded minimal surface �̃ with area area(�̃) = �. In particu-
lar, area(�̃) = � > 4π , so �̃ must have genus at least 1. On the other hand, the
inequality (16) implies area(�̃) = � < area(�). This contradicts the choice of �.

Case 2 Suppose next that � = 4π . In this case, there exists a sequence S(i) ∈ F
such that

sup
(a,t)∈B̄4×[−π,π ]

area(S(i)
(a,t)) ≤ 4π + 1

i
.

For each a ∈ B4 and each i ∈ N, the surfaces S(i)
(a,t) form a sweepout of S3.

Let V (i)(a, t) denote the volume enclosed by the surface S(i)
(a,t), so that V (i)(a,−π)

= 0 and V (i)(a, π) = vol(S3). We may approximate the function V (i)(a, t) by a
C1-function Ṽ (i)(a, t) such that

sup
(a,t)∈B̄4×[−π,π ]

|V (i)(a, t) − Ṽ (i)(a, t)| ≤ 1

i
vol(S3).

By Sard’s lemma we can assume that 1
2 vol(S3) is a regular value of the function

(a, t) 
→ Ṽ (i)(a, t).
Therefore, the set

�(i) =
{
(a, t) ∈ B̄4 × [−π, π ] : Ṽ (i)(a, t) = 1

2
vol(S3)

}

is a smooth hypersurface in B̄4×[−π, π ].Moreover, one can arrange that the boundary
∂�(i) ⊂ ∂ B4 × (−π, π) is a graph over ∂ B4. In other words, for each a ∈ B4 there
is exactly one number t ∈ (−π, π) such that Ṽ (i)(a, t) = 1

2 vol(S3).

Consider now a point (a, t) ∈ �(i). Then the surface S(i)
(a,t) divides S3 into two

regions, each of which has volume at least
( 1
2 − 1

i

)
vol(S3). On the other hand, we

know that area(S(i)
(a,t)) ≤ 4π + 1

i . Hence, for each pair (a, t) ∈ �(i), the surface

S(i)
(a,t) is very close (in the sense of varifolds) to a totally geodesic sphere. Since

the space of totally geodesic spheres is homeomorphic to RP
3, one obtains a map

f (i) : �(i) → RP
3. Moreover, it turns out that f (i)(a, t) = Q(a) for each point

(a, t) ∈ (∂ B4 × [−π, π ]) ∩ �i , where Q is the map in Proposition 4.6. Hence, the
map Q : ∂ B4 → RP

3 admits a continuous extension f (i) : �(i) → RP
3. This

contradicts the fact that Q has non-zero degree. Therefore, any immersed minimal
surface in S3 of genus 1 must have area at least 2π2. This proves the first statement.

The proof of the second statement involves similar ideas (see [41] for details).
Suppose that � is an immersed surface of genus at least 1 with Willmore energy less
than 2π2. Proposition 4.1 again implies that� is embedded.Marques and Neves again
define
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� = inf
S∈F

sup
(a,t)∈B̄4×[−π,π ]

area(S(a,t)).

As above the inequality (14) gives

� ≤ sup
(a,t)∈B̄4×[−π,π ]

area(�̂(a,t)) ≤ W (�) < 2π2. (17)

Moreover, the fact that � has genus at least 1 implies that � > 4π . Consequently,
there exists an embeddedminimal surface �̃ such that area(�̃) = �. Since ˜area(�̃) =
� > 4π , the surface �̃ must have genus at least 1. On the other hand, it follows from
(17) that area(�̃) = � < 2π2. This contradicts the first statement.

We next mention a result concerning theWillmore energy of surfaces of high genus:

Theorem 4.8 (Kuwert et al. [35]) There exists a sequence of real numbers βg ∈
(4π, 8π) such that limg→∞ βg = 8π and W (�) ≥ βg for every immersed surface �

in S3 of genus g. In particular, area(�) ≥ βg for every immersed minimal surface �

in S3 of genus g.

Finally, we note that Ilmanen andWhite [27] have recently obtained sharp estimates
for the density of area-minimizing cones in Euclidean space. This result gives a lower
bound for the area of certain minimal hypersurfaces in the unit sphere.

