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Abstract 

This paper introduces the automation of satisfaction 
assessment: the process of determining the 
satisfaction mapping of natural language textual 
requirements to natural language design elements. 
Satisfaction assessment is useful because it assists in 
discovering unsatisfied requirements early in the 
lifecycle when such issues can be corrected with 
lower cost and impact than later. We define the basic 
terms and concepts for this process and explore the 
feasibility of developing baseline methods for its 
automation. This paper describes the satisfaction 
assessment approach algorithmically and then 
evaluates the effectiveness of two proposed 
information retrieval (IR) methods in two industrial 
studies – one based on a large dataset including a 
complete requirements specification and design 
specification for a NASA science instrument, and one 
based on a smaller dataset for an open source project 
management dataset. We found that both approaches 
have merit, and that the more sophisticated approach 
outperformed the simpler approach in terms of 
overall accuracy of the results. 

1. Introduction 

In 2006, the National Defense Industrial 
Association (NDIA) examined the top software 
engineering issues within the Department of Defense 
and the Defense industry.  The number one issue 
raised was “the impact of system requirements upon 
software is not consistently quantified and managed 
in development or sustainment [1].”  Within this, a 
number of sub-issues was identified, two of which 
are of interest:  1) “strengthen policies and guidance 
for maintaining full traceability across all levels of 
requirements,” and 2) “…ensure requirements are 
validated, balanced and consistent [1].” 

A question of interest for all software systems, but 
of crucial interest for safety-critical and mission

dekhtyar@csc.calpoly.edu 

critical software, is that of whether or not the 
requirements have been adequately addressed or 
satisfied by the subsequent artifacts.  Examples of 
questions that address satisfaction of requirements 
include considering   whether the system 
requirements have been satisfied by the hardware and 
software requirements, or whether the high level 
software design satisfies all the requirements? An 
automated method for answering these questions 
would help us address items 1 and 2 above. 

Projects may have many artifacts that, when 
paired, possess the 'is satisfied by' or 'satisfies' 
relationship.  For example, customer requests, change 
requests, or enhancement requests may be examined 
to see if they are already satisfied by an existing 
requirement or feature description of a software 
product.  There may be higher-level enterprise goals 
or objectives that need to be satisfied by a software 
project. If so, the software requirements may be 
examined to see if they 'satisfy' the enterprise goals. 

In addition to assessing the “status” of 
satisfaction between “delivered” or completed artifact 
pairs, this technique can also be applied to evolving 
artifacts. For example, a requirements specification 
could be examined for satisfaction assessment with a 
number of evolving textual design solutions.  This 
will support the comparison and evaluation of various 
design alternatives, by looking to see what best 
satisfies the requirements.  Others have started to 
look at this issue from a formal perspective by 
focusing on partial goal satisfaction [2]. 

   This paper specifically focuses on assessing 
whether requirements have been satisfied by lower 
level artifacts such as design. We propose a three-
step approach to addressing this problem. First, we 
identify important components for each individual 
requirement/design element. Generally speaking, 
each component should represent an important facet 
of a requirement or a design element. We define 
satisfaction assessment as determination of whether 
each component of each requirement has been 
addressed in the design document. This in turn is 



 

  
 

      
  

 
 

 
 
 

  
 

  
  

 

 
      

 
 
         

 
  

 
  

  

  

  

 
 

 
 

 

   
 
 
 
 

  
 

  
      

 
 
 

 
 
 

 

 

      
 

 
     

 
  

 
 

    
 

   

 
 

 
 

 
      

  
  

  
  

 

 
 

  

  

 
 

     
  

 
 

 

achieved by tracing the requirements document, 
broken into components (which we call "chunks") to 
the design document, also broken into chunks.  The 
third step, not addressed here, is to have the human 
analyst vet the results of step two. 

Two methods are used to determine the mapping 
of requirement to design element chunks.  The first 
method is based on a simple idea of tracking and 
thresholding the percentage of common terms 
between the two chunks.  This method is selected due 
to its simplicity and ease of implementation. The 
second method is vector space information retrieval 
using TF-IDF (term frequency - inverse document 
frequency) term weighting [35]. This traditional IR 
method is now commonly used in requirements 
tracing [12,13]. Vector space retrieval has previously 
been validated in the automated tracing domain, and 
was therefore chosen as an initial method to 
investigate for satisfaction assessment [12,13,36]. 

