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Abstract We study the bilinear Weyl product acting on quasi-Banach modulation
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0 Introduction

In this paper we study the Weyl product acting on weighted modulation spaces with
Lebesgue parameters in (0,∞]. We work out conditions on the weights and the
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Lebesgue parameters that are sufficient for continuity of the Weyl product, and we
also prove necessary conditions.

TheWeyl product or twisted product is the product of symbols in theWeyl calculus
of pseudodifferential operators corresponding to operator composition. This means
that the Weyl product

(a1, a2) �→ a1#a2

of two distributions a1, a2 defined on the phase space T ∗Rd � R2d is defined by

Opw(a1#a2) = Opw(a1) ◦ Opw(a2)

provided the composition is well defined.
Our result on sufficient conditions is as follows. Suppose ω j , j = 0, 1, 2, are

moderate weights on R4d that satisfy

ω0(Z + X, Z − X) � ω1(Y + X, Y − X) ω2(Z + Y, Z − Y ), X, Y, Z ∈ R2d .

Suppose p j , q j ∈ (0,∞], j = 0, 1, 2, satisfy

1

p0
≤ 1

p1
+ 1

p2
,

and either
q1, q2 ≤ q0 ≤ min(1, p0)

or

min(1, p0) ≤ q1, q2 ≤ q0 and
1

min(1, p0)
+ 1

q0
≤ 1

q1
+ 1

q2
.

Denote the Gelfand–Shilov space of order 1/2 by S1/2, and the weighted modulation
space with Lebesgue parameters p, q > 0 and with weight ω byMp,q

(ω) . Then the map

(a1, a2) �→ a1#a2 from S1/2(R2d) × S1/2(R2d) to S1/2(R2d) extends uniquely to a
continuous map fromM

p1,q1
(ω1)

(R2d) × M
p2,q2
(ω2)

(R2d) toMp0,q0
(ω0)

(R2d), and

‖a1#a2‖Mp0,q0
(ω0)

� ‖a1‖Mp1,q1
(ω1)

‖a2‖Mp2,q2
(ω2)

. (0.1)

As a consequence for unweighted modulation spaces we obtain new conditions on
Lebesgue parameters that are sufficient forMp,q(R2d) to be an algebra: q, p ∈ (0,∞]
and q ≤ min(1, p).

The necessary conditions we deduce are as follows. Suppose (0.1) holds for all
a1, a2 ∈ S (R2d), for a triple of polynomial type weights ω j , j = 0, 1, 2 interrelated
in a certain way, see (3.7). Then

1

p0
≤ 1

p1
+ 1

p2
,

1

p0
≤ 1

q1
+ 1

q2
and q1, q2 ≤ q0,

which are strictly weaker than the sufficient conditions.
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Our results for the Weyl product are special cases of results formulated and proved
for a family of pseudodifferential calculi parametrized by real matrices A ∈ Rd×d . In
fact we work with a symbol product indexed by A ∈ Rd×d , denoted and defined by

OpA(a#Ab) = OpA(a) ◦ OpA(b)

whereOpA(a) is the A-indexed pseudodifferential operatorwith symbol a. This family
of calculi contains the Weyl quantization as the special case A = 1

2 I .
The sufficient conditions and the necessary conditions that we find extend results

[7,23] where the same problemwas studied for the narrower range of Lebesgue param-
eters [1,∞]. In the latter case modulation spaces are Banach spaces, whereas they are
merely quasi-Banach spaces if a Lebesgue parameter is smaller than one.

The Weyl product on Banach modulation spaces has been studied in e. g. [7,18,20,
23,26,29,30]. In [7] conditions on the Lebesgue parameters were found that are both
necessary and sufficient for continuity of the Weyl product, thus characterizing the
Weyl product acting on Banach modulation spaces.

One possible reason that we do not obtain characterizations in the full range of
Lebesgue parameters (0,∞] is that new difficulties arise as soon as a Lebesgue param-
eter is smaller than one. The available techniques are quite different, and many tools
that are useful in the Banach space case, e.g. duality and complex interpolation, are
not applicable or fraught with subtle difficulties.

Our technique to prove the sufficient conditions consists of a discretization of the
Weyl product by means of a Gabor frame. This reduces the continuity of the Weyl
product to the continuity of certain infinite-dimensional matrix operators. A similar
idea has been developed in [38].

The paper is organized as follows. Section 1 fixes notation and gives the background
on Gelfand–Shilov function and distribution spaces, pseudodifferential calculi, mod-
ulation spaces, Gabor frames, and symbol product results for Banach modulation
spaces.

Section 2 contains the result on sufficient conditions for continuity on quasi-Banach
modulation spaces (Theorem2.1). Section 3 contains the result on necessary conditions
for continuity on quasi-Banachmodulation spaces (Theorem 3.3). Finally inAppendix
we show a Fubini type result for Gelfand–Shilov distributions that is needed in the
definition of the short-time Fourier transform of a Gelfand–Shilov distribution.

1 Preliminaries

1.1 Weight functions

A weight on Rd is a positive function ω ∈ L∞
loc(R

d) such that 1/ω ∈ L∞
loc(R

d). We
usually assume that ω is (v-)moderate, for some positive function v ∈ L∞

loc(R
d). This

means
ω(x + y) � ω(x)v(y), x, y ∈ Rd . (1.1)

Here f (θ) � g(θ) means that f (θ) ≤ cg(θ) holds uniformly for all θ in the intersec-
tion of the domains of f and g for some constant c > 0, and we write f � g when
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f � g � f . Note that (1.1) implies the estimates

v(−x)−1 � ω(x) � v(x), x ∈ Rd . (1.2)

If v in (1.1) can be chosen as a polynomial then ω is called polynomially moderate or
a weight of polynomial type. We let P(Rd) and PE (Rd) be the sets of all weights
of polynomial type and moderate weights on Rd , respectively.

If ω ∈ PE (Rd) then there exists r > 0 such that ω is v-moderate for v(x) =
er |x |[19]. Hence by (1.2) for any ω ∈ PE (Rd) there is r > 0 such that

e−r |x | � ω(x) � er |x |, x ∈ Rd . (1.3)

A weight v is called submultiplicative if v is even and (1.1) holds with ω = v. In the
paper v and v j for j ≥ 0 will denote submultiplicative weights if not otherwise stated.

1.2 Gelfand–Shilov spaces

Let h, s ∈ R+ be fixed. Then Ss,h(Rd) is the set of all f ∈ C∞(Rd) such that

‖ f ‖Ss,h ≡ sup
|xβ∂α f (x)|

h|α|+|β|(α! β!)s

is finite, where the supremum is taken over all α, β ∈ Nd and x ∈ Rd .
Obviously Ss,h is a Banach space which increases with h and s, and it is contained

in the Schwartz space S . (Inclusions of function and distribution spaces understand
embeddings.) The topological dual S ′

s,h(Rd) of Ss,h(Rd) is a Banach space which

containsS ′(Rd) (the tempered distributions). If s > 1/2, then Ss,h and
⋃

h>0 S1/2,h
contain all finite linear combinations of Hermite functions.

The (Fourier invariant)Gelfand–Shilov spacesSs(Rd) and�s(Rd) are the inductive
and projective limits respectively of Ss,h(Rd) with respect to h. This implies

Ss(Rd) =
⋃

h>0

Ss,h(Rd) and �s(Rd) =
⋂

h>0

Ss,h(Rd). (1.4)

The topology forSs(Rd) is the strongest topology such that each inclusionSs,h(Rd) ⊆
Ss(Rd) is continuous. The projective limit �s(Rd) is a Fréchet space with seminorms
‖ · ‖Ss,h , h > 0. It holds Ss(Rd) �= {0} if and only if s ≥ 1/2, and �s(Rd) �= {0} if
and only if s > 1/2.

For every ε > 0 and s > 0,

�s(Rd) ⊆ Ss(Rd) ⊆ �s+ε(Rd).
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The Gelfand–Shilov distribution spaces S ′
s(R

d) and �′
s(R

d) are the projective and
inductive limits respectively of S ′

s,h(Rd). Hence if s ≥ 1
2 and t > 1

2 then

S ′
s(R

d) =
⋂

h>0

S ′
s,h(Rd) and �′

t (R
d) =

⋃

h>0

S ′
t,h(Rd). (1.4)′

The space S ′
s(R

d) is the topological dual of Ss(Rd), and if s > 1/2 then �′
s(R

d) is
the topological dual of �s(Rd) [12].

The action of a distribution f on a test functionφ is written 〈 f, φ〉, and the conjugate
linear action is written (u, φ) = 〈u, φ〉, consistent with the L2 inner product ( · , · ) =
( · , · )L2 which is conjugate linear in the second argument.

The Gelfand–Shilov (distribution) spaces enjoy many invariance properties, for
instance under translation, dilation, tensorization, coordinate transformations and (par-
tial) Fourier transformation.