5 The first eigenvalue of the Laplacian on a minimal surface

In this final section, we describe an estimate for the first eigenvalue of the Laplace
operator on a minimal surface. If � is a minimal surface in S3, then the restrictions of
the coordinate functions in R

4 satisfy

��xi + 2 xi = 0

for i ∈ {1, 2, 3, 4}. It was conjectured by Yau [53] that the smallest positive eigenvalue
of the operator−�� is equal to 2, provided that� is embedded.WhileYau’s conjecture
is an open problem, there are various partial results in this direction. In particular, the
following result of Choi and Wang gives a lower bound for the first eigenvalue of the
Laplacian on a minimal surface.

Theorem 5.1 (Choi and Wang [16]) Let � be an embedded minimal surface in S3,
and let λ be the smallest positive eigenvalue of the operator −�� . Then λ > 1.

Proof of Theorem 5.1 Suppose by contradiction that λ ≤ 1. Let ϕ : � → R be an
eigenfunction, so that

��ϕ + λ ϕ = 0.

The surface� divides S3 into two regions, which we denote by N and Ñ . Let ν denote
the outward-pointing unit normal vector field to N . Moreover, let u : N → R and
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ũ : Ñ → R be harmonic functions satisfying u|� = ũ|� = ϕ. Using the Bochner
formula, we obtain

|D2u|2 + 2 |∇u|2 = 1

2
�(|∇u|2).

We now integrating this identity over N and apply the divergence theorem. This gives

∫

N

|D2u|2 + 2
∫

N

|∇u|2

=
∫

�

1

2
〈∇(|∇u|2), ν〉

=
∫

�

(D2u)(∇u, ν)

=
∫

�

2∑

i=1

(D2u)(ei , ν) 〈∇u, ei 〉 +
∫

�

(D2u)(ν, ν) 〈∇u, ν〉.

Note that

(D2u)(ν, ν) = −
2∑

i=1

(D2u)(ei , ei ) = −��ϕ

since u is harmonic. We next define a function ψ : � → R by ψ = 〈∇u, ν〉. Then

〈∇�ψ, ei 〉 = (D2u)(ei , ν) + h(∇�ϕ, ei ).

Hence, we obtain

∫

N

|D2u|2 + 2
∫

N

|∇u|2 =
∫

�

2∑

i=1

(D2u)(ei , ν) 〈∇�ϕ, ei 〉 −
∫

�

��ϕ ψ

=
∫

�

〈∇�ϕ,∇�ψ〉 −
∫

�

h(∇�ϕ,∇�ϕ) −
∫

�

��ϕ ψ

= −
∫

�

h(∇�ϕ,∇�ϕ) − 2
∫

�

��ϕ ψ

= −
∫

�

h(∇�ϕ,∇�ϕ) + 2λ
∫

�

ϕ ψ

= −
∫

�

h(∇�ϕ,∇�ϕ) + 2λ
∫

N

|∇u|2.
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Since λ ≤ 1, we conclude that

∫

N

|D2u|2 ≤ −
∫

�

h(∇�ϕ,∇�ϕ).

An analogous argument gives

∫

Ñ

|D2ũ|2 ≤
∫

�

h(∇�ϕ,∇�ϕ).

(Note that the outward-pointing unit normal vector field to Ñ is given by −ν, and the
second fundamental form with respect to this choice of normal vector is −h.) Adding
both identities gives

∫

N

|D2u|2 +
∫

Ñ

|D2ũ|2 ≤ 0.

Therefore, ∇u is a parallel vector field on N . Substituting this back into the Bochner
formula, we conclude that ∇u = 0. Thus, u is constant, and so is ϕ. This is a contra-
diction.

As a consequence of Theorem 5.1, Choi and Schoen obtained a compactness the-
orem for embedded minimal surfaces in S3.

Theorem 5.2 (Choi and Schoen [15]) Given any integer g ≥ 1, the space of all
embedded minimal surfaces in S3 of genus g is compact.

Choe andSoretwere recently able to verifyYau’s conjecture for theLawson surfaces
and the Karcher–Pinkall–Sterling examples (cf. [12,13]). The following result is a
consequence of Courant’s nodal theorem and plays an important role in the argument:

Proposition 5.3 Let � be a closed surface equipped with a Riemannian metric. Let λ

be the smallest positive eigenvalue of the operator −�� , and let ϕ be the associated
eigenfunction. Moreover, let ψ be another eigenfunction of the operator −�� with
eigenvalue μ > 0. If {ψ = 0} ⊂ {ϕ = 0}, then λ = μ.