1.1 Definitions 

We have narrowed our focus to the problem of 
assessing satisfaction of a set of textual requirements 
by a set of textual design elements.  Definitions of 
terms are in order.  The IEEE definition of a 
requirement is:  “1. A condition or capability needed 
by a user to solve a problem or achieve an objective. 
2. A condition or capability that must be met or 
possessed by a system or system component to 
satisfy a contract, standard, specification, or other 
formally imposed document.  3. A documented 
representation of a condition or capability as in (1) or 
(2)” [41]. Requirements include three pieces of 
information:  a) a subject: b) a modal verb, typically 
“shall;” and c) an object phrase describing what is 
required. The subject of a requirement is typically the 
name of the software system or a subsystem 
contained within it.  The modal verb may be “will,” 
“shall,” or another word.  Finally, the requirement 
must contain a phrase describing what the subject of 
the sentence must do or contain. The IEEE definition 
of design is “A software design description (SDD). 
An SSD is a document used to specify system 
architecture and application design in a software 
related project [41].”  Textual design elements are 
descriptions of how a requirement will be 
implemented or paragraphs that describe a 
requirement in more detail.  

Satisfaction assessment (process) is defined as 
determining the satisfaction mapping of portions of 
natural language textual requirements to natural 
language design elements [3]. A satisfaction mapping 
encodes a satisfaction decision that has been made 
about a set of textual requirement elements and a set 

of corresponding textual design elements [3]. 
Satisfaction assessment is the process of determining 
the satisfaction mapping of natural language textual 
requirements to natural language design elements. A 
satisfaction assessment (artifact) is defined as a set of 
satisfaction mappings for a given set of requirements 
and design elements [3].  Formal definitions and 
examples of the artifacts are presented in Section 3. 

1.2 Contribution 

This paper presents our initial work on the 
problem of satisfaction assessment. Our goal was to 
examine the feasibility of its automation and to 
investigate the appropriateness of some common 
techniques as baselines for its evaluation. 
Specifically, we defined a three-step process for 
satisfaction assessment. This paper directly addresses 
the first two steps. We present two methods that 
apply information retrieval techniques to assess the 
satisfaction of requirements by design elements.  We 
discuss a study evaluating the accuracy of the 
methods by examining two industrial datasets.  We 
found that both methods, despite their simplicity, 
produce reasonably accurate satisfaction assessments. 
When comparing the performance of the methods, we 
found that the more sophisticated method (TF-IDF) 
had higher overall accuracy.  

1.3 Paper Organization 

The paper is organized as follows.  Section 2 
presents related work. Section 3 discusses 
satisfaction assessment, explaining methods in detail. 
Section 4 presents the study design and threats to 
validity.  Section 5 presents the results and analysis. 
Section 6 concludes and discusses future work. 

2. Related Work 

Satisfaction assessment may be thought of as a 
way to validate whether requirements have been fully 
addressed by design elements and provides a way to 
measure the quality of a software project.  The 
majority of previous automation work in the 
requirements traceability community focused on 
candidate link generation, not on satisfaction 
assessment. This work, however, has paved the way 
for our study and is briefly described here. 

Previous work on requirements validation has 
focused on formally specifying requirements 
[28,22,10], optimizing natural language processing 
(NLP) approaches to requirements analysis, and 
discovering potential ambiguities [16,9,7]. 



 

 

  
 

 
  

 
 

     
 

  
 
 

  
 

 
 
 

  
 

  
 

 

 

 

 
 
 

 
 

  

 
 

    
 

 
     

 

 

 
 

  
 

 
 
      

 
 

  

 

 
 

  

 
 

  
 

 
 
 
 
 
 

 
     

 
 

 
 
 

   
 

      

  
     

                                                           
  

Durán et al. used XSLT and requirements in XML 
to automatically verify requirement qualities such as 
completeness and lack of ambiguity [6].  Analysts 
have used requirement defect detection techniques 
[20] to discover requirements that cannot be satisfied 
(i.e., inconsistent and omitted) and inconsistencies 
between requirements and design.  Reading methods 
such as scenario-based [27] and perspective-based 
reading [2, 26] have also been used to increase the 
quality of requirement specifications.   

 Automation of requirements tracing has received 
extensive attention in recent years. For a detailed 
survey, we refer the reader to [13]. Tracing examines 
the creation of a requirements traceability matrix 
(RTM) that relates requirements to design to code 
and beyond.  Recent work concentrated on applying 
IR methods to tracing.  Antoniol et al. [36] and 
Marcus and Maletic [17] applied IR methods to the 
problem of tracing design to code. Cleland-Huang [4] 
used IR to trace non-functional requirements.  Hayes 
et al. investigated the process of tracing and built a 
special-purpose requirements tracing tool called 
RETRO (REquirements TRacing On-target) [12, 13]. 
Spanoudakis et. al. created a system to automatically 
generate traceability information based on tracing 
rules [33]. 