We use the normalization

F f (ξ) = f̂ (ξ) = (2π)−
d
2

∫

Rd
f (x)e−i〈x,ξ〉 dx, ξ ∈ Rd ,

of theFourier transformof f ∈ L1(Rd),where 〈 · , · 〉denotes the scalar product onRd .
The Fourier transformF extends uniquely to homeomorphisms onS ′(Rd), S ′

s(R
d)

and �′
s(R

d), and restricts to homeomorphisms on S (Rd), Ss(Rd) and �s(Rd), and
to a unitary operator on L2(Rd).

The symplectic Fourier transform of a ∈ Ss(R2d) where s ≥ 1/2 is defined by

Fσ a(X) = π−d
∫

R2d
a(Y ) e2iσ(X,Y ) dY,

where σ is the symplectic form

σ(X, Y ) = 〈y, ξ 〉 − 〈x, η〉, X = (x, ξ) ∈ R2d , Y = (y, η) ∈ R2d .

Since Fσ a(x, ξ) = 2dFa(−2ξ, 2x), the definition of Fσ extends in the same way
as F .

Letφ ∈ Ss(Rd)\{0}. The short-time Fourier transform (STFT) Vφ f of f ∈ S ′
s(R

d)

is the distribution on R2d defined by

Vφ f (x, ξ) = F ( f φ( · − x))(ξ) = (2π)−
d
2 ( f, φ( · − x) ei〈 · ,ξ〉). (1.5)

Note that f φ( · − x) ∈ S ′
s(R

d) for fixed x ∈ Rd , and therefore its Fourier transform
is an element in S ′

s(R
d). The fact that the Fourier transform is actually a smooth

function given by the formula (1.5) is proved in Appendix.
If T ( f, φ) ≡ Vφ f for f, φ ∈ S1/2(Rd), then T extends uniquely to sequentially

continuous mappings

T :S ′
s(R

d) × Ss(Rd) → S ′
s(R

2d)
⋂

C∞(R2d),

123



Y. Chen et al.

T :S ′
s(R

d) × S ′
s(R

d) → S ′
s(R

2d),

and similarly when Ss and S ′
s are replaced by �s and �′

s , respectively, or by S and
S ′, respectively [6,33].

Similar properties hold true if instead T ( f, φ) = W f,φ , where W f,φ is the cross-
Wigner distribution of f ∈ S ′

s(R
d) and φ ∈ Ss(Rd), given by

W f,φ(x, ξ) ≡ F ( f (x + · /2)φ(x − · /2))(ξ).

If q ∈ [1,∞], ω ∈ PE (Rd), f ∈ Lq
(ω)(R

d) and φ ∈ �1(Rd) then Vφ f and W f,φ

take the forms

Vφ f (x, ξ) = (2π)−
d
2

∫

Rd
f (y) φ(y − x) e−i〈y,ξ〉 dy (1.5)′

and

W f,φ(x, ξ) = (2π)−
d
2

∫

Rd
f (x + y/2) φ(x − y/2) e−i〈y,ξ〉 dy.

Here L p
(ω)(R

d) for p ∈ (0,∞] and ω ∈ PE (Rd) denotes the space of all f ∈
L p

loc(R
d) such that f ω ∈ L p(Rd), and ‖ f ‖L p

(ω)
= ‖ f ω‖L p .

For a ∈ S ′
1/2(R

2d) and � ∈ S1/2(R2d) \ 0 the symplectic STFT V�a of a with
respect to � is defined similarly as the STFT by

V�a(X, Y ) = Fσ

(
a �( · − X)

)
(Y ), X, Y ∈ R2d .

There are several ways to characterize Gelfand–Shilov function and distribution
spaces, for example in terms of expansions with respect to Hermite functions [13,24],
or in terms of the Fourier transform and the STFT [5,21,33,37].

1.3 An extended family of pseudodifferential calculi

We consider a family of pseudodifferential calculi parameterized by the real d × d
matrices, denotedM(d,R) [3,36]. Let s ≥ 1/2, let a ∈ Ss(R2d) and let A ∈ M(d,R)

be fixed. The pseudodifferential operator OpA(a) is the linear and continuous operator

OpA(a) f (x) = (2π)−d
∫∫

R2d
a(x − A(x − y), ξ) f (y) ei〈x−y,ξ〉 dydξ (1.6)

when f ∈ Ss(Rd). For a ∈ S ′
s(R

2d) the operator OpA(a) is defined as the linear and
continuous operator from Ss(Rd) to S ′

s(R
d) with distribution kernel

Ka,A(x, y) = (2π)−
d
2F−1

2 a(x − A(x − y), x − y). (1.7)
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Here F2F is the partial Fourier transform of F(x, y) ∈ S ′
s(R

2d) with respect to the
y variable. This definition makes sense since

F2 and F(x, y) �→ F(x − A(x − y), x − y) (1.8)

are homeomorphisms on S ′
s(R

2d).
An important special case is A = t I , with t ∈ R and I ∈ M(d,R) denoting

the identity matrix. In this case we write Opt (a) = Opt I (a). The normal or Kohn–
Nirenberg representation a(x, D) corresponds to t = 0, and the Weyl quantization
Opw(a) corresponds to t = 1

2 . Thus

a(x, D) = Op0(a) = Op(a) and Opw(a) = Op1/2(a).

The Weyl calculus is connected to the Wigner distribution with the formula

(Opw(a) f, g)L2(Rd ) = (2π)−
d
2 (a, Wg, f )L2(R2d ),

a ∈ S ′
1/2(R

2d), f, g ∈ S1/2(Rd).

For every a1 ∈ S ′
s(R

2d) and A1, A2 ∈ M(d,R), there is a unique a2 ∈ S ′
s(R

2d)

such that OpA1
(a1) = OpA2

(a2). The following restatement of [36, Proposition 1.1]
explains the relation between a1 and a2.

Proposition 1.1 Let a1, a2 ∈ S ′
1/2(R

2d) and A1, A2 ∈ M(d,R). Then

OpA1
(a1) = OpA2

(a2) ⇔ ei〈A2Dξ ,Dx 〉a2(x, ξ) = ei〈A1Dξ ,Dx 〉a1(x, ξ). (1.9)

1.4 Modulation spaces

Let φ ∈ S1/2(Rd)\0, p, q ∈ (0,∞] and ω ∈ PE (R2d). The modulation space
M p,q

(ω) (Rd) is the set of all f ∈ S ′
1/2(R

d) such that Vφ f ∈ L p,q
(ω) (R

2d), and M p,q
(ω) (Rd)

is equipped with the quasi-norm

f �→ ‖ f ‖M p,q
(ω)

≡ ‖Vφ f ‖L p,q
(ω)

. (1.10)

On the even-dimensional phase spaceR2d onemay definemodulation spaces based
on the symplectic STFT. Thus ifω ∈ PE (R4d), p, q ∈ (0,∞] and� ∈ S1/2(R2d)\0
are fixed, the symplectic modulation space M

p,q
(ω) (R

2d) is obtained by replacing the
STFT a �→ V�a by the symplectic STFT a �→ V�a in (1.10). It holds (cf. [7])

M
p,q
(ω) (R

2d) = M p,q
(ω0)

(R2d), ω(x, ξ, y, η) = ω0(x, ξ,−2η, 2y)

so all properties that are valid for M p,q
(ω) carry over toMp,q

(ω) .
In the following propositions we list some properties of modulation spaces and

refer to [8–11,17,32] for proofs.
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Proposition 1.2 Let p, q ∈ (0,∞].
(1) If ω ∈ PE (R2d) then �1(Rd) ⊆ M p,q

(ω) (Rd) ⊆ �′
1(R

d).

(2) If ω ∈ PE (R2d) satisfies (1.3) for every r > 0, then S1(Rd) ⊆ M p,q
(ω) (Rd) ⊆

S ′
1(R

d).
(3) If ω ∈ P(R2d) then S (Rd) ⊆ M p,q

(ω) (Rd) ⊆ S ′(Rd).

Proposition 1.3 Let r ∈ (0, 1], p, q, p j , q j ∈ (0,∞] and ω,ω j , v ∈ PE (R2d),
j = 1, 2, satisfy r ≤ min(p, q), p1 ≤ p2, q1 ≤ q2, ω2 � ω1, and let ω be v-
moderate.

(1) If φ ∈ Mr
(v)(R

d)\0 then f ∈ M p,q
(ω) (Rd) if and only if (1.10) is finite. In particular

M p,q
(ω) (Rd) is independent of the choice of φ ∈ Mr

(v)(R
d)\0. The space M p,q

(ω) (Rd)

is a quasi-Banach space under the quasi-norm (1.10), and different choices of φ

give rise to equivalent quasi-norms. If p, q ≥ 1 then M p,q
(ω) (Rd) is a Banach space

with norm (1.10).
(2) M p1,q1

(ω1)
(Rd) ⊆ M p2,q2

(ω2)
(Rd).

