

Toward Automating Requirements Satisfaction Assessment

E. Ashlee Holbrook Jane Huffman Hayes Alex Dekhtyar
Lexmark University of Kentucky California Polytechnic

ashleeh@gmail.com hayes@cs.uky.edu State University

Abstract

This paper introduces the automation of satisfaction
assessment: the process of determining the
satisfaction mapping of natural language textual
requirements to natural language design elements.
Satisfaction assessment is useful because it assists in
discovering unsatisfied requirements early in the
lifecycle when such issues can be corrected with
lower cost and impact than later. We define the basic
terms and concepts for this process and explore the
feasibility of developing baseline methods for its
automation. This paper describes the satisfaction
assessment approach algorithmically and then
evaluates the effectiveness of two proposed
information retrieval (IR) methods in two industrial
studies – one based on a large dataset including a
complete requirements specification and design
specification for a NASA science instrument, and one
based on a smaller dataset for an open source project
management dataset. We found that both approaches
have merit, and that the more sophisticated approach
outperformed the simpler approach in terms of
overall accuracy of the results.

1. Introduction

In 2006, the National Defense Industrial
Association (NDIA) examined the top software
engineering issues within the Department of Defense
and the Defense industry. The number one issue
raised was “the impact of system requirements upon
software is not consistently quantified and managed
in development or sustainment [1].” Within this, a
number of sub-issues was identified, two of which
are of interest: 1) “strengthen policies and guidance
for maintaining full traceability across all levels of
requirements,” and 2) “…ensure requirements are
validated, balanced and consistent [1].”

A question of interest for all software systems, but
of crucial interest for safety-critical and mission

dekhtyar@csc.calpoly.edu

critical software, is that of whether or not the
requirements have been adequately addressed or
satisfied by the subsequent artifacts. Examples of
questions that address satisfaction of requirements
include considering whether the system
requirements have been satisfied by the hardware and
software requirements, or whether the high level
software design satisfies all the requirements? An
automated method for answering these questions
would help us address items 1 and 2 above.

Projects may have many artifacts that, when
paired, possess the 'is satisfied by' or 'satisfies'
relationship. For example, customer requests, change
requests, or enhancement requests may be examined
to see if they are already satisfied by an existing
requirement or feature description of a software
product. There may be higher-level enterprise goals
or objectives that need to be satisfied by a software
project. If so, the software requirements may be
examined to see if they 'satisfy' the enterprise goals.

In addition to assessing the “status” of
satisfaction between “delivered” or completed artifact
pairs, this technique can also be applied to evolving
artifacts. For example, a requirements specification
could be examined for satisfaction assessment with a
number of evolving textual design solutions. This
will support the comparison and evaluation of various
design alternatives, by looking to see what best
satisfies the requirements. Others have started to
look at this issue from a formal perspective by
focusing on partial goal satisfaction [2].

 This paper specifically focuses on assessing
whether requirements have been satisfied by lower
level artifacts such as design. We propose a three-
step approach to addressing this problem. First, we
identify important components for each individual
requirement/design element. Generally speaking,
each component should represent an important facet
of a requirement or a design element. We define
satisfaction assessment as determination of whether
each component of each requirement has been
addressed in the design document. This in turn is

achieved by tracing the requirements document,
broken into components (which we call "chunks") to
the design document, also broken into chunks. The
third step, not addressed here, is to have the human
analyst vet the results of step two.

Two methods are used to determine the mapping
of requirement to design element chunks. The first
method is based on a simple idea of tracking and
thresholding the percentage of common terms
between the two chunks. This method is selected due
to its simplicity and ease of implementation. The
second method is vector space information retrieval
using TF-IDF (term frequency - inverse document
frequency) term weighting [35]. This traditional IR
method is now commonly used in requirements
tracing [12,13]. Vector space retrieval has previously
been validated in the automated tracing domain, and
was therefore chosen as an initial method to
investigate for satisfaction assessment [12,13,36].

1.1 Definitions

We have narrowed our focus to the problem of
assessing satisfaction of a set of textual requirements
by a set of textual design elements. Definitions of
terms are in order. The IEEE definition of a
requirement is: “1. A condition or capability needed
by a user to solve a problem or achieve an objective.
2. A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed document. 3. A documented
representation of a condition or capability as in (1) or
(2)” [41]. Requirements include three pieces of
information: a) a subject: b) a modal verb, typically
“shall;” and c) an object phrase describing what is
required. The subject of a requirement is typically the
name of the software system or a subsystem
contained within it. The modal verb may be “will,”
“shall,” or another word. Finally, the requirement
must contain a phrase describing what the subject of
the sentence must do or contain. The IEEE definition
of design is “A software design description (SDD).
An SSD is a document used to specify system
architecture and application design in a software
related project [41].” Textual design elements are
descriptions of how a requirement will be
implemented or paragraphs that describe a
requirement in more detail.