Additionally, several researchers have examined 
requirement quality through design and requirement 
analysis. Diallo et. al. used ScenarioML  to create 
mappings between requirement-level scenarios and 
system architecture [29].  Alspaugh and Antón 
examined automation of requirement scenario 
analysis to determine requirement quality, looking at 
four primary traits:  well-definedness, coverage, 
minimality, and coherence [30].  Robinson looked at 
rule-based requirements monitors to dynamically 
analyze requirements as a system is designed [31]. 
Letier and van Lamsweerde created a system to 
analyze partial goal satisfaction to help quantify the 
impact of partially met requirements due to design 
constraints [32]. 

Algorithmic techniques that are useful for both 
assessing requirement satisfaction and tracing include 
keyword extraction methods [14] and the vector 
space model for information retrieval [24].  Vector 
space models represent documents as vectors by 
extracting terms, weighting these by relevance and 
document location, and ranking the document as a 
whole based on a given query. 

3. Satisfaction Assessment 

This section proposes approaches to satisfaction 
assessment as well as measures for assessing the 

validity of the approaches.  Each approach was 
implemented in a tool called REquirements 
SATisfaction (RESAT). The tool is written for 
Windows in Visual C# and is approximately 10,130 
lines of code excluding external libraries. 

3.1 Satisfaction Assessment Defined 

In this paper, satisfaction assessment is defined as 
the process of determining the satisfaction mapping 
of natural language textual requirements to natural 
language design elements.  Given a set of 
requirements decomposed into terms (R = {tr1, tr2, 
…}) or phrases (R = {pr1, pr2, …}) and a set of design 
element terms (D = {td1, td2, …}) or phrases (D = 
{pd1, pd2, …}), a satisfaction mapping is a set of pairs 
of terms (trn, tdm) where trn is a term in a set of 
requirements and tdm is a term in the set of design 
elements where trn is directly correlated to tdm 

1. A 
satisfaction mapping may also occur at the phrase 
level.  In this case, the mapping will consist of a 
series of phrase pairs (prn, pdm) with one phrase, prn, 
being a phrase in a requirement, and pdm being a 
phrase in a corresponding design element where pdm 
directly addresses prn. In this study, we have broken 
down the requirement and design element text into 
phrases based on parts of speech processing.  We 
refer to each of these phrases as requirement chunks 
or design element chunks.  All chunks have unique 
identifiers that we use to build candidate satisfaction 
mappings. 

Satisfaction assessment, as performed in this 
study, consists of a variety of processing techniques. 
Requirements and design elements are taken as input 
in their natural form.  There are no formatting or 
language rules imposed to avoid placing a burden on 
those who specify the requirements and design. No 
models are required, nor does the method attempt to 
examine possible underlying abstract models.  The 
sole requirement for input was that all documents 
used for this study were in English text.  An RTM for 
each dataset was also used as input to limit the search 
space for satisfaction mappings. 

Performing satisfaction assessment is a three step 
process.  The first step is to parse the requirement and 
design elements into chunks.  This step is described 
in Section 3.2.  

Step two is to map the design chunks to the 
requirement chunks, resulting in a candidate 
satisfaction assessment mapping. This step 
determines if each pair of requirement and design 

1 That is to say that these items trace to each other 
and the traceability relationships are documented in the 
RTM. 



 

 

 

   

 
 

 
   

     
 

    
 

  
  

 
     

 
 
 

  
 

  
 
 

 
 

 
 

 
  

 
 

  
  

   
   

 
 
 

 
 

 
 

     
 

 

 
  

  
  

  
 

 
 

 
  

 
 

 
 

 

 

  
 

 

 

 
 

chunks are similar.  We view this as a tracing 
problem, which can be defined as an information 
retrieval (IR) problem:  given a document collection 
and a query, determine those documents from the 
collection that are relevant to the query. Our prior 
work, and that of others, has shown that requirement 
and design similarity can be modeled, or at least 
approximated, by the document relevance notions on 
which different IR algorithms rely 
[4,12,13,14,17,36].  The methods that we applied to 
the tracing step are described in Section 3.3. 

Finally, the results from step 2 are shown to the 
analyst for confirmation/approval.  The analyst work 
is step three.  This step is not in the scope of the 
current paper, but it should be noted that the output of 
the step is referred to as the final satisfaction 
assessment mapping. 