We will rely heavily on Gabor expansions so we need the following concepts. The
operators in Definition 1.4 are well defined and continuous by the analysis in [17,
Chapters 11–14].

Definition 1.4 Let� ⊆ Rd be a lattice, let�2 = �×� ⊆ R2d , letω, v ∈ PE (R2d)

be such that ω is v-moderate, and let φ,ψ ∈ M1
(v)(R

d).

(1) TheGabor analysis operator Cφ = C�
φ is the operator from M∞

(ω)(R
d) to �∞

(ω)(�
2)

given by
C�

φ f ≡ {Vφ f ( j, ι)} j,ι∈�;

(2) The Gabor synthesis operator Dψ = D�
ψ is the operator from �∞

(ω)(�
2) to

M∞
(ω)(R

d) given by

D�
ψ c ≡

∑

j,ι∈�

c( j, ι) ei〈 · ,ι〉ψ( · − j);

(3) The Gabor frame operator Sφ,ψ = S�
φ,ψ is the operator on M∞

(ω)(R
d) given by

D�
ψ ◦ C�

φ , i. e.

S�
φ,ψ f ≡

∑

j,ι∈�

Vφ f ( j, ι) ei〈 · ,ι〉ψ( · − j).

The following result is a consequence of [17, Theorem 13.1.1] (see also [16, Theo-
rem S]).

Proposition 1.5 Suppose v ∈ PE (R2d) is submultiplicative, and let φ ∈ M1
(v)(R

d)\
0. There is a constant θ0 > 0 such that the Gabor frame operator S�

φ,φ is a homeo-

morphism on M1
(v)(R

d) when � = θZd and θ ∈ (0, θ0]. The Gabor systems

{ei〈 · ,ι〉φ( · − j)} j,ι∈� and {ei〈 · ,ι〉ψ( · − j)} j,ι∈� (1.11)
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are dual frames for L2(Rd) when ψ = (S�
φ,φ)−1φ ∈ M1

(v)(R
d) and θ ∈ (0, θ0].

Let v, φ and � be as in Proposition 1.5. Then (S�
φ,φ)−1φ is called the canonical

dual window of φ, with respect to �. We have

S�
φ,φ(ei〈 · ,ι〉 f ( · − j)) = ei〈 · ,ι〉(S�

φ,φ f )( · − j),

when f ∈ M∞
(1/v)(R

d) and j, ι ∈ �.
The next result concerns Gabor expansion of modulation spaces. It is a special

case of [34, Theorem 3.7] (see also [17, Corollaries 12.2.5 and 12.2.6] and [11, The-
orem 3.7]).

Proposition 1.6 Let θ > 0, � = θZd ,

�2 = � × � = {( j, ι)} j,ι∈� ⊆ R2d ,

let p, q, r ∈ (0,∞] satisfy r ≤ min(1, p, q), and let ω, v ∈ PE (R2d) be such that
ω is v-moderate. Suppose φ,ψ ∈ Mr

(v)(R
d) are such that (1.11) are dual frames for

L2(Rd). Then the following is true:

(1) The operators

C�
φ : M p,q

(ω) (Rd) �→ �
p,q
(ω) (�

2) and D�
ψ : �

p,q
(ω) (�

2) �→ M p,q
(ω) (Rd)

are continuous.
(2) The operators Sφ,ψ ≡ Dψ ◦ Cφ and Sψ,φ ≡ Dφ ◦ Cψ are both the identity map

on M p,q
(ω) (Rd), and if f ∈ M p,q

(ω) (Rd), then

f =
∑

j,ι∈�

Vφ f ( j, ι) ei〈 · ,ι〉ψ( · − j)

=
∑

j,ι∈�

Vψ f ( j, ι) ei〈 · ,ι〉φ( · − j)
(1.12)

with unconditional quasi-norm convergence in M p,q
(ω) when p, q < ∞, and with

convergence in M∞
(ω) with respect to the weak∗ topology otherwise.

(3) If f ∈ M∞
(1/v)(R

d), then

‖ f ‖M p,q
(ω)

� ‖Vφ f ‖�
p,q
(ω)

(�2) � ‖Vψ f ‖�
p,q
(ω)

(�2).

The series (1.12) are called Gabor expansions of f with respect to φ, ψ and �.

Remark 1.7 There aremanyways to achieve dual frames (1.11) satisfying the required
properties in Proposition 1.6. In fact, let v, v0 ∈ PE (R2d) be submultiplicative such
that ω is v-moderate and

L1
(v0)

(R2d) ⊆
⋂

0<r≤1

Lr (R2d).
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This inclusion is satisfied e.g. for v0(x) = eε|x | with ε > 0. Proposition 1.5 guarantees
that for some choice of φ,ψ ∈ M1

(v0v)(R
d) ⊆⋂0<r≤1 Mr

(v)(R
d) and lattice � ⊆ Rd ,

the sets in (1.11) where ψ = (S�
φ,φ)−1φ, are dual frames.

We usually assume that � = θZd , with θ > 0 small enough to guarantee the
hypotheses in Propositions 1.5 and 1.6 be fulfilled, and that the window function and
its dual belong to Mr

(v) for every r > 0. This is always possible, in view of Remark
1.7.

We need the following version of Proposition 1.5, which is a consequence of [3,
Corollary 3.2] and the Fourier invariance of �1(R2d).

Lemma 1.8 Suppose v ∈ PE (R4d) is submultiplicative, let φ1, φ2 ∈ �1(Rd) \ 0,
and let

�(x, ξ) = φ1(x) φ̂2(ξ) e−i〈x,ξ〉. (1.13)

Then there is a lattice �2 ⊆ R2d such that

{
�(x − j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)}

( j,ι),(k,κ)∈�2
(1.14)

is a Gabor frame for L2(R2d) with canonical dual frame

{
�(x − j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)}

( j,ι),(k,κ)∈�2
,

and
� = (S�2

�,�)−1� ∈
⋂

r>0

Mr
(v)(R

2d).

The right-hand side of (1.13) is called the cross-Rihaczek distribution of φ1 and φ2
[17].

Remark 1.9 The last conclusion in Lemma 1.8 is a consequence of the sharper result
[25, Lemma 2].

1.5 Pseudodifferential operators and Gabor analysis

In order to discuss a reformulation of pseudodifferential operators by means of Gabor
analysis, we need the following matrix concepts (cf. [35]).

Definition 1.10 Let p, q ∈ (0,∞], θ > 0, let J be an index set, let � = θZd be a
lattice, and let ω ∈ PE (R2d).

(1) U
′
0(J ) is the set of all matrices A = (a( j, k)) j,k∈J with entries in C;

(2) U0(J ) is the set of all A = (a( j, k)) j,k∈J ∈ U
′
0(J ) such that a( j, k) �= 0 for at

most finitely many ( j, k) ∈ J × J ;
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(3) if A = (a( j, k)) j,k∈� ∈ U
′
0(�) then

HA,ω( j, k) = a( j, j − k) ω( j, j − k) and h A,p,ω(k) = ‖HA,ω( · , k)‖�p .

(1.15)
The set U

p,q(ω,�) consists of all matrices A = (a( j, k)) j,k∈� such that

‖(a( j, k)) j,k∈�‖Up,q (ω,�) ≡ ‖h A,p,ω‖�q (1.16)

is finite.

U
p,q(ω,�) is a quasi-Banach space, and if p, q ≥ 1 it is a Banach space.

If J is an index set then A = (a( j, k)) j,k∈J ∈ U
′
0(J ) is called properly supported

if the sets

{ j ∈ J ; a( j, k0) �= 0 } and { k ∈ J ; a( j0, k) �= 0 }

are finite for every j0, k0 ∈ J . The set of properly supportedmatrices is denotedUp(J ),
and evidently U0(J ) ⊆ Up(J ). The sets U0(J ) and Up(J ) are rings under matrix
multiplication, and U

′
0(J ) is a Up(J )-module with respect to matrix multiplication.

Let φ1, φ2 ∈ �1(Rd) \ 0, let � be defined by (1.13), let λ = θZd be a lattice,
θ > 0, such that �2 = �×� ⊆ R2d makes (1.14) a Gabor frame in accordance with
Lemma 1.8, and let � = (S�2

�,�)−1� be the canonical dual window of �. Suppose

ω0 ∈ PE (R4d) and set

ω(x, ξ, y, η) = ω0(x, η, ξ − η, y − x). (1.17)

Let a ∈ M p,q
(ω0)

(R2d), define

a( j , k) = V�a( j, κ, ι − κ, k − j) ei〈k− j,κ〉,
where j = ( j, ι) ∈ �2 and k = (k, κ) ∈ �2, (1.18)

and define the matrix
A = (a( j , k)) j ,k∈�2 .