Satisfaction assessment (process) is defined as
determining the satisfaction mapping of portions of
natural language textual requirements to natural
language design elements [3]. A satisfaction mapping
encodes a satisfaction decision that has been made
about a set of textual requirement elements and a set

of corresponding textual design elements [3].
Satisfaction assessment is the process of determining
the satisfaction mapping of natural language textual
requirements to natural language design elements. A
satisfaction assessment (artifact) is defined as a set of
satisfaction mappings for a given set of requirements
and design elements [3]. Formal definitions and
examples of the artifacts are presented in Section 3.

1.2 Contribution

This paper presents our initial work on the
problem of satisfaction assessment. Our goal was to
examine the feasibility of its automation and to
investigate the appropriateness of some common
techniques as baselines for its evaluation.
Specifically, we defined a three-step process for
satisfaction assessment. This paper directly addresses
the first two steps. We present two methods that
apply information retrieval techniques to assess the
satisfaction of requirements by design elements. We
discuss a study evaluating the accuracy of the
methods by examining two industrial datasets. We
found that both methods, despite their simplicity,
produce reasonably accurate satisfaction assessments.
When comparing the performance of the methods, we
found that the more sophisticated method (TF-IDF)
had higher overall accuracy.

1.3 Paper Organization

The paper is organized as follows. Section 2
presents related work. Section 3 discusses
satisfaction assessment, explaining methods in detail.
Section 4 presents the study design and threats to
validity. Section 5 presents the results and analysis.
Section 6 concludes and discusses future work.

2. Related Work

Satisfaction assessment may be thought of as a
way to validate whether requirements have been fully
addressed by design elements and provides a way to
measure the quality of a software project. The
majority of previous automation work in the
requirements traceability community focused on
candidate link generation, not on satisfaction
assessment. This work, however, has paved the way
for our study and is briefly described here.

Previous work on requirements validation has
focused on formally specifying requirements
[28,22,10], optimizing natural language processing
(NLP) approaches to requirements analysis, and
discovering potential ambiguities [16,9,7].

Durán et al. used XSLT and requirements in XML
to automatically verify requirement qualities such as
completeness and lack of ambiguity [6]. Analysts
have used requirement defect detection techniques
[20] to discover requirements that cannot be satisfied
(i.e., inconsistent and omitted) and inconsistencies
between requirements and design. Reading methods
such as scenario-based [27] and perspective-based
reading [2, 26] have also been used to increase the
quality of requirement specifications.

 Automation of requirements tracing has received
extensive attention in recent years. For a detailed
survey, we refer the reader to [13]. Tracing examines
the creation of a requirements traceability matrix
(RTM) that relates requirements to design to code
and beyond. Recent work concentrated on applying
IR methods to tracing. Antoniol et al. [36] and
Marcus and Maletic [17] applied IR methods to the
problem of tracing design to code. Cleland-Huang [4]
used IR to trace non-functional requirements. Hayes
et al. investigated the process of tracing and built a
special-purpose requirements tracing tool called
RETRO (REquirements TRacing On-target) [12, 13].
Spanoudakis et. al. created a system to automatically
generate traceability information based on tracing
rules [33].

Additionally, several researchers have examined
requirement quality through design and requirement
analysis. Diallo et. al. used ScenarioML to create
mappings between requirement-level scenarios and
system architecture [29]. Alspaugh and Antón
examined automation of requirement scenario
analysis to determine requirement quality, looking at
four primary traits: well-definedness, coverage,
minimality, and coherence [30]. Robinson looked at
rule-based requirements monitors to dynamically
analyze requirements as a system is designed [31].
Letier and van Lamsweerde created a system to
analyze partial goal satisfaction to help quantify the
impact of partially met requirements due to design
constraints [32].

Algorithmic techniques that are useful for both
assessing requirement satisfaction and tracing include
keyword extraction methods [14] and the vector
space model for information retrieval [24]. Vector
space models represent documents as vectors by
extracting terms, weighting these by relevance and
document location, and ranking the document as a
whole based on a given query.

3. Satisfaction Assessment

This section proposes approaches to satisfaction
assessment as well as measures for assessing the

validity of the approaches. Each approach was
implemented in a tool called REquirements
SATisfaction (RESAT). The tool is written for
Windows in Visual C# and is approximately 10,130
lines of code excluding external libraries.

3.1 Satisfaction Assessment Defined

In this paper, satisfaction assessment is defined as
the process of determining the satisfaction mapping
of natural language textual requirements to natural
language design elements. Given a set of
requirements decomposed into terms (R = {tr1, tr2,
…}) or phrases (R = {pr1, pr2, …}) and a set of design
element terms (D = {td1, td2, …}) or phrases (D =
{pd1, pd2, …}), a satisfaction mapping is a set of pairs
of terms (trn, tdm) where trn is a term in a set of
requirements and tdm is a term in the set of design
elements where trn is directly correlated to tdm

1. A
satisfaction mapping may also occur at the phrase
level. In this case, the mapping will consist of a
series of phrase pairs (prn, pdm) with one phrase, prn,
being a phrase in a requirement, and pdm being a
phrase in a corresponding design element where pdm
directly addresses prn. In this study, we have broken
down the requirement and design element text into
phrases based on parts of speech processing. We
refer to each of these phrases as requirement chunks
or design element chunks. All chunks have unique
identifiers that we use to build candidate satisfaction
mappings.