3.2 Processing

 Requirements and design elements were subjected 
to a series of processing steps before a candidate 
satisfaction assessment could be determined.  First, 
each textual requirement and design element was 
preprocessed.  Second, we constructed and applied a 
domain specific thesaurus, which contains a set of 
synonym pairs for domain-specific vocabulary. The 
thesaurus was generated by analyzing a subset of 
roughly 25% of the requirements and design elements 
for each dataset domain.  Thesaurus entries for this 
work are in the form “term synonym1 synonym2… 
synonymN” where term is synonymous with 
synonyms 1 through N.  For example, the terms 
“error” and “problem” could be included as 
synonyms in the thesaurus.  Next, each requirement 
and design element was tokenized into chunks based 
on parts of speech.   
Each chunk is a phrase in a sentence.  Chunking takes 
place by parsing sentences, with each phrase of the 
sentence identified uniquely as a chunk. Incremental 
processing of text is shown in Figure 1 and a sample 
satisfaction mapping is shown in Figure 2. Note that 
the text in Figures 1 and 2 has been formatted to 
show the matches visually (e.g., Figure 2 tells us that 
requirement chunk 19, “the original error code,” 
maps to design chunk 32 in design element 1, “an 
error code.”  To make it easier to see that they are 
related, each is double-underlined. Similar 
formatting changes (bold, italic and underline 
combinations) indicate other potential mappings 
between requirement element chunks and design 
element chunks. Finally, similarity measures are 
calculated between chunks of requirements and the 
design elements they are tied to in the project RTM. 

 The similarity measures for this study are 
determined using either method described next. 

3.2.1. Satisfaction assessment using TF-IDF. TF
IDF is a statistical measurement of the importance of 
a term within a document.  Term frequency (TF) is 
the (possibly normalized) number of times a term 
appears within a document. Inverse document 
frequency (IDF) of a term is the logarithm of the 
ratio of the total number of documents in a collection 
to the number of documents that contain the term. 
The less frequent a term is, the more discriminating 

Chunked 
Requirem 
ent Text: 

RE1 

<1>The DPU-CCM</1> <2>shall 
be able</2> <3>to count</3> 
<4>a consecutively reported 
error </4>.  <5>When<5> <6>the 
count</6> <7>for</7> <8>a 
particular error ID</8>, 
<9>exceeds</9> <10>250</10> 
<11>for</11> <12>a particular 
reporting period</12>, <13>the 
error code</13> <14>will be 
replaced</14> <15>with</15> 
<16>an error code 
sequence</16> <17>which</17> 
<18>shall include</18> <19>the 
original error code</19> 
<20>and</20> <21>the number 
of times</21> <22>the 
error</22> <23>was reported 
</23>. 

Chunked 
Design 
Element 

Text: DE1 

<24>The ccmErrEnq() 
function</24> <25>tracks</25> 

<26>the last error reported</26> 
<27>and<27> <28>its<29> 

<30>frequency of 
occurrence</30>.  

<31>Once</31> <32>an error 
code</32><33>has been 

reported</33> <34>it</34> 
<35>becomes<35> <36> the 
previously reported error 

code</36>… 

Chunked <100>In</100> 
Design <101>order</101> <102>to 
Element insure</102> <103>that</103> 

Text: DE2 <104>error counts</104> 
<105>are</105> <106>not</106> 

<107>lost</107>… 
Figure 1. Sample Requirement and Design 


Element Satisfaction Assessment.
 



 

 

 

 
 

 

 
 

  
 

 

     
  

  

  
   

  
 

   
 

  
 
 

    
 
 

 

 
    

 
 

     
 

  
                                                           
 

 
 

   
 

  
 

  
  

   
 

 
  

 
 

 
 

 
 

 
 

  
 

 
  

 

   
 

  
  

 
 

 
 

 
 

 
 

 
  

  

 
 

  
 

 

Satisfaction Assessment: 
1,2,5,7,14,15,17,20 – No Satisfaction Mapping
 
3 - 43 (bold underline italic) 

4 - 33, 36, 45, 49, 66, 79, 115 (bold italic) 

6 - 40, 64, 104, 123, 132 (bold) 

8 - 33, 36, 45, 49, 66, 79, 115 (bold italic) 

9 - 118, 124  (bold underline) 

10 - 119, 125 (underline italic) 

11 - 126
 
12 - 59, 121, 127 (underline) 

13 - 33, 36, 45, 49, 66, 79, 115 (bold italic) 

16 - 61, 130 (italic) 

19 - 32, 51 (double underline) 

21 - 40, 64, 104, 123, 132  (bold) 

22 - 33, 36, 45, 49, 66, 79, 115 (bold italic) 

23 - 52 (bold double underline)
 
Figure 2. Sample Requirement and Design 
Element Satisfaction Assessment (cont.). 

power it has, and thus the higher the IDF. The weight 
of each keyword in a document is the product of TF 
and IDF [35]. 