Then it follows from Propositions 1.5 and 1.6 that

‖a‖M p,q
(ω0)

� ‖A‖Up,q (ω,�2) (1.19)

provided θ is sufficiently small.
By identifyingmatrices with corresponding linear operators, [35, Lemma 3.3] gives

Op(a) = Dφ1 ◦ A ◦ Cφ2 . (1.20)

Hence, if b ∈ S1/2(R2d),

b( j , k) = V�b( j, κ, ι − κ, k − j) ei〈k− j,κ〉, j , k ∈ �2,
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B = (b( j , k)) j ,k∈�2 ,

and the matrix C is defined as
C = Cφ2 ◦ Dφ1 (1.21)

then
Op(a#0b) = Op(a) ◦ Op(b) = Dφ1 ◦ (A ◦ C ◦ B) ◦ Cφ2 (1.22)

and
‖a#0b‖M p,q

(ω0)
� ‖A ◦ C ◦ B‖Up,q (ω,�2). (1.23)

1.6 Composition of pseudodifferential operators with symbols in Banach
modulation spaces

Werecall algebraic results for pseudodifferential operatorswith symbols inmodulation
spaces with Lebesgue exponents not smaller than one [7,23,36].

If A ∈ M(d,R) then the product #A with N factors

(a1, . . . , aN ) �→ a1#A · · · #AaN (1.24)

from S1/2(R2d) × · · · × S1/2(R2d) to S1/2(R2d) is defined by the formula

OpA(a1#A · · · #AaN ) = OpA(a1) ◦ · · · ◦ OpA(aN ).

The map (1.24) can be extended in different ways, e. g. as in [7, Theorem 2.11] which
is stated in a generalized form in Theorem 1.11 below. We use the conditions on the
weights

ω0(TA(X N , X0)) �
N∏

j=1

ω j (TA(X j , X j−1)), X0, . . . , X N ∈ R2d , (1.25)

where

TA(X, Y ) = (y + A(x − y), ξ + A∗(η − ξ), η − ξ, x − y),

X = (x, ξ) ∈ R2d , Y = (y, η) ∈ R2d . (1.26)

Here A∗ denotes A transposed. We use the conditions on the Lebesgue parameters

max
(
RN (q ′), 0

) ≤ min
j=1,...,N

(
1

p′
0
,
1

q0
,
1

p j
,
1

q ′
j
,RN ( p)

)

(1.27)

or

RN ( p) ≥ 0,
1

q0
≤ 1

p′
0

≤ 1

2
and

1

q ′
j

≤ 1

p j
≤ 1

2
, j = 1, . . . , N , (1.28)
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where

RN ( p) = (N − 1)−1

⎛

⎝
N∑

j=1

1

p j
− 1

p0

⎞

⎠ ,

p = (p0, p1, . . . , pN ) ∈ [1,∞]N+1.

Theorem 1.11 Suppose p j , q j ∈ [1,∞], j = 0, 1, . . . , N satisfy (1.27) or (1.28),
and suppose ω j ∈ PE (R4d), j = 0, 1, . . . , N, satisfy (1.25) and (1.26). Then the map
(1.24) fromS1/2(R2d)×· · ·×S1/2(R2d) toS1/2(R2d) extends uniquely to a continuous
and associative map from M p1,q1

(ω1)
(R2d) × · · · × M pN ,qN

(ωN ) (R2d) to M p0,q0
(ω0)

(R2d), and

‖a1#A · · · #AaN ‖M
p0,q0
(ω0)

�
N∏

j=1

‖a j‖M
p j ,q j
(ω j )

,

for a j ∈ M
p j ,q j

(ω j )
(R2d), j = 1, . . . , N.

Theorem 1.11 follows by similar arguments as in the proof of [7, Theorem 2.11].
The details are left for the reader.

Remark 1.12 Wenote that the definition of TA in [7, Eq. (2.30)] is incorrect and should
be replaced by (1.26) with A = t I , in order for [7, Theorem 2.11] to hold. A corrected
version of [7] has been posted on arxiv.

2 Composition of pseudodifferential operators with symbols in
quasi-Banach modulation spaces

In this section we deduce a composition result for pseudodifferential operators with
symbols in modulation spaces with Lebesgue parameters in (0,∞].

If A ∈ M(d,R) then the map

(a1, a2) �→ a1#Aa2 (2.1)

from S1/2(R2d) × S1/2(R2d) to S1/2(R2d) is defined by

OpA(a1#Aa2) = OpA(a1) ◦ OpA(a2).

The following result is the principal result of this paper. It concerns sufficient
conditions for the unique extension of (2.1) to symbols in quasi-Banach modulation
spaces.

The weight functions are assumed to obey the estimates

ω0(TA(Z , X)) � ω1(TA(Y, X)) ω2(TA(Z , Y )), X, Y, Z ∈ R2d , (2.2)
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where

TA(X, Y ) = (y + A(x − y), ξ + A∗(η − ξ), η − ξ, x − y),

X = (x, ξ) ∈ R2d , Y = (y, η) ∈ R2d . (2.3)

(Cf. (1.25) and (1.26).)

Theorem 2.1 Let A ∈ M(d,R) and suppose ω j ∈ PE (R4d), j = 0, 1, 2, satisfy
(2.2) and (2.3). Suppose p j , q j ∈ (0,∞], j = 0, 1, 2, satisfy

1

p0
≤ 1

p1
+ 1

p2
, (2.4)

and either
q1, q2 ≤ q0 ≤ min(1, p0) (2.5)

or

min(1, p0) ≤ q1, q2 ≤ q0 and
1

min(1, p0)
+ 1

q0
≤ 1

q1
+ 1

q2
. (2.6)

Then the map (a1, a2) �→ a1#Aa2 from S1/2(R2d) × S1/2(R2d) to S1/2(R2d) extends
uniquely to a continuous map from M p1,q1

(ω1)
(R2d)× M p2,q2

(ω2)
(R2d) to M p0,q0

(ω0)
(R2d), and

‖a1#Aa2‖M
p0,q0
(ω0)

� ‖a1‖M
p1,q1
(ω1)

‖a2‖M
p2,q2
(ω2)

for all a1 ∈ M p1,q1
(ω1)

(R2d) and a2 ∈ M p2,q2
(ω2)

(R2d).

We need some preparations for the proof. The following result contains the needed
continuity properties for matrix operators.

Proposition 2.2 Let � ⊆ Rd be a lattice, let p j , q j ∈ (0,∞], j = 0, 1, 2, be such
that (2.4)–(2.6) hold, and suppose ω0, ω1, ω2 ∈ PE (R2d) satisfy

ω0(x, z) � ω1(x, y) ω2(y, z), x, y, z ∈ Rd .

Then the map (A1, A2) �→ A1 ◦ A2 from U0(�) × U0(�) to U0(�) extends uniquely
to a continuous map from U

p1,q1(ω1,�) × U
p2,q2(ω2,�) to U

p0,q0(ω0,�), and

‖A1 ◦ A2‖Up0,q0 (ω0,�) � ‖A1‖Up1,q1 (ω1,�)‖A2‖Up2,q2 (ω2,�). (2.7)

Proof Let U
′
0,+(�) be the set of all A ∈ U

′
0(�) with non-negative entries, let Am =

(am( j, k)) j,k∈� ∈ U0(�)
⋂

U
′
0,+(�), m = 1, 2, denote the matrix elements of B =

A1 ◦ A2 by b( j, k), j, k ∈ �, and set p = p0, q = q0, ω = ω0,

am( j, k) ≡ |am( j, j − k)| ωm( j, j − k) and b( j, k) ≡ |b( j, j − k)| ω( j, j − k),
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m = 1, 2. Then

‖Am‖Upm ,qm (ωm ,�) = ‖am‖�pm ,qm , m = 1, 2,

‖A1 ◦ A2‖Up,q (ω,�) = ‖b‖�p,q ,

and we first prove
‖b‖�p,q ≤ ‖a1‖�p1,q1 ‖a2‖�p2,q2 .

We have
b( j, k) ≤

∑

l∈�

a1( j, l)a2( j − l, k − l). (2.8)

In order to estimate ‖b( · , k)‖�p we consider the cases p < 1 and p ≥ 1 separately.
First assume that p < 1, and set r j = p j

p . Then 1
r1

+ 1
r2

≥ 1 by assumption (2.4),
and therefore Hölder’s inequality yields for k ∈ �

‖b( · , k)‖p
�p ≤

∑

j∈�

(
∑

l∈�

a1( j, l) a2( j − l, k − l)

)p

≤
∑

l∈�

∑

j∈�

(a1( j, l) a2( j − l, k − l))p

≤
∑

l∈�

‖a1( · , l)p‖�r1 ‖a2( · , k − l)p‖�r2

=
∑

l∈�

‖a1( · , l)‖p
�p1 ‖a2( · , k − l)‖p

�p2 ,

that is
‖b( · , k)‖�p ≤ (c1 ∗ c2(k))1/p,

with cm(k) = ‖am( · , k)‖p
�pm , m = 1, 2.

