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Abstract The ubiquitin-proteasome system (UPS) is one
of the major mechanisms for protein breakdown in cells,
targeting proteins for degradation by enzymatically con-
jugating them to ubiquitin molecules. Intracellular accu-
mulation of ubiquitin-B+1 (UBB+1), a frameshift mutant
of ubiquitin-B, is indicative of a dysfunctional UPS and
has been implicated in several disorders, including neu-
rodegenerative disease. UBB+1-expressing transgenic
mice display widespread labeling for UBB+1 in brain
and exhibit behavioral deficits. Here, we show that
UBB+1 is specifically expressed in a subset of
parasagittal stripes of Purkinje cells in the cerebellar cor-
tex of a UBB+1-expressing mouse model. This expres-
sion pattern is reminiscent of that of the constitutively
expressed Purkinje cell antigen HSP25, a small heat
shock protein with neuroprotective properties.
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Introduction

Efficient protein quality control is essential for the mainte-
nance of cellular homeostasis to prevent accumulation of dam-
aged and toxic proteins that would be detrimental to cells and
their function. The ubiquitin-proteasome system (UPS) is one
of the major mechanisms for targeted protein breakdown in
cells, tagging proteins for degradation by enzymatically con-
jugating them to ubiquitin molecules [1, 2]. Impaired protein
quality control and degradation are often associated with ag-
ing and disease [3, 4].

Ubiquitin-B+1 (UBB+1) is a frameshift mutant of ubiquitin-
B (UBB) that has been found to accumulate in a variety of
disorders, including neurodegenerative diseases [5, 6]. UBB+1

is thought to arise through Bmolecular misreading,^ a process
that introduces mutations not present in genomic DNA into
repeating motifs (e.g., GAGAGmotifs) of mRNA resulting in
mutant proteins [5, 7]. UBB+1 lacks a C-terminal glycine res-
idue and therefore cannot ubiquitinate other proteins, but can
still be ubiquitinated itself. Low levels of UBB+1 are efficient-
ly degraded by the proteasome via the ubiquitin-fusion degra-
dation (UFD) pathway [8]. At high concentrations, however,
UBB+1 is a potent inhibitor of the UPS [9, 10]. Interestingly,
studies in yeast have indicated that UBB+1 is an inhibitor of
deubiquitinating enzymes (DUBs) [11]. In addition, UBB+1

causes neuritic beading of mitochondria in association with
neuronal degeneration [12]. This suggested an effect of
UBB+1 on mitochondrial function. It was recently reported
that accumulation of basic amino acids at mitochondria dic-
tates the cytotoxicity of UBB+1 [13].

To study the effects of UBB+1 accumulation in vivo,
UBB+1-expressing mouse models have been generated.
Transgenic mice overexpressing human UBB+1 in brain
show increased levels of ubiquitinated proteins in the
forebrain and display behavioral deficits (e.g., impaired
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contextual memory) that are compatible with neurode-
generative disease [14].

Crossbreeding UBB+1 mice to relevant disease models has
shown disease-modifying effects [15, 16]. A comprehensive
phenotypic screening of UBB+1-expressing mice revealed a
respiratory phenotype [17]. Concordantly, expression of
UBB+1 was found in brainstem nuclei involved in respiratory
control. UBB+1 immunoreactivity in Alzheimer’s disease
(AD) patients was seen in similar areas in the brainstem, sug-
gesting a link between neuropathology in these brainstem
areas and the respiratory and swallowing dysfunctions that
are often seen in AD patients [17].

In the present study, we show that UBB+1 is specifically
expressed in a subset of parasagittal stripes of Purkinje cells
(PCs) in the cerebellar cortex of a UBB+1-expressing mouse
model. This expression pattern is similar to that of the consti-
tutively expressed PC antigen HSP25.

Materials and Methods

Animals

UBB+1-expressing transgenic mice (line 3413, JAX
C57BL/6-Tg(Camk2a-UBB)3413-1Fwvl/J) were de-
scribed previously [14]. Male mice (n = 14; eight 3-
month-old mice, two 7-month-old mice, and four 15-
month-old mice) were kept under standard animal hous-
ing conditions: a 12/12 h light-dark cycle with food and
water ad libitum in specific pathogen-free conditions.
Non-transgenic littermates were used as controls. All
animal experiments were performed according to nation-
al animal welfare law and under guidance of the animal
welfare committees of the Royal Netherlands Academy
of Arts and Sciences (KNAW) and of Maastricht
University.

Fig. 1 Expression pattern of mutant ubiquitin (UBB+1) in the mouse
cerebellum. Distribution of UBB+1 in the cerebellum of a UBB+1-
expressing transgenic mouse line. A coronal section reveals restricted
expression of UBB+1 in parasagittal stripes of Purkinje cells (PCs) in
the vermis of the cerebellar cortex (a and b). A sagittal overview shows

expression of UBB+1 in lobules VI, VII, IX, and X (c). IC inferior
colliculus, NTS nucleus of the solitary tract. Asterisk denotes additional
UBB+1 expression in the cerebellar hemisphere. Scale bars a and c
500 μm, b 50 μm
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Tissue Processing and Immunohistochemistry

Adult male mice were deeply anesthetized using sodium
pentobarbital and were transcardially perfused with 0.9%
NaCl, followed by 4% paraformaldehyde in phosphate-
buffered saline (PBS) (pH 7.4). After removal, the brains
were fixed overnight in 0.1 M phosphate buffer contain-
ing 4% paraformaldehyde (pH 7.4). The brains were sub-
sequently stored in 1% sodium azide (NaN3) in PBS at
4 °C until further processing. All brains were embedded
in gelatin and sectioned on a Vibratome (Leica VT 1200S,
Wetzlar, Germany) into 50 μm thick coronal or sagittal
sections.