Each requirement and design element chunk is 
considered an individual document within the 
document collection.  TF-IDF similarity scores2 are 
calculated between pairs of chunks (cr1, cd2), where 
cr1 is a requirement chunk in requirement  1 and cd2 
is a design element chunk that is in design element 2, 
and where requirement 1 is mapped to design 
element 2 in the RTM for the dataset.  All such pairs 
from the RTM are considered to be potential 
matches.  If the pair (cr1, cd2) has a similarity score 
above a given threshold value (we used a set of 18 
threshold or filter values – 9 values starting at 0.01 
and incrementing by 0.01 to 0.09, and 9 values 
starting at 0.1 and incrementing by 0.1 until 0.9), then 
the two are considered a satisfaction match and the 
pair (cr1, cd2) is included in the candidate 
satisfaction assessment mapping produced by this 
method.  The entire set of satisfaction match pairs 
that have similarity scores greater than the threshold 
value is considered to be a candidate satisfaction 
assessment for a given dataset. We call our final 
output a candidate mapping because we acknowledge 
that an analyst should examine the tool’s output and 
confirm the final mapping [40] 

3.2.2 Naïve satisfaction assessment. The naïve 
satisfaction approach examines textual similarity 
only.  If terms within a requirement chunk and design 
chunk in the dataset contain the same root or the root 

In situations when chunks compared to each other are 
rather short, tf-idf weights become essentially pure idf 
weights, as all term occurrences in the chunks are unique. 

of a synonym, then the terms are considered a match. 
The overall percentage of matching terms in a chunk, 
excluding stop words, is the weighted similarity 
value for a requirement and design element chunk. 
Threshold values from 0.01 to 0.9 (described in 
Section 3.3.1) are used to filter chunks, chunks with 
similarity values below the threshold do not appear in 
the candidate satisfaction assessment mapping. 

3,2,3, RESAT Tool.  The software implementation 
of the satisfaction assessment procedures is called 
RESAT (REquirements SATisfaction). From within 
the RESAT tool, users can load a set of requirements 
and a set of design documents, a domain thesaurus, 
set threshold values as described for the methods 
below, and perform automated satisfaction 
assessment using the method described below.  Batch 
mode processing is also available within the tool to 
process datasets at multiple threshold values.  

3.3 Measures 

Our primary goal is assessment of accuracy of 
the methods in determining the associations (links) 
between the requirement and design element chunks. 
In our evaluation, we used three traditional 
information retrieval measures: precision, recall, and 
f-measure. Given a list of candidate satisfaction 
pairs, the precision of the list is the percentage of the 
retrieved pairs that are correct. Recall of the list is the 
percentage of correct pairs that were retrieved. 

High precision means low incidence of type I 
errors (including incorrect pairs).  Higher precision 
indicates that analysts will have fewer incorrect 
results to remove in order to obtain a true satisfaction 
assessment.  High recall means low incidence of type 
II errors (omitting true pairs). High recall indicates 
that a majority of the true matches were returned, 
meaning an analyst will have to search less for 
satisfaction mappings that have been omitted from a 
candidate satisfaction assessment.  

Given a list of candidate satisfaction pairs, the 
pair (precision, recall) provides a good description of 
the list's accuracy. However, when the accuracy of 
different lists needs to be compared, it is much more 
convenient to combine precision and recall into a 
single measure. This is typically done via f-measure 
[35], the harmonic mean of recall and precision. In 
our study, we use a variant of f-measure called f2, 
computed as follows: 

3 ⋅ precision ⋅ recallf 2 = .(2 ⋅ precision) + recall 
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The f2 measure is a weighted harmonic mean of 
recall and precision which favors recall. We choose 
to favor recall in our evaluation because traditionally 
the cost of repairing type II errors (errors of 
omission) is higher than the cost of repairing type I 
errors (errors of commission). Thus, when comparing 
two lists of candidate satisfaction pairs with the same 
number of total errors, we give preference to the list 
with fewer type II errors, i.e., with higher recall. 

4. Evaluation 

In order to validate the satisfaction assessment 
methods, we undertook a study using two datasets. 
The study design and threats to validity are presented 
below.   