In order to estimate (c1 ∗ c2)1/p we first assume (2.5). Then

‖b‖�p,q ≤ ‖(c1 ∗ c2)
1/p‖�q = ‖c1 ∗ c2‖1/p

�q/p

≤ (‖c1‖�q/p‖c2‖�q/p )1/p = ‖a1‖�p1,q ‖a2‖�p2,q ≤ ‖a1‖�p1,q1 ‖a2‖�p2,q2 ,

and the result follows in this case.
If instead (2.6) holds then q ≥ q1, q2 ≥ p, and r j = q j/p, j = 1, 2, and r = q/p

satisfy

r1, r2, r ≥ 1 and
1

r1
+ 1

r2
≥ 1 + 1

r
.

Hence Young’s inequality may be applied and gives

‖b‖�p,q ≤ ‖c1 ∗ c2‖1/p
�r ≤ (‖c1‖�r1 ‖c2‖�r2 )

1/p = ‖a1‖�p1,q1 ‖a2‖�p2,q2 ,

and the result follows in this case as well.
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Next we consider the case p ≥ 1. By Minkowski’s and Hölder’s inequalities and
the assumption (2.4) we get from (2.8)

‖b( · , k)‖�p ≤
∑

l∈�

‖a1(·, l) a2(· − l, k − l)‖�p

≤
∑

l∈�

‖a1( · , l)‖�p1 ‖a2( · , k − l)‖�p2 = c1 ∗ c2(k), (2.9)

where cm(k) = ‖am( · , k)‖�pm , m = 1, 2.
If (2.6) holds then q ≥ q1, q2 ≥ 1 and Young’s inequality gives

‖b‖�p,q ≤ ‖c1 ∗ c2‖�q ≤ ‖c1‖�q1 ‖c2‖�q2 = ‖a1‖�p1,q1 ‖a2‖�p2,q2

and the result follows. If instead (2.5) holds then q ≤ 1 and (2.9) gives

‖b‖�p,q ≤ ‖c1 ∗ c2‖�q ≤ ‖c1‖�q ‖c2‖�q = ‖a1‖�p1,q ‖a2‖�p2,q

≤ ‖a1‖�p1,q1 ‖a2‖�p2,q2 .

Thus we have proved (2.7) when A1, A2 ∈ U0(�)
⋂

U
′
0,+(�).

By Beppo–Levi’s theorem or Fatou’s lemma applied to the previous situation we
obtain that A1 ◦ A2 is uniquely defined as an element in U

p,q(ω,�) and (2.7) holds,
provided Am ∈ U

pm ,qm (ωm,�)
⋂

U
′
0,+(�) for m = 1, 2.

For Am ∈ U
pm ,qm (ωm,�), m = 1, 2, there are unique

Am,k ∈ U
pm ,qm (ωm,�)

⋂
U

′
0,+(�), m = 1, 2, k = 1, . . . , 4,

such that

Am =
4∑

k=1

i k Am,k,

and

‖Am,k‖Upm ,qm (ωm ,�) ≤ ‖Am‖Upm ,qm (ωm ,�), m = 1, 2, k = 1, . . . , 4.

We understand the unique minimal decomposition of real-valued functions in positive
and negative parts. Since the assertion holds true for A1,k and A2,l in place of A1 and
A2, it follows from the latter estimate that

A1 ◦ A2 =
4∑

k,l=1

i k+l A1,k ◦ A2,l ∈ U
p,q(ω,�)

is uniquely defined and that (2.7) holds for Am ∈ U
pm ,qm (ωm,�), m = 1, 2. ��

We also need the following result on the composition of the analysis operator and the
synthesis operator defined by two Gabor systems.
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Lemma 2.3 Suppose � ⊆ Rd is a lattice, �2 = � × � and φ1, φ2 ∈ �1(Rd) \ 0.
Let Cφ2 = C�

φ2
be the Gabor analysis operator and let Dφ1 = D�

φ1
be the Gabor

synthesis operator defined by φ2 and φ1 respectively, and �. Then Cφ2 ◦ Dφ1 is the
matrix (c( j , k)) j ,k∈�2 where

c( j , k) = ei〈k,κ−ι〉Vφ2φ1( j − k), j = ( j, ι), k = (k, κ). (2.10)

If ω0(X, Y ) = ω(X − Y ), X, Y ∈ R2d for ω ∈ PE (R2d), then

(c( j , k)) j ,k∈�2 ∈
⋂

q>0
ω∈PE (R2d )

U
∞,q(ω0,�

2). (2.11)

Proof Let f be a sequence on �2 such that f (k) �= 0 for at most a finite number of
k ∈ �2. Then

Dφ1 f =
∑

k∈�2

f (k)φ1,k, φ1,k ≡ φ1( · − k)ei〈 · ,κ〉, k = (k, κ),

and
Cφ2(Dφ1 f )( j) = Vφ2(Dφ1 f )( j) =

∑

k∈�2

Vφ2φ1,k( j) f (k).

If j = ( j, ι) then Cφ2 ◦ Dφ1 is hence given by the matrix C = (c( j , k)) j ,k∈�2 where

c( j , k) = Vφ2φ1,k( j) = (2π)−
d
2

∫

Rd
φ1,k(y) φ2(y − j) e−i〈y,ι〉 dy

= (2π)−
d
2 ei〈k,κ−ι〉

∫

Rd
φ1(y) φ2(y − ( j − k)) e−i〈y,ι−κ〉 dy

= ei〈k,κ−ι〉Vφ2φ1( j − k)

which proves (2.10).
It remains to prove (2.11). Let ω ∈ PE (R2d) and q > 0. Since φ1, φ2 ∈ �1(Rd)

we have by [33, Theorem 2.4]

|Vφ2φ1(x, ξ)| � e−r(|x |+|ξ |)

for every r > 0. From (2.10) and (1.15) we obtain

hC,∞,ω0(k) = sup
j∈�2

|HC,ω0( j , k)| = |Vφ2φ1(k) ω(k)|.

A combination of these relations and (1.16) now give

‖C‖U∞,q (ω0,�2) = ‖hC,∞,ω0‖�q = ‖Vφ2φ1 · ω‖�q (�2) < ∞.

Hence C ∈ U
∞,q(ω0,�

2) for any ω ∈ PE (R2d) and any q > 0. ��
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Proof of Theorem 2.1 By [36, Proposition 2.8] and Proposition 1.1 we may assume
that A = 0. Pick φ1, φ2 ∈ �1(Rd) \ 0 and a lattice � ⊆ Rd such that �,� and
�2 = � × � ⊆ R2d are as in Lemma 1.8. Let finally am ∈ M pm ,qm

(ωm) (R2d), m = 1, 2.
By (1.17)–(1.20) we have for m = 1, 2

‖am‖M pm ,qm
(ωm )

� ‖Am‖Upm ,qm (ϑm ,�2)

(2.12)

and

Op(am) = Dφ1 ◦ Am ◦ Cφ2 (2.13)

where

Am = (am( j , k)) j ,k∈�2 ,

am( j , k) ≡ ei〈k− j,κ〉V�am( j, κ, ι − κ, k − j), j = ( j, ι), k = (k, κ) ∈ �2,

and
ϑm(x, ξ, y, η) = ωm(x, η, ξ − η, y − x).

Condition (2.2) means for the weights ϑm , m = 0, 1, 2,

ϑ0(X, Y ) � ϑ1(X, Z) ϑ2(Z , Y ), X, Y, Z ∈ R2d . (2.14)

Pick v1 ∈ PE (Rd) even so that ω2 is v2-moderate with

v2 = v1 ⊗ v1 ⊗ v1 ⊗ v1 ∈ PE (R4d),

set v = v21 ⊗ v1 ∈ PE (R2d) and

v0(X, Y ) = v(X − Y ) ∈ PE (R4d), X, Y ∈ R2d .

Then v0 is designed to guarantee

ϑ2(X, Y ) � v0(X, Z) ϑ2(Z , Y ), X, Y, Z ∈ R2d . (2.15)

We have by (1.21) and (1.22)

Op(a1) ◦ Op(a2) = Dφ1 ◦ A ◦ Cφ2 ,

where
A = A1 ◦ C ◦ A2

and C = Cφ2 ◦ Dφ1 . By Lemma 2.3

C ∈ ⋂

r>0
U

∞,r (v0,�
2).
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Set r = min(1, p2, q2). Then we obtain from (1.23), (2.14), (2.15) and Proposition
2.2 applied twice

‖a1#0a2‖M
p0,q0
(ω0)

� ‖A1 ◦ C ◦ A2‖Up0,q0 (ϑ0,�2)

� ‖A1‖Up1,q1 (ϑ1,�2)‖C ◦ A2‖Up2,q2 (ϑ2,�2)

� ‖A1‖Up1,q1 (ϑ1,�2)‖C‖U∞,r (v0,�2)‖A2‖Up2,q2 (ϑ2,�2)

� ‖A1‖Up1,q1 (ϑ1,�2)‖A2‖Up2,q2 (ϑ2,�2)

� ‖a1‖M
p1,q1
(ω1)

‖a2‖M
p2,q2
(ω2)

.