For immunohistochemistry, sections were incubated
with primary antibodies at 4 °C overnight. Primary an-
tibodies included the following: polyclonal rabbit anti-
mouse UBB+1 (Ubi3, 1:1000, Dr. F.W. van Leeuwen,
bleed date 16/09/97), monoclonal mouse anti-zebrin II/
aldolase C (1:100, Dr. R. Hawkes, Calgary), monoclonal
mouse ant i -ca lb indin-D28k (1:25,000, Swant) ,

polyclonal rabbit anti-HSP25 (1:1000, Enzo Life
Sciences), and monoclonal mouse anti-HSP25 (p-
HSP27 (B3), 1:400, Santa Cruz Biotechnology).
Antibodies were diluted in Tris-buffered saline (TBS)
containing 0.5% Triton X-100 (pH 7.6). After incuba-
tion with primary antibodies, sections were rinsed in
TBS and incubated with biotinylated donkey anti-rabbit
or anti-mouse antibodies (1:400) (Jackson Laboratories)
followed by avidin-biotin-peroxidase (ABC) kit (Vector)
at RT for 1 h. The staining was visualized with 3,3′-
diaminobenzidine (DAB) tetrahydrochloride intensified
by 0.2% nickel ammonium sulfate (pH 7.6). The sec-
tions were mounted on gelatin-coated glass slides, air-
dried, dehydrated, and coverslipped using Pertex
(Histolab). For immunofluorescence experiments, sec-
ondary antibodies with a fluorescent tag (donkey anti-
mouse/rabbit Alexa 488/594) were used. Images were
made using an Olympus BX51 microscope connected
to a digital camera or a whole-slide scanning system
(.slide, Olympus).

Fig. 2 Co-expression of mutant ubiquitin (UBB+1) and HSP25 in
Purkinje cell (PC) stripes. UBB+1 is expressed in a subset of zebrin II-
positive PC stripes in the cerebellum of a UBB+1-expressing mouse line

(a–c). Co-immunofluorescence (d–f) shows co-expression of UBB+1 and
HSP25. All sections are in the coronal plane (lobules IX–X). Scale bars
a–c 200 μm, d–f 100μm
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Results and Discussion

Transgenic mice expressing UBB+1 show a widespread dis-
tribution of UBB+1-positive neurons in the forebrain (e.g.,
cerebral cortex, striatum, hippocampal formation, and thala-
mus) as well as in the brainstem [17, 18]. Here, we demon-
strate that UBB+1 is also expressed in the cerebellum of a
UBB+1-expressing mouse model. PC expression of the trans-
gene is expected based on the use of the Camk2a gene
promoter, a gene of well-known functional significance in
these cells. Immunohistochemistry reveals that UBB+1-posi-
tive cerebellar PCs are always located within parasagittal
stripes in cerebellar lobules VI, VII, IX, and X as well as
in the flocculus and paraflocculus (Fig. 1). This pattern
shows a striking resemblance to a previously identified
marker for PC stripes, the small heat shock protein HSP25
(HSP27, HSPB1) [19]. The cerebellum is highly compart-
mentalized into bilaterally symmetric anatomical and func-
tional clusters, which can be visualized through the expres-
sion of certain molecular markers [20, 21]. HSP25 is con-
stitutively expressed in the central nervous system of ro-
dents, notably in the cerebellum, brainstem, hypothalamus,
and spinal cord [19, 22, 23]. HSP25 is known to act as a
molecular chaperone and has been specifically associated
with the functioning of the UPS. For example, HSP25 has
been proposed to confer resistance to proteasome inhibition
in astrocytes [24]. HSP25 also possesses neuroprotective
properties; HSP25-positive PCs appear to be more resistant
to cell death than HSP25-negative PCs, and HSP25 is highly
stress-inducible throughout the nervous system [25, 26].
Furthermore, differences in the expression of HSP25 have
been reported in mutant mice and under the influence of
genes controlling development [27, 28]. Further examination
revealed that UBB+1-immunoreactive Purkinje neurons co-
express HSP25 (Fig. 2). UBB+1 is absent in all brain regions
of control mice [29].

UBB+1 was also detected in cerebellar PC stripes in another
UBB+1-expressing transgenic mouse line [30] (line 6663, un-
published observations). UBB+1-expressing transgenic mice
do not display behavioral deficits in motor coordination tasks
[17, 29] and no (focal) loss of PCs was observed (calbindin-
D28K immunostaining). Other changes in PC layer
cytoarchitecture (e.g., dendrite complexity, synaptic connec-
tivity, and structural plasticity) were not evaluated. Extensive
molecular profiling of different PC clusters may provide new
insights into important aspects of the fundamental anatomical
organization of the cerebellum. HSP25-immunoreactive PCs
are known to specifically express other markers, represent
clusters that also include other cell types, and are associated
with somatostatin 28-immunoreactive mossy fiber pathways
[31, 32]. These insights might also reveal several aspects of
development and differential vulnerability of PC clusters and
neural circuits in the cerebellum [33].

The 3413 transgenic line may be of great interest in the
future for dissecting functional contributions of the cerebel-
lum, PCs, and possibly even sagittal zones and stripes, in
neurodegenerative diseases such as AD. Diffuse senile
plaques occur commonly in the cerebellum of AD patients
and certain patients present with cerebellar ataxias [34–37].
Some studies propose that PCs are key players in these AD-
associated cerebellar defects [38, 39]. Currently, there is no
evidence of PC loss or axonal degeneration in these transgenic
mice, but this should be examined in more detail in the future.
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