4.1 Study Design 

The study was conducted on data from two 
industry projects.  Each dataset consisted of textual 
requirements (high-level elements) and textual design 
documents (low-level elements).  The first dataset, 
NASA CM-1 [38], consists of the entire requirement 
specification and the entire design document for a 
NASA scientific instrument. There are 235 
requirements and 220 design documents.  After the 
dataset was chunked based on grammatical structure, 
there were a total of 2,780 requirement chunks and 
10,490 design chunks.  The RTM for this dataset 
contains 362 links between requirements and design 
elements, with a density of 1.54 design elements per 
requirement.  The RTM is sparse, meaning that not 
all requirements in the dataset have corresponding 
design elements.  Using the RTM, there were 
205,696 requirement-design element pairs to be 
analyzed.  Without the RTM, considering every 
possible requirement-design element pair, there 
would have been 29,162,200 comparisons.  

The second dataset is based on an open source 
program called GanttProject used to create Gantt 
charts and perform basic project management [39]. 
There are 17 requirement elements and 78 design 
elements. After chunking, there were 312 
requirement chunks and 632 design chunks.  The 
RTM for the GanttProject dataset contains 68 links. 
An average of 4.0 design  elements link to each 
requirement.  From these, using the RTM, there were 
15,430 requirement-design element pairs to be 
analyzed.  Without the RTM, considering every 
possible requirement-design element pair, there 
would have been 275,064 comparisons to be made.   

In order to validate the accuracy of our methods, 
we built “golden” answer sets for the datasets.  Two 

analysts (not among the authors) built the answer sets 
from the chunked text for each dataset. One analyst 
constructed the initial answer sets, while the second 
analyst reviewed and offered suggestions as 
necessary.  As only one analyst built the answer set, 
inter-rater reliability statistics could not be applied. 
The analysts met and reviewed the suggestions to 
produce final answer sets. The final satisfaction 
answer set for CM-1 has a total of 959 satisfaction 
mappings, with an average density of 0.09 design 
element chunk mappings per requirement chunk. For 
GanttProject, there are 307 links between 
requirement and design elements with a density of 
0.983974359 design element chunk mappings per 
requirement chunk.  It took the analysts a combined 
total of 15 hours to create the initial Gantt answer set, 
and another four hours for verification. 

It took analyst 1 120 hours to create the initial 
CM-1 answer set, and it took analyst 2 another 40 
hours for verification.   

In [13], the authors introduce a taxonomy of 
project sizes for the purpose of performing 
traceability tasks. According to this taxonomy, the 
GanttProject dataset is a small project, while the 
CM-1 dataset is a medium-size project. In our 
expertise, the CM-1 dataset is rather typical of 
software artifacts generated for various NASA 
instruments.  

Each method from Section 3.2 was applied to each 
dataset.  The results are discussed in Section 5. 

4.2 Threats to Validity 

There are external threats to validity that may 
impact the generalizability of our results. Our 
methods were applied to only two systems.  The 
second system, GanttProject, was fairly small 
(though it was a complete project).  Also, the analysts 
that built the answer sets were not subject matter 
experts on the systems.  It is possible that a different 
group of analysts may yield different “golden” 
answer sets.  

We attempted to mitigate reliability threats to 
validity.  Our process is outlined and repeatable.  Our 
datasets are available upon request and we plan to 
make the RESAT tool available upon request, 
pending University approval.   We believe the study 
is repeatable. 

We mitigate construct validity in this study by 
using real world requirements and design elements 
that were not specifically created for this work.   The 
datasets chosen were not reorganized or modified, the 
preprocessing steps were constant between methods, 
and the same methods were applied to both datasets 
in an effort to mitigate threats to internal validity.   



 
      

  
 

 
     

   
       

 
 

 
  

  
  

  
  

 
  

   
  

      
 
  
 

  
  

 
       

 
 
 
 

   
 

    

 
     

   
  

 
  

 
      

          
  

 
 
 
 

 
  

 
     

   

   
 

 
 
 

 
     

 

  
 

 
 

 
 

  

  

  
 

  
 

  
 
 

 

       

5. Results and Analysis 

Our evaluation was conducted as follows.  Both 
the naïve method and TF-IDF retrieval method were 
applied to the chunked requirements and design 
elements of each dataset.  The lists of candidate 
satisfaction pairs were constructed for threshold 
parameters with values 0.01, 0.02,...,0.09, 0.1, 0.2, 
...,0.9. Precision, recall and the f2 measure were 
then computed for each threshold value. 