Proof of Proposition 5.3 By assumption, we have {ϕ �= 0} ⊂ {ψ �= 0}. Hence, if we
put D+ = {ϕ > 0}, then we have

D+ = (D+ ∩ {ψ > 0}) ∪ (D+ ∩ {ψ < 0}),

Note that the sets D+ ∩ {ψ > 0} and D+ ∩ {ψ < 0} are disjoint open subsets of
�. Moreover, the set D+ is connected by Courant’s nodal theorem (cf. [18], p. 452).
Thus, we conclude that either D+ ∩ {ψ > 0} = D+ or D+ ∩ {ψ < 0} = D+. In other
words, the restriction of ψ to the set D+ is either strictly positive or strictly negative.
Similarly, we can show that the restriction of ψ to the set D− = {ϕ < 0} is either
strictly positive or strictly negative.
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If ψ |D+ and ψ |D− are of the same sign, then
∫
�

ψ �= 0, which is impossible. Thus,
ψ |D+ and ψ |D− must have opposite signs. This implies that

∫
�

ϕψ �= 0. Since ϕ and
ψ are eigenfunctions of −�� with eigenvalues λ and μ, we conclude that λ = μ, as
claimed.

Corollary 5.4 (Choe and Soret [13]) Let � be an embedded minimal surface in S3

which is symmetric under the reflection σ(x) = x − 2 〈a, x〉 a for some unit vector
a ∈ R

4. Moreover, let λ be the smallest positive eigenvalue of the operator −�� and
let ϕ : � → R be an eigenfunction with eigenvalue λ. If λ < 2, then the eigenfunction
ϕ is invariant under the reflection σ .

Proof of Corollary 5.4 We argue by contradiction. Suppose that ϕ ◦ σ �= ϕ. Let ϕ̃ =
ϕ◦σ −ϕ andψ = 〈a, x〉. Then ϕ̃ is an eigenfunction of−�� with eigenvalue λ, andψ

is an eigenfunctionof−�� with eigenvalue 2.Moreover,wehave {ψ = 0} ⊂ {ϕ̃ = 0}.
Hence, Proposition 5.3 implies that λ = 2. This is a contradiction.

Theorem 5.5 (Choe and Soret [13]) Suppose that � is one of the Lawson surfaces
or one of the surfaces constructed by Karcher–Pinkall–Sterling. Then the smallest
positive eigenvalue of −�� is equal to 2.

Wewill only give the proof of Theorem 5.5 in the special case when� is one of the
Lawson surfaces. A key ingredient in the proof of Choe and Soret is the fact that the
Lawson surfaces are invariant under reflection across certain geodesic two-spheres in
S3. To describe these symmetries, let us fix two positive integers k and m. For each
i ∈ Z2(k+1), we consider the reflection σi (x) = x − 2 〈ai , x〉 ai , where

ai =
(
sin

π(2i + 1)

2(k + 1)
,− cos

π(2i + 1)

2(k + 1)
, 0, 0

)
.

Similarly, for each j ∈ Z2(m+1), we define τ j (x) = x − 2 〈b j , x〉 b j , where

b j =
(
0, 0, sin

π(2 j + 1)

2(m + 1)
,− cos

π(2 j + 1)

2(m + 1)

)
.

Let 
 be the subgroup of O(4) generated by the reflections σi and τ j . Note that the
geodesic tetrahedron

T =
{

x ∈ S3 : −x1 sin
π

2(k + 1)
< x2 cos

π

2(k + 1)

}

∩
{

x ∈ S3 : x1 sin
π

2(k + 1)
> x2 cos

π

2(k + 1)

}

∩
{

x ∈ S3 : −x3 sin
π

2(m + 1)
< x4 cos

π

2(m + 1)

}

∩
{

x ∈ S3 : x3 sin
π

2(m + 1)
> x4 cos

π

2(m + 1)

}

is a fundamental domain for 
.
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As in the proof of Theorem 2.1, let �0,0 be an embedded least area disk whose
boundary is the geodesic quadrilateral with vertices P0, Q0, P1, and Q1. Note that the
reflections σ0 and τ0 map the boundary ∂�0,0 to itself.

Lemma 5.6 The surface �0,0 is invariant under the reflections σ0 and τ0.