It remains to prove the claimed uniqueness of the extension. If (2.5) holds then
M

p j ,q j

(ω j )
⊆ M∞,1

(ω j )
, j = 1, 2, and M p0,q0

(ω0)
⊆ M∞,1

(ω0)
. Then the claim follows from the

uniqueness of the extension

M∞,1
(ω1)

#A M∞,1
(ω2)

⊆ M∞,1
(ω0)

(2.16)

which is proved in [7, Theorem 2.11].
Suppose (2.6) holds. Then the same argument applies if q ≤ 1, and if p ≥ 1 then

the claim is a consequence of the uniqueness of the extension

M∞,q1
(ω1)

#A M∞,q2
(ω2)

⊆ M∞,q
(ω0)

(2.17)

which is again proved in [7, Theorem 2.11]. Suppose p < 1 < q. If q1, q2 ≥ 1 then
the uniqueness follows again from the uniqueness of (2.17). If q1 ≥ 1 > q2 then
it follows from the uniqueness of (2.17) with q2 replaced by 1, and analogously for
q2 ≥ 1 > q1. Finally if q1, q2 < 1 then the uniqueness follows from the uniqueness
of (2.16). ��

Let p, q ∈ (0,∞] and set r = min(1, p, q). A particular case of Theorem 2.1 is
the inclusion

M p,q
(ω0)

#A M∞,r
(ω2)

⊆ M p,q
(ω0)

where the weights ω0, ω2 ∈ PE (R4d) satisfy

ω0(TA(Z , X)) � ω0(TA(Y, X)) ω2(TA(Z , Y )), X, Y, Z ∈ R2d ,

and TA is defined by (2.3).
We also note that M p,q

(ω) is an algebra under the product #A provided p, q ∈ (0,∞],
q ≤ min(1, p) and ω ∈ PE (R4d) satisfies

ω(TA(Z , X)) � ω(TA(Y, X)) ω(TA(Z , Y )), X, Y, Z ∈ R2d ,
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3 Necessary conditions

In this final section we show that some of the sufficient conditions in Theorem 2.1 are
necessary. We need the following lemma that concerns Wigner distributions.

Lemma 3.1 Let q0, q ∈ (0,∞] satisfy q0 < q, let

φ(x) = π− d
4 e− |x |2

2 for x ∈ Rd ,

let � ⊆ Rd be a lattice, let c = {c(κ)}κ∈� ∈ �q(�) \ �q0(�), where c(κ) ≥ 0 for all
κ ∈ �, and finally let

f (x) =
∑

κ∈�

c(κ)ei〈x,κ〉φ(x) ∈ S ′(Rd).

Then
f ∈ ⋂

p>0
M p,q(Rd) \ M∞,q0(Rd) (3.1)

and
W f,φ ∈ ⋂

p>0
Mp,q(R2d). (3.2)

Proof By replacing � by a sufficiently dense lattice �0, containing � and letting
c(κ) = 0 when κ ∈ �0 \ �, we reduce ourselves to a situation where the hypothesis
in Proposition 1.6 is fulfilled. Hence we may assume that (1.11) are dual frames for
L2(Rd).

First we show (3.1). (Cf. [28, Proposition 2.6].) On one hand we have ‖ f ‖M p,q �
‖c‖�q for any p > 0 due to Proposition 1.6 (1). Thus f ∈ ⋂p>0 M p,q(Rd). On the

other hand f /∈ M∞,q0(Rd).

In fact, set φ1(x) = (2π)− d
2 e− 1

4 |x |2 for x ∈ Rd . Since

Vφ f (0, ι) = (2π)−
d
2
∑

κ∈�

c(ι − κ) e− 1
4 |κ|2 = c ∗ φ1(ι)

we obtain

‖c‖q0
�q0 =

∑

ι∈�

c(ι)q0 ≤ (2π)
dq0
2
∑

ι∈�

(c ∗ φ1(ι))
q0

= (2π)
dq0
2
∑

ι∈�

∣
∣Vφ f (0, ι)

∣
∣q0 ≤ (2π)

dq0
2
∑

ι∈�

(

sup
j∈�

∣
∣Vφ f ( j, ι)

∣
∣

)q0

= (2π)
dq0
2 ‖Vφ f ‖q0

�∞,q0 (�2)
� ‖ f ‖q0

M∞,q0

again by Proposition 1.6. Thus it must hold f /∈ M∞,q0(Rd), since otherwise we get
the contradiction c ∈ �q0(�). We have now showed (3.1).
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In order to prove (3.2), set a = W f,φ ∈ S ′(R2d). Since Mp,q is increasing with
respect to p and q, it suffices to intersect in (3.2) over 0 < p ≤ min(1, q). We have

‖a‖Mp,q � ‖V�W f,φ‖�p,q (�4),

where �(x, ξ) = (2π)− d
2 e−(|x |2+|ξ |2), and

�4 = � × � × � × � ⊆ R4d .

By straightforward computations we get

a(x, ξ) = W f,φ(x, ξ)

= (2π)−
d
2
∑

κ∈�

c(κ) π− d
2

∫

Rd
e− 1

2 (|x− y
2 |2+|x+ y

2 |2)ei(〈x,κ〉−〈y,ξ− κ
2 〉) dy

= 2
d
2 π− d

2
∑

κ∈�

c(κ) e−|x |2−|ξ− κ
2 |2ei〈x,κ〉.

This gives

V�a(x, ξ, η, y) = 2
d
2 π− d

2
∑

κ∈�

c(κ)Fκ(x, ξ, η, y)

where

Fκ(x, ξ, η, y)

= (2π)−
3d
2

∫∫

R2d
e−(|z|2+|ζ− κ

2 |2+|z−x |2−|ζ−ξ |2)e−i(〈z,η−κ〉+〈y,ζ 〉) dzdζ

= 2− 5d
2 π− d

2 e−(
|x |2
2 + 1

2 |ξ− κ
2 |2+ 1

8 |η−κ|2+ |y|2
8 )e− i

2 (〈x,η−κ〉+〈y,ξ+ κ
2 〉).

Hence

V�a(x, ξ, η, y)

= 2−2dπ−d
∑

κ∈�

c(κ)e−(
|x |2
2 + 1

2 |ξ− κ
2 |2+ 1

8 |η−κ|2+ |y|2
8 )e− i

2 (〈x,η−κ〉+〈y,ξ+ κ
2 〉).(3.3)

If q < ∞ we get, in the third inequality using p ≤ 1,

‖W f,φ‖Mp,q = ‖a‖Mp,q � ‖{V�a(k1, κ1, κ2, k2)}k j ,κ j ∈�‖�p,q (�4)

�

⎛

⎜
⎝
∑

k2,κ2

⎛

⎝
∑

k1,κ1

(
∑

κ

c(κ) e−(
|k1|2
2 + 1

2 |κ1− κ
2 |2+ 1

8 |κ2−κ|2+ |k2 |2
8 )

)p
⎞

⎠

q
p
⎞

⎟
⎠

1
q

�
⎛

⎝
∑

κ2

(
∑

κ1

(
∑

κ

c(κ) e−( 12 |κ1− κ
2 |2+ 1

8 |κ2−κ|2)
)p) q

p
⎞

⎠

1
q
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≤
⎛

⎝
∑

κ2

(
∑

κ,κ1

c(κ)p e−(
p
2 |κ1− κ

2 |2+ p
8 |κ2−κ|2)

) q
p
⎞

⎠

1
q

�
⎛

⎝
∑

κ2

(
∑

κ

c(κ)p e− p
8 |κ2−κ|2

) q
p
⎞

⎠

1
q

=
(
‖{cp} ∗ e− p

8 | · |2‖
�

q
p

) 1
p

≤
(
‖{cp}‖

�
q
p
‖e− p

8 | · |2‖�1

) 1
p � ‖c‖�q < ∞,

using Young’s inequality. The result follows if q < ∞. If q = ∞ a similar argument
proves the result. ��

The preceding lemma is needed in the proof of Theorem 3.3 below on necessary
conditions for continuity. We aim at conditions on the exponents p j , q j , j = 0, 1, 2,
that are necessary for

‖a#Ab‖M
p0,q0
(ω0)

� ‖a‖M
p1,q1
(ω1)

‖b‖M
p2,q2
(ω2)

(3.4)

to hold for all a, b ∈ S (R2d), for certain weight functionsω j , j = 0, 1, 2.We restrict
to weights of polynomial type.