Satisfaction assessment, as performed in this
study, consists of a variety of processing techniques.
Requirements and design elements are taken as input
in their natural form. There are no formatting or
language rules imposed to avoid placing a burden on
those who specify the requirements and design. No
models are required, nor does the method attempt to
examine possible underlying abstract models. The
sole requirement for input was that all documents
used for this study were in English text. An RTM for
each dataset was also used as input to limit the search
space for satisfaction mappings.

Performing satisfaction assessment is a three step
process. The first step is to parse the requirement and
design elements into chunks. This step is described
in Section 3.2.

Step two is to map the design chunks to the
requirement chunks, resulting in a candidate
satisfaction assessment mapping. This step
determines if each pair of requirement and design

1 That is to say that these items trace to each other
and the traceability relationships are documented in the
RTM.

chunks are similar. We view this as a tracing
problem, which can be defined as an information
retrieval (IR) problem: given a document collection
and a query, determine those documents from the
collection that are relevant to the query. Our prior
work, and that of others, has shown that requirement
and design similarity can be modeled, or at least
approximated, by the document relevance notions on
which different IR algorithms rely
[4,12,13,14,17,36]. The methods that we applied to
the tracing step are described in Section 3.3.

Finally, the results from step 2 are shown to the
analyst for confirmation/approval. The analyst work
is step three. This step is not in the scope of the
current paper, but it should be noted that the output of
the step is referred to as the final satisfaction
assessment mapping.

3.2 Processing

 Requirements and design elements were subjected
to a series of processing steps before a candidate
satisfaction assessment could be determined. First,
each textual requirement and design element was
preprocessed. Second, we constructed and applied a
domain specific thesaurus, which contains a set of
synonym pairs for domain-specific vocabulary. The
thesaurus was generated by analyzing a subset of
roughly 25% of the requirements and design elements
for each dataset domain. Thesaurus entries for this
work are in the form “term synonym1 synonym2…
synonymN” where term is synonymous with
synonyms 1 through N. For example, the terms
“error” and “problem” could be included as
synonyms in the thesaurus. Next, each requirement
and design element was tokenized into chunks based
on parts of speech.
Each chunk is a phrase in a sentence. Chunking takes
place by parsing sentences, with each phrase of the
sentence identified uniquely as a chunk. Incremental
processing of text is shown in Figure 1 and a sample
satisfaction mapping is shown in Figure 2. Note that
the text in Figures 1 and 2 has been formatted to
show the matches visually (e.g., Figure 2 tells us that
requirement chunk 19, “the original error code,”
maps to design chunk 32 in design element 1, “an
error code.” To make it easier to see that they are
related, each is double-underlined. Similar
formatting changes (bold, italic and underline
combinations) indicate other potential mappings
between requirement element chunks and design
element chunks. Finally, similarity measures are
calculated between chunks of requirements and the
design elements they are tied to in the project RTM.

 The similarity measures for this study are
determined using either method described next.

3.2.1. Satisfaction assessment using TF-IDF. TF
IDF is a statistical measurement of the importance of
a term within a document. Term frequency (TF) is
the (possibly normalized) number of times a term
appears within a document. Inverse document
frequency (IDF) of a term is the logarithm of the
ratio of the total number of documents in a collection
to the number of documents that contain the term.
The less frequent a term is, the more discriminating

Chunked
Requirem
ent Text:

RE1

<1>The DPU-CCM</1> <2>shall
be able</2> <3>to count</3>
<4>a consecutively reported
error </4>. <5>When<5> <6>the
count</6> <7>for</7> <8>a
particular error ID</8>,
<9>exceeds</9> <10>250</10>
<11>for</11> <12>a particular
reporting period</12>, <13>the
error code</13> <14>will be
replaced</14> <15>with</15>
<16>an error code
sequence</16> <17>which</17>
<18>shall include</18> <19>the
original error code</19>
<20>and</20> <21>the number
of times</21> <22>the
error</22> <23>was reported
</23>.

Chunked
Design
Element

Text: DE1

<24>The ccmErrEnq()
function</24> <25>tracks</25>

<26>the last error reported</26>
<27>and<27> <28>its<29>

<30>frequency of
occurrence</30>.

<31>Once</31> <32>an error
code</32><33>has been

reported</33> <34>it</34>
<35>becomes<35> <36> the
previously reported error

code</36>…

Chunked <100>In</100>
Design <101>order</101> <102>to
Element insure</102> <103>that</103>

Text: DE2 <104>error counts</104>
<105>are</105> <106>not</106>

<107>lost</107>…
Figure 1. Sample Requirement and Design

Element Satisfaction Assessment.