Proof of Lemma 5.6 It suffices to show that �0,0 is invariant under the reflection σ0.
Note that the set {x ∈ �0,0 : 〈a0, x〉 = 0} is a union of finitely many smooth arcs.
In the first step, we show that the set �+ = {x ∈ �0,0 : 〈a0, x〉 > 0} is connected.
Indeed, if �+ is disconnected, then there exists a connected component of �+ which
is disjoint from the boundary ∂�0,0. Let us denote this connected component by D.
Clearly, D is a stable minimal surface whose boundary is contained in the totally
geodesic two-sphere {x ∈ S3 : 〈a0, x〉 = 0}. Using the function 〈a0, x〉 as a test
function in the stability inequality, we conclude that the second fundamental form
vanishes at each point on D (see [45], Lemma 1). Therefore, �0,0 is totally geodesic,
which is impossible. Thus, �+ is connected. An analogous argument shows that the
set �− = {x ∈ �0,0 : 〈a0, x〉 < 0} is connected as well. Since �0,0 is homeomorphic
to a disk, we conclude that �+ and �− are simply connected.

After replacing �0,0 by σ0(�0,0) if necessary, we can arrange that area(�+) ≤
1
2 area(�0,0). The surface �̄+ ∪ σ0(�̄+) is homemorphic to a disk, and its area is
bounded from above by the area of �0,0. Consequently, the surface �̄+ ∪ σ0(�̄+) is
a least area disk. In particular, the surface �̄+ ∪ σ0(�̄+) is smooth and has zero mean
curvature. Hence, the unique continuation theorem implies that �̄+ ∪σ0(�̄+) = �0,0.
This shows that �0,0 is invariant under the reflection σ0, thus completing the proof of
Lemma 5.6.

After these preparations, we now describe the proof of Theorem 5.5. Let � =⋃
(i, j)∈Aeven

�i, j be the Lawson surface constructed in Theorem 2.1. It follows from

Lemma 5.6 that the surface� is invariant under
. Let F : B2 → �0,0 be a conformal
parametrization of �0,0. After composing F with a Möbius transformation on B2, we
can arrange that F−1 ◦ σ0 ◦ F(s, t) = (−s, t) and F−1 ◦ τ0 ◦ F(s, t) = (s,−t). Thus,
the pre-image of the surface �0,0 ∩ T under the map F is a quadrant in B2. From this,
we deduce that the fundamental patch

S = � ∩ T = (�0,0 ∩ T ) ∪ (�−1,−1 ∩ T )

is simply connected, and the intersection of S with each face of T is a connected curve.
Let λ be the smallest positive eigenvalue of the operator −�� , and let ϕ be an

associated eigenfunction. If λ < 2, then ϕ is invariant under 
 by Corollary 5.4. The
nodal set {ϕ = 0} is a union of finitely many smooth arcs. Let us choose a piecewise
smooth curve C ⊂ S ∩ {ϕ = 0} which starts at a point on the boundary ∂S and ends
at another point on the boundary ∂S. There exists a connected component of S\C
which is disjoint from one of the faces of T . Let us denote this connected component
by D, and let D′ be another connected component of S\D which is disjoint from D.
By assumption, we have D ∩ F = ∅, where F is one of the faces of the geodesic
tetrahedron T .

Let us pick two points x and y in the interior of S such that x ∈ D ∩ {ϕ �= 0}
and y ∈ D′ ∩ {ϕ �= 0}. Finally, let z ∈ {ϕ �= 0} denote the reflection of x across
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F . By Courant’s nodal theorem, two of the points x, y, z lie in the same connected
component of {ϕ �= 0}. There are three cases now:
Case 1 Suppose that x and y lie in the same connected component of {ϕ �= 0}. Let
α : [0, 1] → {ϕ �= 0} be a continuous path such that α(0) = x and α(1) = y. We can
find a continuous path α̃ : [0, 1] → S ∩ {ϕ �= 0} with the property that α̃(0) = x and
α̃(t) = ρ(t) α(t) for some element ρ(t) ∈ 
. Clearly, α̃(1) = y. Since the path α̃(t)
cannot intersect C , it follows that x and y belong to the same connected component
of S\C . This contradicts our choice of x and y.

Case 2 Suppose that y and z lie in the same connected component of {ϕ �= 0}. Let
α : [0, 1] → {ϕ �= 0} be a continuous path such that α(0) = z and α(1) = y. In this
case, there exists a continuous path α̃ : [0, 1] → S ∩ {ϕ �= 0} such that α̃(0) = x and
α̃(t) = ρ(t) α(t) for some element ρ(t) ∈ 
. Clearly, α̃(1) = y. Since the path α̃(t)
cannot intersect C , it follows that x and y belong to the same connected component
of S\C . This contradicts our choice of x and y.