By [36, Proposition 2.8] it suffices to prove the result in the Weyl case A = 1/2,
and then (3.4) in terms of symplectic modulation spaces is

‖a#b‖Mp0,q0
(ω0)

� ‖a‖Mp1,q1
(ω1)

‖b‖Mp2,q2
(ω2)

, a, b ∈ S (R2d). (3.5)

The conditions on the weights (2.2) and (2.3) are then transformed into

ω0(Z + X, Z − X) � ω1(Y + X, Y − X) ω2(Z +Y, Z −Y ), X, Y, Z ∈ R2d . (3.6)

(Cf. [7,23].)
We will consider weights with the particular structure

ω0(X, Y ) = ϑ2(X − Y )

ϑ0(X + Y )
, ω1(X, Y ) = ϑ2(X − Y )

ϑ1(X + Y )
,

ω2(X, Y ) = ϑ1(X − Y )

ϑ0(X + Y )
,

(3.7)

for ϑ j ∈ P(R2d), j = 0, 1, 2. Then (3.6) is automatically satisfied. Without loss we
may assume ϑ j ∈ C∞ [23, Remark 2.18].

For ϑ ∈ P(R2d) let S(ϑ)(R2d) denote the space of smooth symbols on R2d such
that (∂αa)/ϑ ∈ L∞ for any α ∈ N2d .

Lemma 3.2 Let p, q ∈ (0,∞], let ϑ j ∈ P(R2d), j = 1, 2 and suppose ω(X, Y ) =
ϑ2(X − Y )/ϑ1(X + Y ). Then there exist a j ∈ S(ϑ j )(R2d) and b j ∈ S(1/ϑ j )(R2d),
j = 1, 2 such that
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a j#b j = b j#a j = 1, j = 1, 2, (3.8)

and the map a �→ a2#a#b1 is continuous on S (R2d) and extends uniquely to a
homeomorphism from M

p,q
(ω) (R

2d) to Mp,q(R2d).

Proof According to [2, Corollary 6.6] there exist a j ∈ S(ϑ j )(R2d) and b j ∈
S(1/ϑ j )(R2d), j = 1, 2, such that (3.8) is satisfied.

By [23, Remark 2.18] we have

S(ϑ)(R2d) =
⋂

N≥0

M
∞,r
(1/ϑN )(R

2d), ϑN (X, Y ) = ϑ(X)〈Y 〉−N ,

for any ϑ ∈ P(R2d) and any r > 0. More precisely the remark gives the equality for
r = 1, and for general r > 0, the equality follows from the embeddings

M∞,r2
(1/vN+N0 ) ⊆ M∞,r1

(1/vN ) ⊆ M∞,r2
(1/vN ), when r1 < r2, N0 > 2d

(
1

r1
− 1

r2

)

.

If we set r = min(1, p, q) then p1 = ∞, q1 = r , p2 = p, q2 = q, as well as p2 = ∞,
q2 = r , p1 = p, q1 = q, satisfy the conditions (2.4), and (2.5) or (2.6) of Theorem
2.1.

From these observations the result follows from Theorem 2.1 and a repetition of
the arguments in the proof of [7, Lemma 3.3]. ��
Theorem 3.3 Let p j , q j ∈ (0,∞], and suppose ω j ∈ P(R4d), j = 0, 1, 2, are
given by (3.7) where ϑ j ∈ P(R2d), j = 0, 1, 2. If (3.5) holds then

1

p0
≤ 1

p1
+ 1

p2
,

1

p0
≤ 1

q1
+ 1

q2
and q1, q2 ≤ q0. (3.9)

Proof By Lemma 3.2 the estimate (3.5) with weights (3.7) implies

‖a#b‖Mp0,q0 � ‖a‖Mp1,q1 ‖b‖Mp2,q2 , a ∈ Mp1,q1(R2d), b ∈ S (R2d). (3.10)

It thus suffices to prove the result for ω j ≡ 1, j = 0, 1, 2.

Let aλ,μ(x, ξ) = e−λ|x |2−μ|ξ |2 and aλ = aλ,λ, for μ, λ > 0. Then by the proof of
[23, Proposition 3.1] (cf. [7, Section 3])

‖aλ‖1/d
Mp,q = π

1
p + 1

q −1 p− 1
p q− 1

q λ
− 1

p (1 + λ)
1
p + 1

q −1

and

aλ#aμ(X) = (1 + λμ)−d exp

(

−|X |2 λ + μ

1 + λμ

)

.

Hence

‖aλ#aλ‖1/d
Mp,q = π1/p+1/q−1 p−1/pq−1/q

× (1 + λ2)−1/q(2λ)−1/p(1 + λ)2(1/p+1/q−1).
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Thus

( ‖aλ#aλ‖Mp0,q0

‖aλ‖Mp1,q1 ‖aλ‖Mp2,q2

)1/d

= Cλ
1
p1

+ 1
p2

− 1
p0 (1 + λ2)

− 1
q0 (1 + λ)

2
p0

− 1
p1

− 1
p2

+ 2
q0

− 1
q1

− 1
q2 .

for some constant C > 0 which does not depend on λ. The right hand side behaves

like λ
1
p0

− 1
q1

− 1
q2 when λ is large, and like λ

1
p1

+ 1
p2

− 1
p0 when λ is small. The continuity

(3.10) hence implies the necessary conditions

1

p0
≤ 1

q1
+ 1

q2
,

1

p0
≤ 1

p1
+ 1

p2
.

It remains to show q1, q2 ≤ q0. Since a1#a2 = a2#a1 (cf. [23]), it suffices to show
q1 ≤ q0. We give a proof by contradiction. Suppose (3.10) holds and q0 < q1. Let
� ⊆ Rd be a lattice,

φ(x) = π− d
4 e−|x |2/2, c = {c(κ)}κ∈� ∈ �q1(�) \ �q0(�),

and let

f (x) =
∑

κ∈�

c(κ)ei〈x,κ〉φ(x).

Then

f ∈
⋂

p1>0

M p1,q1(Rd) \ M∞,q0(Rd),

a = W f,φ ∈
⋂

p1>0

Mp1,q1(R2d) and b = Wφ,φ ∈ S (R2d),

by Lemma 3.1. Since

Opw(a)g = (2π)−
d
2 (g, φ) f and Opw(b)g = (2π)−

d
2 (g, φ)φ,

it follows that

Opw(a#b)φ = (2π)−d‖φ‖4L2 f ∈
⋂

p1>0

M p1,q1(Rd) \ M∞,q0(Rd).

Therefore Opw(a#b) is not continuous from S (Rd) to M∞,q0(Rd).
On the other hand we have by assumption

a#b ∈ Mp0,q0 ⊆ M∞,q0 .
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If q0 ∈ (0, 1], then Opw(a#b) is continuous from M p0,q0 to M p0,q0 when p0 ∈
[q0,∞], by [35, Theorem 3.1]. This contradicts the fact that Opw(a#b) is not contin-
uous fromS to M∞,q0 . Hence the assumption q0 < q1 must be false.

If instead q0 ∈ [1,∞], then by [31, Theorem 4.3] Opw(a#b) is continuous from
M1,1 to Mq0,q0 , which again contradicts the fact that Opw(a#b) is not continuous from
S to M∞,q0 . Hence the assumption q0 < q1 is again false.

Thus we must have q1 ≤ q0. ��
Remark 3.4 LetP0

E (Rd) denote the set of allω ∈ PE (Rd) such thatω is v-moderate
for a submultiplicative weight v satisfying

v(x) � er |x |, x ∈ Rd ,

for all r > 0. Then P(Rd) � P0
E (Rd). By using the new [1, Theorem 4.1] instead

of Lemma 3.2 it follows that Theorem 3.3 holds for ϑ j ∈ P0
E (R2d) and ω j defined

by (3.7). The space S in (3.5) is then replaced by S1.

Remark 3.5 For Banachmodulation spaces with exponents p j , q j restricted to [1,∞]
we have found that the following conditions are necessary and sufficient for continuity
of the Weyl product [7, Theorems 0.1 and 3.1].

1

p0
≤ 1

p1
+ 1

p2
, (3.11)

q1, q2 ≤ q0, 1 ≤ 1

q1
+ 1

q2
, (3.12)

1

p0
+ 1

q0
≤ 1

q1
+ 1

q2
, 1 + 1

q0
≤ 1

q1
+ 1

q2
+ 1

p j
, j = 1, 2, (3.13)

1 + 1

p0
+ 1

q0
≤ 1

q1
+ 1

q2
+ 1

p1
+ 1

p2
. (3.14)

In this paper we have worked with exponents p j , q j in the full range (0,∞]. The
sufficient conditions in Theorem 2.1 and the necessary conditions in Theorem 3.3 are
not equal, as conditions (3.11)–(3.14) are for exponents in [1,∞].

In fact, consider the inclusion

M1,2#M1,2 ⊆ M∞,2

which holds since the exponents satisfy (3.11)–(3.14). They do however not satisfy
(2.4), and (2.5) or (2.6). Hence the sufficient conditions in Theorem 2.1 are not all
necessary.