Satisfaction Assessment:
1,2,5,7,14,15,17,20 – No Satisfaction Mapping

3 - 43 (bold underline italic)

4 - 33, 36, 45, 49, 66, 79, 115 (bold italic)

6 - 40, 64, 104, 123, 132 (bold)

8 - 33, 36, 45, 49, 66, 79, 115 (bold italic)

9 - 118, 124 (bold underline)

10 - 119, 125 (underline italic)

11 - 126

12 - 59, 121, 127 (underline)

13 - 33, 36, 45, 49, 66, 79, 115 (bold italic)

16 - 61, 130 (italic)

19 - 32, 51 (double underline)

21 - 40, 64, 104, 123, 132 (bold)

22 - 33, 36, 45, 49, 66, 79, 115 (bold italic)

23 - 52 (bold double underline)

Figure 2. Sample Requirement and Design
Element Satisfaction Assessment (cont.).

power it has, and thus the higher the IDF. The weight
of each keyword in a document is the product of TF
and IDF [35].

Each requirement and design element chunk is
considered an individual document within the
document collection. TF-IDF similarity scores2 are
calculated between pairs of chunks (cr1, cd2), where
cr1 is a requirement chunk in requirement 1 and cd2
is a design element chunk that is in design element 2,
and where requirement 1 is mapped to design
element 2 in the RTM for the dataset. All such pairs
from the RTM are considered to be potential
matches. If the pair (cr1, cd2) has a similarity score
above a given threshold value (we used a set of 18
threshold or filter values – 9 values starting at 0.01
and incrementing by 0.01 to 0.09, and 9 values
starting at 0.1 and incrementing by 0.1 until 0.9), then
the two are considered a satisfaction match and the
pair (cr1, cd2) is included in the candidate
satisfaction assessment mapping produced by this
method. The entire set of satisfaction match pairs
that have similarity scores greater than the threshold
value is considered to be a candidate satisfaction
assessment for a given dataset. We call our final
output a candidate mapping because we acknowledge
that an analyst should examine the tool’s output and
confirm the final mapping [40]

3.2.2 Naïve satisfaction assessment. The naïve
satisfaction approach examines textual similarity
only. If terms within a requirement chunk and design
chunk in the dataset contain the same root or the root

In situations when chunks compared to each other are
rather short, tf-idf weights become essentially pure idf
weights, as all term occurrences in the chunks are unique.

of a synonym, then the terms are considered a match.
The overall percentage of matching terms in a chunk,
excluding stop words, is the weighted similarity
value for a requirement and design element chunk.
Threshold values from 0.01 to 0.9 (described in
Section 3.3.1) are used to filter chunks, chunks with
similarity values below the threshold do not appear in
the candidate satisfaction assessment mapping.

3,2,3, RESAT Tool. The software implementation
of the satisfaction assessment procedures is called
RESAT (REquirements SATisfaction). From within
the RESAT tool, users can load a set of requirements
and a set of design documents, a domain thesaurus,
set threshold values as described for the methods
below, and perform automated satisfaction
assessment using the method described below. Batch
mode processing is also available within the tool to
process datasets at multiple threshold values.

3.3 Measures

Our primary goal is assessment of accuracy of
the methods in determining the associations (links)
between the requirement and design element chunks.
In our evaluation, we used three traditional
information retrieval measures: precision, recall, and
f-measure. Given a list of candidate satisfaction
pairs, the precision of the list is the percentage of the
retrieved pairs that are correct. Recall of the list is the
percentage of correct pairs that were retrieved.

High precision means low incidence of type I
errors (including incorrect pairs). Higher precision
indicates that analysts will have fewer incorrect
results to remove in order to obtain a true satisfaction
assessment. High recall means low incidence of type
II errors (omitting true pairs). High recall indicates
that a majority of the true matches were returned,
meaning an analyst will have to search less for
satisfaction mappings that have been omitted from a
candidate satisfaction assessment.

Given a list of candidate satisfaction pairs, the
pair (precision, recall) provides a good description of
the list's accuracy. However, when the accuracy of
different lists needs to be compared, it is much more
convenient to combine precision and recall into a
single measure. This is typically done via f-measure
[35], the harmonic mean of recall and precision. In
our study, we use a variant of f-measure called f2,
computed as follows:

3 ⋅ precision ⋅ recallf 2 = .(2 ⋅ precision) + recall
2

The f2 measure is a weighted harmonic mean of
recall and precision which favors recall. We choose
to favor recall in our evaluation because traditionally
the cost of repairing type II errors (errors of
omission) is higher than the cost of repairing type I
errors (errors of commission). Thus, when comparing
two lists of candidate satisfaction pairs with the same
number of total errors, we give preference to the list
with fewer type II errors, i.e., with higher recall.

4. Evaluation

In order to validate the satisfaction assessment
methods, we undertook a study using two datasets.
The study design and threats to validity are presented
below.

4.1 Study Design

The study was conducted on data from two
industry projects. Each dataset consisted of textual
requirements (high-level elements) and textual design
documents (low-level elements). The first dataset,
NASA CM-1 [38], consists of the entire requirement
specification and the entire design document for a
NASA scientific instrument. There are 235
requirements and 220 design documents. After the
dataset was chunked based on grammatical structure,
there were a total of 2,780 requirement chunks and
10,490 design chunks. The RTM for this dataset
contains 362 links between requirements and design
elements, with a density of 1.54 design elements per
requirement. The RTM is sparse, meaning that not
all requirements in the dataset have corresponding
design elements. Using the RTM, there were
205,696 requirement-design element pairs to be
analyzed. Without the RTM, considering every
possible requirement-design element pair, there
would have been 29,162,200 comparisons.