The complete results of our study are shown in 
Tables 2 through 5 at the end of the paper. Each table 
documents the recall, precision, and the f2 measure 
values for each threshold value considered by the 
method.  The key results of the study are summarized 
in Table 1 above.   In it, for each dataset and method, 
we report the largest value of the threshold at which 
the best value of the f2 measure was achieved, listing 
also the precision, recall and f2 values for that 
threshold.  For example, we can see that the largest 
threshold value with the best value of f2 occurred at 
threshold 0.2 for TF-IDF for the Gantt dataset with 
recall of 0.664, precision of 0.486, and f2 measure of 
0.619. Additionally, we include the cases when 
significantly higher recall (albeit at lower f2 value) 
was achieved. 

Gantt dataset. We first examine the performance 
of the methods on the Gantt dataset.  The recall 
values are almost identical for TF-IDF and naïve. 
Precision is somewhat higher for TF-IDF at 0.486 as 
compared to 0.41.  The f2 measure for TF-IDF is 
better than for naïve at 0.619 compared to 0.539. 
Overall, the TF-IDF method outperforms the naïve 
method for the Gantt dataset. 

That aside, it is worth noting that both methods 
fared reasonably well.  The recall values for each 
method are acceptable (above 65%) and the precision 
values are rather high (above 40%). The f2 measure 
of each method exceeds 0.5. Note also that TF-IDF 
was able to achieve the higher f2 value at a much 
higher threshold value (0.2 versus 0.04 for the naïve 
method). 

CM-1 dataset. Next, we examine the results for 
the CM-1 dataset.  The highest f2 value, 0.315, for 
the naïve method is at the threshold value of 0.09, 
with the recall value of 0.525 and precision of 0.12. 
The TF-IDF method has the highest f2 value, 0.528, 
at a threshold of 0.2 with recall at 0.742 and 
precision of 0.245.  In this case, the recall is much 
higher for TF-IDF than for the naïve method (0.742 
as compared to 0.525), the precision is much higher 
at 0.245 as compared to 0.12, and the f2 value is 
much higher at 0.528 as compared to 0.315.  Thus, on 

the CM-1 dataset, TF-IDF clearly outperformed the 
naïve method. 

It should be noted that the best recall value 
achieved by the naïve method for CM-1 did 
outperform the recall for TF-IDF, as shown in the 
table.  At threshold of 0.03, the naïve method had 
recall of 0.781 (a little bit better than TF-IDF), but 
this high recall came with a very low precision of 
0.063 (almost four times worse than for the best TF
IDF case), and yielded a value of just 0.238 for f2. 
Note that the f2 value is much lower than the best 
value achieved for the naïve method (0.315).  

Analysis. The methods did not fare as well on 
CM-1 as they did on Gantt.  Though recall values of 
0.74 and above are achieved by each method, it is 
with low precision (0.245 and 0.063).  The f2 
measure exceeds 0.5 for the TF-IDF method, but not 
for the naïve method.   On both datasets, TF-IDF had 
reached higher values of f2, thus outperforming the 
naïve method, despite showing somewhat lower (but 
very comparable) recall. 

What sets the TF-IDF method apart is that it 
achieves the best results at a significantly higher 
threshold (0.2 vs. 0.04), which means that the TF
IDF method allows us to be more selective about 
which similarity values to treat as a match. 

6. Conclusions and Future Work 

In conclusion, both methods performed well on 
the Gantt dataset with recall values above 65%, 
precision values above 40%, and f2 values above 0.5. 
The TF-IDF method showed acceptable performance 
on the CM-1 dataset, with the naïve method falling a 
bit short. 

We believe that we have successfully established 
that both the naïve and TF-IDF methods can serve as 
viable baseline methods for assessing performance of 
automated satisfaction assessment techniques. The 
naïve method, in particular, is very simple and 
delivers decent performance with relatively little 
effort expended. 

To a large degree, the performance of the naïve 
method establishes a measuring stick for us. Any 
automated methods that fall short of its performance 
shall be deemed unacceptable for dealing with 
satisfaction assessment. Methods that exhibit similar 
performance shall be considered candidates for 
further improvement, but if no further improvement 
is achieved, Occam's razor dictates that we abandon 
them in favor of the naïve method as well. 