Appendix

In this appendix we prove the formula

F ( f φ)(ξ) = (2π)−
d
2 ( f, φ ei〈 · ,ξ〉), f ∈ S ′

s(R
d), φ ∈ Ss(Rd), ξ ∈ Rd ,

(A.1)
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for s ≥ 1/2, which we claimed to be true in the definition of the STFT (1.5). There is
a parallel formula for f ∈ �′

s(R
d), φ ∈ �s(Rd) and s > 1/2, that we also prove.

Let f ∈ S ′
s(R

d), let φ ∈ Ss(Rd) and denote

u(ξ) = (2π)−
d
2 ( f, φ ei〈 · ,ξ〉) = (2π)−

d
2 〈 f, φ e−i〈 · ,ξ〉〉, ξ ∈ Rd . (A.2)

Then u ∈ C∞(Rd). We need the following estimate (cf. [5]).

Lemma A.1 The function (A.2) satisfies the estimate

|u(ξ)| � ec|ξ |1/s
, ξ ∈ Rd ,

for any c > 0.

Proof By (1.4), φ ∈ Ss,h(Rd) for all h ≥ h0 where h0 > 0. Let c > 0 and set

h = max

(

h0,

(
ds

c

)s)

.

Let α, β ∈ Nd . Using |γ |! ≤ d |γ |γ ! (cf. [27, Eq. (0.3.3)]) and∑γ≤β

(
β
γ

) = 2|β| we
estimate for x, ξ ∈ Rd

∣
∣
∣xα∂

β
x (ei〈x,ξ〉φ(x))

∣
∣
∣

(α!β!)s(2h)|α+β| ≤ 2−|α+β| ∑

γ≤β

(
β

γ

) |ξ ||γ | h−|γ |

γ !s
∣
∣xα∂β−γ φ(x)

∣
∣

(α!(β − γ )!)sh|α+β−γ |

(
β

γ

)−s

≤ ‖φ‖Ss,h2
−|α+β| ∑

γ≤β

(
β

γ

)(( c
s |ξ |1/s

)|γ |

|γ |!

)s (
(ds)s

hcs

)|γ |

� 2−|α+β| ∑

γ≤β

(
β

γ

)(( c
s |ξ |1/s

)|γ |

|γ |!

)s

≤ ec|ξ |1/s
2−|α+β| ∑

γ≤β

(
β

γ

)

≤ ec|ξ |1/s
.

This implies

‖φ ei〈 · ,ξ〉‖Ss,2h � ec|ξ |1/s
, ξ ∈ Rd ,

which via (1.4)′ finally gives the estimate

|u(ξ)| � ‖φ ei〈 · ,ξ〉‖Ss,2h � ec|ξ |1/s
, ξ ∈ Rd .

��
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The formula (A.1) amounts to the claim F ( f φ) = u.
A priori F ( f φ) ∈ S ′

s(R
d) is the distribution

〈F ( f φ),ψ〉 = 〈 f, φ ψ̂〉, ψ ∈ Ss(Rd).

To prove our claim F ( f φ) = u we must therefore show

〈 f, φ ψ̂〉 =
∫

Rd
u(x) ψ(x) dx = (2π)−

d
2

∫

Rd
〈 f, φ ψ(x) e−i〈 · ,x〉〉 dx, ψ ∈ Ss(Rd).

(A.3)
Note that the integral is well defined due to Lemma A.1 and the estimate for ψ ∈

Ss(Rd) [33, Lemma 1.6]

|ψ(x)| � e−ε|x |1/s
, x ∈ Rd ,

which is valid for some ε > 0.
In view of the definition of the Fourier transform ψ̂ , formula (A.3) is true provided

we can switch order in the action of the distribution 1 ⊗ f ∈ S ′
s(R

2d) with respect
to the first and second Rd variable, when it acts on the test function �(x, y) =
(2π)−d/2φ(y) ψ(x)e−i〈y,x〉. Note that � ∈ Ss(R2d) if φ,ψ ∈ Ss(Rd) and s ≥ 1/2,
and � ∈ �s(R2d) if φ,ψ ∈ �s(Rd) and s > 1/2, cf. [3, Theorem 3.1] and [4,
Proposition 3.4].

Thus the claim (A.1) is a consequence of the following Fubini-type result for
Gelfand–Shilov distributions. It corresponds to [22, Theorem 5.1.1] in the Schwartz
distribution theory.

Theorem A.2 Suppose s ≥ 1/2, and f j ∈ S ′
s(R

d j ), j = 1, 2. Then there exists a
unique tensor product distribution f = f1 ⊗ f2 ∈ S ′

s(R
d1+d2) such that

〈 f1 ⊗ f2, φ1 ⊗ φ2〉 = 〈 f1, φ1〉〈 f2, φ2〉, φ j ∈ Ss(Rd j ), j = 1, 2.

It holds

〈 f, φ〉 = 〈 f1, 〈 f2, φ(x1, x2)〉〉 = 〈 f2, 〈 f1, φ(x1, x2)〉〉, φ ∈ Ss(Rd1+d2),

where f j acts on x j only, j = 1, 2.
The same conclusion holds for s > 1/2 and f j ∈ �′

s(R
d j ), j = 1, 2, with test

functions in �s .

Proof We use the Hermite functions

hα(x) = π− d
4 (−1)|α|(2|α|α!)− 1

2 e
|x |2
2 (∂αe−|x |2), x ∈ Rd , α ∈ Nd ,

and formal series expansions with respect to Hermite functions:

f =
∑

α∈Nd

cαhα
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where {cα} is a sequence of complex coefficients defined by cα = cα( f ) = ( f, hα).
It is known that Gelfand–Shilov spaces and their distribution duals can be identified

by means of such series expansions, with characterizations in terms of the correspond-
ing sequence spaces (see [14,15,37] and the references therein).

In fact, let
f =

∑

α∈Nd

cαhα

and
φ =

∑

α∈Nd

dαhα

with sequences {cα} and {dα} of finite support. Then the sesquilinear form

( f, φ) =
∑

α∈Nd

cαdα (A.4)

agrees with the inner product on L2(Rd) due to the fact that {hα}α∈Nd ⊆ L2(Rd) is an
orthonormal basis. The form (A.4) extends uniquely to the duality onS ′

s(R
d)×Ss(Rd)

for s ≥ 1/2, and to the duality on �′
s(R

d) × �s(Rd) for s > 1/2. All spaces are then
expressed in terms of the Hilbert sequence spaces

�2r = �2r (N
d) =

⎧
⎨

⎩
{cα} ;

∑

α∈Nd

|cα|2er |α| 1
2s

< ∞
⎫
⎬

⎭

where r ∈ R. For s ≥ 1/2 the space Ss(Rd) is identified topologically as the inductive
limit

Ss(Rd) =
⋃

r>0

⎧
⎨

⎩

∑

α∈Nd

cαhα ; {cα} ∈ �2r

⎫
⎬

⎭

and S ′
s(R

d) is identified topologically as the projective limit

S ′
s(R

d) =
⋂

r>0

⎧
⎨

⎩

∑

α∈Nd

cαhα ; {cα} ∈ �2−r

⎫
⎬

⎭
.

For s > 1/2 the space �s(Rd) is identified topologically as the projective limit

�s(Rd) =
⋂

r>0

⎧
⎨

⎩

∑

α∈Nd

cαhα : {cα} ∈ �2r

⎫
⎬

⎭
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and �′
s(R

d) is identified topologically as the inductive limit

�′
s(R

d) =
⋃

r>0

⎧
⎨

⎩

∑

α∈Nd

cαhα ; {cα} ∈ �2−r

⎫
⎬

⎭
.

We have for α = (α1, α2) ∈ Nd1+d2 with α j ∈ Nd j , j = 1, 2, hα = hα1 ⊗ hα2 .
This gives for f j ∈ S ′

s(R
d j ), j = 1, 2,

cα = cα( f1 ⊗ f2) = ( f1, hα1)( f2, hα2), α = (α1, α2) ∈ Nd1+d2 ,

so cα = c1,α1c2,α2 if we denote c j,α j = ( f j , hα j ) where α j ∈ Nd j for j = 1, 2.
Let φ ∈ Ss(Rd1+d2) and denote dα(φ) = (φ, hα) for α ∈ Nd1+d2 . This gives for

any r > 0

〈 f1 ⊗ f2, φ〉 =
∑

(α1,α2)∈Nd1+d2

c1,α1c2,α2 e−r |(α1,α2)|
1
2s dα1,α2 er |(α1,α2)|

1
2s

. (A.5)

From

e−r |(α1,α2)|
1
2s ≤ e− r

2 |α1|
1
2s e− r

2 |α2|
1
2s

,

{c1,α1} ∈ �2−r (N
d1), {c2,α2} ∈ �2−r (N

d2) for any r > 0, {dα1,α2} ∈ �2r (N
d1+d2) for

some r > 0, and the Cauchy–Schwarz inequality, we may now conclude that the sum
(A.5) converges absolutely.

The conclusion of the theorem is thus a consequence of the well known Fubini
theorem with respect to the counting measure. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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