The second dataset is based on an open source
program called GanttProject used to create Gantt
charts and perform basic project management [39].
There are 17 requirement elements and 78 design
elements. After chunking, there were 312
requirement chunks and 632 design chunks. The
RTM for the GanttProject dataset contains 68 links.
An average of 4.0 design elements link to each
requirement. From these, using the RTM, there were
15,430 requirement-design element pairs to be
analyzed. Without the RTM, considering every
possible requirement-design element pair, there
would have been 275,064 comparisons to be made.

In order to validate the accuracy of our methods,
we built “golden” answer sets for the datasets. Two

analysts (not among the authors) built the answer sets
from the chunked text for each dataset. One analyst
constructed the initial answer sets, while the second
analyst reviewed and offered suggestions as
necessary. As only one analyst built the answer set,
inter-rater reliability statistics could not be applied.
The analysts met and reviewed the suggestions to
produce final answer sets. The final satisfaction
answer set for CM-1 has a total of 959 satisfaction
mappings, with an average density of 0.09 design
element chunk mappings per requirement chunk. For
GanttProject, there are 307 links between
requirement and design elements with a density of
0.983974359 design element chunk mappings per
requirement chunk. It took the analysts a combined
total of 15 hours to create the initial Gantt answer set,
and another four hours for verification.

It took analyst 1 120 hours to create the initial
CM-1 answer set, and it took analyst 2 another 40
hours for verification.

In [13], the authors introduce a taxonomy of
project sizes for the purpose of performing
traceability tasks. According to this taxonomy, the
GanttProject dataset is a small project, while the
CM-1 dataset is a medium-size project. In our
expertise, the CM-1 dataset is rather typical of
software artifacts generated for various NASA
instruments.

Each method from Section 3.2 was applied to each
dataset. The results are discussed in Section 5.

4.2 Threats to Validity

There are external threats to validity that may
impact the generalizability of our results. Our
methods were applied to only two systems. The
second system, GanttProject, was fairly small
(though it was a complete project). Also, the analysts
that built the answer sets were not subject matter
experts on the systems. It is possible that a different
group of analysts may yield different “golden”
answer sets.

We attempted to mitigate reliability threats to
validity. Our process is outlined and repeatable. Our
datasets are available upon request and we plan to
make the RESAT tool available upon request,
pending University approval. We believe the study
is repeatable.

We mitigate construct validity in this study by
using real world requirements and design elements
that were not specifically created for this work. The
datasets chosen were not reorganized or modified, the
preprocessing steps were constant between methods,
and the same methods were applied to both datasets
in an effort to mitigate threats to internal validity.

5. Results and Analysis

Our evaluation was conducted as follows. Both
the naïve method and TF-IDF retrieval method were
applied to the chunked requirements and design
elements of each dataset. The lists of candidate
satisfaction pairs were constructed for threshold
parameters with values 0.01, 0.02,...,0.09, 0.1, 0.2,
...,0.9. Precision, recall and the f2 measure were
then computed for each threshold value.

The complete results of our study are shown in
Tables 2 through 5 at the end of the paper. Each table
documents the recall, precision, and the f2 measure
values for each threshold value considered by the
method. The key results of the study are summarized
in Table 1 above. In it, for each dataset and method,
we report the largest value of the threshold at which
the best value of the f2 measure was achieved, listing
also the precision, recall and f2 values for that
threshold. For example, we can see that the largest
threshold value with the best value of f2 occurred at
threshold 0.2 for TF-IDF for the Gantt dataset with
recall of 0.664, precision of 0.486, and f2 measure of
0.619. Additionally, we include the cases when
significantly higher recall (albeit at lower f2 value)
was achieved.

Gantt dataset. We first examine the performance
of the methods on the Gantt dataset. The recall
values are almost identical for TF-IDF and naïve.
Precision is somewhat higher for TF-IDF at 0.486 as
compared to 0.41. The f2 measure for TF-IDF is
better than for naïve at 0.619 compared to 0.539.
Overall, the TF-IDF method outperforms the naïve
method for the Gantt dataset.

That aside, it is worth noting that both methods
fared reasonably well. The recall values for each
method are acceptable (above 65%) and the precision
values are rather high (above 40%). The f2 measure
of each method exceeds 0.5. Note also that TF-IDF
was able to achieve the higher f2 value at a much
higher threshold value (0.2 versus 0.04 for the naïve
method).

CM-1 dataset. Next, we examine the results for
the CM-1 dataset. The highest f2 value, 0.315, for
the naïve method is at the threshold value of 0.09,
with the recall value of 0.525 and precision of 0.12.
The TF-IDF method has the highest f2 value, 0.528,
at a threshold of 0.2 with recall at 0.742 and
precision of 0.245. In this case, the recall is much
higher for TF-IDF than for the naïve method (0.742
as compared to 0.525), the precision is much higher
at 0.245 as compared to 0.12, and the f2 value is
much higher at 0.528 as compared to 0.315. Thus, on

the CM-1 dataset, TF-IDF clearly outperformed the
naïve method.