Case 3 Suppose that x and z lie in the same connected component of {ϕ �= 0}. Let
α : [0, 1] → {ϕ �= 0} be a continuous path such that α(0) = x and α(1) = z. We
can find a continuous path α̃ : [0, 1] → S ∩ {ϕ �= 0} with the property that α̃(0) = x
and α̃(t) = ρ(t) α(t) for some element ρ(t) ∈ 
. Clearly, α̃(1) = x . Moreover, since
the path α̃(t) cannot intersect C , we conclude that the path α̃(t) is disjoint from F .
From this, we deduce that ρ(t) ∈ 
0, where 
0 denotes the subgroup of 
 which
is generated by the reflections across the faces of T different from F . On the other
hand, the identity x = α̃(1) = ρ(1) α(1) = ρ(1) z implies ρ(1) /∈ 
0. Again, this is
a contradiction. This completes the proof of Theorem 5.5.

Finally, let us mention the following theorem due to Ros [45]:

Theorem 5.7 (Ros [45]) Let � be an embedded minimal surface in S3, and let a be
a unit vector in R

4. Then the set {x ∈ � : 〈a, x〉 > 0} is connected.

Sketch of the proof of Theorem 5.7 If� is a totally geodesic two-sphere, the assertion
is trivial.Wewill, therefore, assume that� is not totally geodesic. Let D be a connected
component of the set {x ∈ � : 〈a, x〉 > 0}, and let 
 denote the boundary of D, so
that 
 ⊂ {x ∈ S3 : 〈a, x〉 = 0}. Since D is a nodal domain of an eigenfunction of the
Laplace operator, the boundary 
 is a union of finitely many smooth arcs. The surface
� divides S3 into two regions, which we denote by N and Ñ . Note that the regions
N and Ñ are mean convex. Since the curve 
 is null-homologous in N , we can find
an area-minimizing surface S ⊂ N such that ∂S = 
. Similarly, there exists an area-
minimizing surface S̃ ⊂ Ñ satisfying ∂ S̃ = 
. Note that 
 may not be connected, and
S and S̃ might be disconnected as well. Using the function 〈a, x〉 as a test function in
the stability inequality, we conclude that S is totally geodesic (see [45], Lemma 1).
An analogous argument shows that S̃ is totally geodesic.

We now distinguish two cases:

Case 1 Suppose first that

S ∪ S̃ ⊂ {x ∈ S3 : 〈a, x〉 = 0}.
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Since ∂S = ∂ S̃ = 
, we have

S ∪ S̃ = {x ∈ S3 : 〈a, x〉 = 0}.

Since the surfaces S and S̃ cannot touch � away from 
, we conclude that

{x ∈ � : 〈a, x〉 = 0} = (S ∪ S̃) ∩ � = 
.

This shows that {x ∈ � : 〈a, x〉 > 0} = D, as claimed.

Case 2 Suppose finally that

S ∪ S̃ �⊂ {x ∈ S3 : 〈a, x〉 = 0}.

Without loss of generality, we may assume that

S �⊂ {x ∈ S3 : 〈a, x〉 = 0}.

Let S0 be connected component of S such that

S0 �⊂ {x ∈ S3 : 〈a, x〉 = 0}.

Since S0 is totally geodesic, we have

S0 ⊂ {x ∈ S3 : 〈b, x〉 = 0}

for some unit vector b �= a. This implies

∂S0 ⊂ ∂S ∩ {x ∈ S3 : 〈b, x〉 = 0} ⊂ {x ∈ S3 : 〈a, x〉 = 〈b, x〉 = 0}.

Thus, S0 is a totally geodesic hemisphere. Moreover, S0 does not touch� except along
the boundary. We now rotate the surface S0 until it touches �. When that happens,
the two surfaces coincide by the strict maximum principle. In particular, it follows
that � is totally geodesic, contrary to our assumption. This completes the proof of
Theorem 5.7.

Note that, if Yau’s conjecture is true, then the function 〈a, x〉 is a first eigenfunction
of the operator −�� , and Theorem 5.7 is a consequence of Courant’s nodal theorem.

We remark that many results in this section can be extended to higher dimensions.
For example, the eigenvalue estimate ofChoi andWangworks in all dimensions.More-
over, the two-piece property was generalized to higher dimensions in [13]. Finally,
Tang and Yan [50] recently obtained a sharp eigenvalue estimate for isoparametric
minimal surfaces in Sn .
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