We believe there are a number of areas for future 
work. As a long term goal, we would like to evaluate 
additional datasets as well as establish methods to 



 

 

   
       

        
      

 
 

 

 
  

 
 

 
 

  

 
 

  
 

 

  
 

 
 

  
 

 

 

 

  

  

  

 
 

 

 
 

 
 

 

 

  
  

 
 

 

 

 

 

 
 

 

 
 

 

  
 

  
 
 

 
 

 

 

Table 1. Summary of the evaluation. 
Dataset: Gantt CM-1 

threshold recall precision f2 threshold recall precision f2 
Naïve 0.04 0.67 0.41 0.539 0.09

0.03
 0.525 

0.781 
0.12 
0.063 

0.315 
0.238 

TF-IDF 0.2 0.664 0.486 0.619 0.2 0.742 0.245 0.528 

automatically determine the optimal threshold values 
for each method.  Optimal threshold values will 
likely vary by dataset size (number of requirements, 
design elements, and RTM density) and domain.  In 
addition, future studies include developing measures 
of requirement quality. The two datasets we used in 
this work are but a drop in the ocean of possible types 
of software engineering artifacts that may undergo 
satisfaction assessment. Because of this, we are not in 
a position to draw any strong general conclusions 
about the applicability of specific methods to 
different types of documents. The only observation 
we feel comfortable making in this respect is that 
when requirements are written using proper grammar, 
punctuation, spelling etc., tagging and natural 
language processing algorithms often perform better.   

We hope to develop additional satisfaction 
assessment methods.  We plan to further examine the 
thresholds used. We plan to examine potential new 
methods, including an approach that generates chunk 
matches based on a set of predefined rules on content 
and grammatical structure of the chunks. In addition, 
validation needs to be expanded.  We plan to apply 
our work to additional datasets in other domains.  We 
also plan to examine the applicability of our methods 
to different artifact pairs. 
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APPENDIX 

Table 4 CM-1 dataset naïve method results. Table 2. Gantt dataset naïve method results. 
Filter Value Naïve - 

Overall 
Recall 

Naïve - 
Overall 
Precision 

Naïve - 
F2-Measure 

0.01 0.678 0.294 0.537 

0.02 0.678 0.294 0.537 

0.03 0.678 0.295 0.538 

0.04 0.674 0.299 0.539 

0.05 0.645 0.312 0.531 

0.06 0.635 0.312 0.526 

0.07 0.557 0.325 0.487 

0.08 0.554 0.325 0.485 

0.09 0.463 0.36 0.438 

0.1 0.433 0.363 0.417 

0.2 0.078 0.32 0.092 

0.3 0 0 0 

Filter Value Naïve - 
Overall 
Recall 

Naïve - 
Overall 
Precision 

Naïve - 
F2
Measure 

0.01 0.783 0.063 0.237 

0.02 0.783 0.063 0.237 

0.03 0.781 0.063 0.238 

0.04 0.759 0.064 0.239 

0.05 0.69 0.068 0.245 

0.06 0.681 0.07 0.248 

0.07 0.635 0.087 0.281 

0.08 0.611 0.085 0.273 

0.09 0.525 0.121 0.315 

0.1 0.449 0.113 0.282 

0.2 0.1 0.075 0.094 

0.3 0 0 0 

Table 5. CM-1 dataset TF-IDF method Table 3. Gantt dataset TF-IDF method 
results.results. 

Filter Value  TF-IDF 
- Overall 
Recall

  TF-IDF - 
Overall 
Precision

  TF-IDF - 
F2-Measure 

0.01 0.664 0.486 0.619 

0.02 0.664 0.485 0.619 

0.03 0.664 0.485 0.619 

0.04 0.664 0.485 0.619 

0.05 0.664 0.485 0.619 

0.06 0.664 0.485 0.619 

0.07 0.664 0.485 0.619 

0.08 0.664 0.485 0.619 

0.09 0.664 0.486 0.619 

0.1 0.664 0.486 0.619 

0.2 0.664 0.486 0.619 

0.3 0.58 0.492 0.56 

0.4 0.554 0.528 0.548 

0.5 0.521 0.565 0.529 

0.6 0.423 0.647 0.455 

0.7 0.391 0.764 0.433 

0.8 0.339 0.819 0.384 

0.9 0.313 0.835 0.357 

Filter 
Value 

TF-IDF - 
Overall Recall 

TF-IDF - 
Overall 
Precision 

TF-IDF - 
F2
Measure 

0.01 0.746 0.235 0.52 

0.02 0.746 0.235 0.52 

0.03 0.746 0.235 0.52 

0.04 0.746 0.235 0.52 

0.05 0.746 0.235 0.52 

0.06 0.746 0.235 0.52 

0.07 0.746 0.235 0.52 

0.08 0.746 0.235 0.52 

0.09 0.746 0.235 0.52 

0.1 0.746 0.235 0.52 

0.2 0.742 0.245 0.528 

0.3 0.694 0.264 0.524 

0.4 0.606 0.287 0.495 

0.5 0.531 0.309 0.464 

0.6 0.445 0.328 0.416 

0.7 0.368 0.36 0.366 

0.8 0.307 0.376 0.318 

0.9 0.26 0.352 0.274 