It should be noted that the best recall value
achieved by the naïve method for CM-1 did
outperform the recall for TF-IDF, as shown in the
table. At threshold of 0.03, the naïve method had
recall of 0.781 (a little bit better than TF-IDF), but
this high recall came with a very low precision of
0.063 (almost four times worse than for the best TF
IDF case), and yielded a value of just 0.238 for f2.
Note that the f2 value is much lower than the best
value achieved for the naïve method (0.315).

Analysis. The methods did not fare as well on
CM-1 as they did on Gantt. Though recall values of
0.74 and above are achieved by each method, it is
with low precision (0.245 and 0.063). The f2
measure exceeds 0.5 for the TF-IDF method, but not
for the naïve method. On both datasets, TF-IDF had
reached higher values of f2, thus outperforming the
naïve method, despite showing somewhat lower (but
very comparable) recall.

What sets the TF-IDF method apart is that it
achieves the best results at a significantly higher
threshold (0.2 vs. 0.04), which means that the TF
IDF method allows us to be more selective about
which similarity values to treat as a match.

6. Conclusions and Future Work

In conclusion, both methods performed well on
the Gantt dataset with recall values above 65%,
precision values above 40%, and f2 values above 0.5.
The TF-IDF method showed acceptable performance
on the CM-1 dataset, with the naïve method falling a
bit short.

We believe that we have successfully established
that both the naïve and TF-IDF methods can serve as
viable baseline methods for assessing performance of
automated satisfaction assessment techniques. The
naïve method, in particular, is very simple and
delivers decent performance with relatively little
effort expended.

To a large degree, the performance of the naïve
method establishes a measuring stick for us. Any
automated methods that fall short of its performance
shall be deemed unacceptable for dealing with
satisfaction assessment. Methods that exhibit similar
performance shall be considered candidates for
further improvement, but if no further improvement
is achieved, Occam's razor dictates that we abandon
them in favor of the naïve method as well.

We believe there are a number of areas for future
work. As a long term goal, we would like to evaluate
additional datasets as well as establish methods to

Table 1. Summary of the evaluation.
Dataset: Gantt CM-1

threshold recall precision f2 threshold recall precision f2
Naïve 0.04 0.67 0.41 0.539 0.09

0.03
 0.525

0.781
0.12
0.063

0.315
0.238

TF-IDF 0.2 0.664 0.486 0.619 0.2 0.742 0.245 0.528

automatically determine the optimal threshold values
for each method. Optimal threshold values will
likely vary by dataset size (number of requirements,
design elements, and RTM density) and domain. In
addition, future studies include developing measures
of requirement quality. The two datasets we used in
this work are but a drop in the ocean of possible types
of software engineering artifacts that may undergo
satisfaction assessment. Because of this, we are not in
a position to draw any strong general conclusions
about the applicability of specific methods to
different types of documents. The only observation
we feel comfortable making in this respect is that
when requirements are written using proper grammar,
punctuation, spelling etc., tagging and natural
language processing algorithms often perform better.

We hope to develop additional satisfaction
assessment methods. We plan to further examine the
thresholds used. We plan to examine potential new
methods, including an approach that generates chunk
matches based on a set of predefined rules on content
and grammatical structure of the chunks. In addition,
validation needs to be expanded. We plan to apply
our work to additional datasets in other domains. We
also plan to examine the applicability of our methods
to different artifact pairs.

7. Acknowledgments

This work is funded in part by the National
Science Foundation under NSF grant CCF-0811140.
This work was partially sponsored by NASA under
grant NNG05GQ58G. We thank Wenbin Li, Hakim
Sultanov, and Bill Kidwell for building the golden
answer sets. Thanks to Stephanie Ferguson, Marcus
Fisher, Ken McGill, Tim Menzies, and everyone at
the NASA IV&V facility. Thanks also to fellow
graduate students Jody Larsen, Senthil Sundaram,
Liming Zhao, and Sravanthi Vadlamudi.

8. References

[1] National Defense Industrial Association, Systems
Engineering Division Task Group Report, “Top Software
Engineering Issues within Department of Defense and
Defense Industry,” September 2006, Version 5a, 9/26/06.
[2] Letier, E. and van Lamsweerde, A. 2004. Reasoning
about Partial Goal Satisfaction for Requirements and

Design Engineering. SIGSOFT Softw. Eng. Notes 29, 6
(Nov. 2004), 53-62.

[3] Holbrook, E. Ashlee, “Assessing Satisfaction of
Requirements by Design Elements,” in Proceedings of the
2006 IEEE Requirements Engineering (RE) Doctoral
Symposium.

[3] B.W. Boehm, Software Engineering, IEEE Trans. On
Computers, 25(12):1226-1241, 19.

[4] J. Cleland-Huang, et.al. “Goal-Centric Traceability for
Managing Non-Functional Requirements”, Int. Conference
on Software Engineering, Saint Louis, May 2003.

[5] “CM1 DataSet,” Metrics Data Program Website, CM-1
Project, http://mdp.ivv.nasa.gov/mdp_glossary.html#CM-1.

[6] A. Durán, A Ruiz, M. Toro, “An Automated Approach
for Verification of Software Requirements”, Jornadas de
Ingeniería de Requisitos Aplicada, Seville, Spain, 2001.

[7] C. Denger, D.M. Berry, and E. Kamsties, “Higher
Quality Requirements Specifications through Natural
Language Patterns,” IEEE Software-Science, Technology
& Engineering (SwSTE'03), pp. 80-89, Israel, Nov. 2003.

[8] C. Fox, “A Stop List for General Text.” SIGIR Forum
24, 1-2 (Sep. 1989), 19-21.

[9] L. Goldin, and Berry, D.M., ``AbstFinder, A Prototype
Natural Language Text Abstraction Finder for Use in
Requirements Elicitation'' Automated Software Eng., 4(4),
375-412, Oct., 1997.

[10] S. Greenspan, J. Mylopoulos, A. Borgida, “On Formal
Requirements Modeling Languages: RML Revisited”,
Proc. 16th International Conference on Software
Engineering, p.135-147, May 16-21, 1994, Sorrento, Italy.

[11] K. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and
D. Jurafsky. “Semantic Role Labeling by Tagging
Syntactic Chunks.” In Proceedings of CoNLL 2004 Shared
Task.

[12] J.H. Hayes, A. Dekhtyar, J. Osbourne, “Improving
Requirements Tracing via Information Retrieval”, Int.
Conf. on Requirements Engineering, Monterey, California,
Sept. 2003,pp. 138 – 148.

[13] J.H. Hayes, A. Dekhtyar, and S. Sundaram,
“Advancing Requirements Tracing: The Study of

Methods”, IEEE Trans. on Software Engineering, 32(1),
Jan. 2006, pp. 4 -19.
[14] J.H. Hayes, A. Dekhtyar, S. Sundaram, “Advances in
Dynamic Generation of Traceability Links”, Tech Report,
February 2006, (TR 451-06).

[15] ISO 9000 (2000). Quality Management Systems –

Fundamentals and Vocabulary. International

Organization for Standardization.

[16] R. Lecceuche, “Finding Comparatively Important
Concepts between Texts.” Automated Software
Engineering (ASE’00). Washington, DC, 55.

[17] A.Marcus, J.Maletic, “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing”, Software Engineering, Portland, May 2003, pp.
125–135.

[18] “OpenNLP,” Open Natural Language Processing
project. Available for download at:
http://opennlp.sourceforge.net/about.html.

[19] M.F. Porter, 1980, “An Algorithm for Suffix
Stripping,” Program, 14(3) pp 130−137.

[20] A. Porter and L. Votta, “Comparing Detection
Methods For Software Requirements Inspections”
Empirical Software Engineering, 3(4), 1998, 355 – 379.

[21] P. Rayson, R. Garside, and P. Sawyer,” Recovering
Legacy Requirements.” Requirements Engineering:
Foundations of Software Quality, June 14-15 1999,
Heidelberg, Germany, pp. 49-54.

[22] W.N. Robinson, S. Pawlowski, “Managing
Requirements Inconsistency with Development Goal
Monitors,” IEEE Trans. on Software Eng., Nov/Dec 1999.

[23] K. Ryan, “The Role of Natural Language in
Requirements Engineering.” Requirements Engineering
(RE’93), San Diego, pp. 80-82, 1993.

[24] G. Salton, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[25] J. Sayyad Shirabad, and Menzies, T.J. (2005) The
PROMISE Repository of Software Engineering Databases.
School of Information Technology and Engineering,
University of Ottawa, Canada. Available:
http://promise.site.uottawa.ca/SERepository.

[26] F. Shull, I. Rus, and V.R. Basili, "How Perspective-
Based Reading Can Improve Requirements Inspections,"
IEEE Computer, 33(7), pp. 73-79, July 2000.

[27] A. Sutcliffe, “Scenario-Based Requirement Analysis,”
Requirements Engineering Journal 3(1), 1998, 48−65.

[28] J.M. Spivey 28, “Understanding Z,” Cambridge, 88.

[29] Mamadou H. Diallo, Leila Naslavsky, Hadar Ziv,
Thomas A. Alspaugh, and Debra J. Richardson.
“Evaluating Software Architectures Against Requirements-
level Scenarios,” Third International Workshop on the Role
of Software Architecture for Testing and Analysis
(ROSATEA'07), Boston, MA, July 2007.
[30] Scenario Support for Effective Requirements
Thomas A. Alspaugh and Annie I. Antón.
Information and Software Technology 50(3) pp. 198-220.
February 2008.

[31] W. N. Robinson, “Implementing Rule-Based Monitors
within a Framework for Continuous Requirements
Monitoring,” Hawaii International Conference on System
Sciences (HICCS ’05). Big Island, HI, pp. 188, 2005.

[32] Letier, E. and van Lamsweerde, A. 2004. Reasoning
about partial goal satisfaction for requirements and design
engineering. In Proceedings of the 12th ACM SIGSOFT
Twelfth international Symposium on Foundations of
Software Engineering (Newport Beach, CA, USA, October
31 - November 06, 2004). SIGSOFT '04/FSE-12. ACM,
New York, NY, 53-62.

[33] G. Spanoudakis, A. d’Avila Garcez, A. Zisman.
“Revising Rules to Capture Requirements Traceability
Relations: A Machine Learning Approach.” Software
Engineering & Knowledge Engineering (SEKE’03). San
Francisco, CA, pp 570.

[34] Santorini, B. 1990. Part-of-speech tagging guidelines
for the Penn Treebank Project. Technical report MS-CIS
90-47, Department of Computer and Information Science,
University of Pennsylvania.

[35] R. Baeza-Yates, and B. Ribeiro-Neto, Modern
Information Retrieval. Addison-Wesley, 1999.

[36] G. Antoniol, et. al. “Recovering Traceability Links
between Code and Documentation”, IEEE Trans. on
Software Engineering, Volume 28, No. 10, 2002, 970-983.

[37] V.R. Basili,, et. al. “The Empirical Investigation of
Perspective-Based Reading.” Empirical Software
Engineering, 1(2), 1996, 133-164.

[38] Predictor Models in Software Engineering (Promise)
Software Engineering Repository.
http://promise.site.uottawa.ca/SERepository.

[39] GanttProject, http://ganttproject.biz/

[40] Hayes, J. H. and Dekhtyar, A. 2005. Humans in the
traceability loop: can't live with 'em, can't live without 'em.
In Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering
(Long Beach, California, November 08 - 08, 2005). TEFSE
'05. ACM, New York, NY, 20-23.

[41] IEEE Standard Glossary of Software Eng.
Terminology, Std 610.12 Std 610.12-1990(R2002), 1990.

APPENDIX

Table 4 CM-1 dataset naïve method results. Table 2. Gantt dataset naïve method results.
Filter Value Naïve -

Overall
Recall

Naïve -
Overall
Precision

Naïve -
F2-Measure

0.01 0.678 0.294 0.537

0.02 0.678 0.294 0.537

0.03 0.678 0.295 0.538

0.04 0.674 0.299 0.539

0.05 0.645 0.312 0.531

0.06 0.635 0.312 0.526

0.07 0.557 0.325 0.487

0.08 0.554 0.325 0.485

0.09 0.463 0.36 0.438

0.1 0.433 0.363 0.417

0.2 0.078 0.32 0.092

0.3 0 0 0

Filter Value Naïve -
Overall
Recall

Naïve -
Overall
Precision

Naïve -
F2
Measure

0.01 0.783 0.063 0.237

0.02 0.783 0.063 0.237

0.03 0.781 0.063 0.238

0.04 0.759 0.064 0.239

0.05 0.69 0.068 0.245

0.06 0.681 0.07 0.248

0.07 0.635 0.087 0.281

0.08 0.611 0.085 0.273

0.09 0.525 0.121 0.315

0.1 0.449 0.113 0.282

0.2 0.1 0.075 0.094

0.3 0 0 0

Table 5. CM-1 dataset TF-IDF method Table 3. Gantt dataset TF-IDF method
results.results.

Filter Value TF-IDF
- Overall
Recall

 TF-IDF -
Overall
Precision

 TF-IDF -
F2-Measure

0.01 0.664 0.486 0.619

0.02 0.664 0.485 0.619

0.03 0.664 0.485 0.619

0.04 0.664 0.485 0.619

0.05 0.664 0.485 0.619

0.06 0.664 0.485 0.619

0.07 0.664 0.485 0.619

0.08 0.664 0.485 0.619

0.09 0.664 0.486 0.619

0.1 0.664 0.486 0.619

0.2 0.664 0.486 0.619

0.3 0.58 0.492 0.56

0.4 0.554 0.528 0.548

0.5 0.521 0.565 0.529

0.6 0.423 0.647 0.455

0.7 0.391 0.764 0.433

0.8 0.339 0.819 0.384

0.9 0.313 0.835 0.357

Filter
Value

TF-IDF -
Overall Recall

TF-IDF -
Overall
Precision

TF-IDF -
F2
Measure

0.01 0.746 0.235 0.52

0.02 0.746 0.235 0.52

0.03 0.746 0.235 0.52

0.04 0.746 0.235 0.52

0.05 0.746 0.235 0.52

0.06 0.746 0.235 0.52

0.07 0.746 0.235 0.52

0.08 0.746 0.235 0.52

0.09 0.746 0.235 0.52

0.1 0.746 0.235 0.52

0.2 0.742 0.245 0.528

0.3 0.694 0.264 0.524

0.4 0.606 0.287 0.495

0.5 0.531 0.309 0.464

0.6 0.445 0.328 0.416

0.7 0.368 0.36 0.366

0.8 0.307 0.376 0.318

0.9 0.26 0.352 0.274

