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from different timescales, spatial scales or even model 
components.
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1 Introduction

The Earth’s climate is a highly nonlinear system in which 
variability on different temporal and spatial scales inter-
act (e.g., Palmer 1999). These interactions from spatial 
scales of tens of meters to thousands of kilometers and 
temporal scales of hours to years give rise to the very rich 
atmospheric and oceanic dynamics (Sasaki et al. 2014) 
with upscale and downscale turbulent transfer of energy 
and momentum. Previous studies have shown evidence 
that the large-scale, slow variability in sea surface tem-
perature (SST) anomalies can be explained as the ocean’s 
response to high-frequency stochastic atmospheric forcing 
(Frankignoul and Hasselmann 1977; Frankignoul 1985). 
In addition, the low frequency (multi-decadal) variability 
in surface temperature or in the Atlantic Meridional Over-
turning circulation can be modulated by the higher fre-
quency variability in the ocean such as mesoscale and fron-
tal dynamics (Latif et al. 2004; Thomas and Zhai 2013). 
Hence, studying the interactions amongst scales of variabil-
ity can help improve our understanding of the role of such 
interactions in the predictability on different timescales.

The SST in the Atlantic sector has significant vari-
ability on seasonal to multi-decadal timescales. Atlantic 
SST anomalies are believed to have a large impact on the 
weather and climate over Europe, Eastern United States 
and Africa (e.g., Sutton and Hodson 2005; Meehl et al. 
2009; Stockdale et al. 2011; Jung et al. 2011; O’Reilly 
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et al. 2016). Therefore, accurate predictions of SST anom-
alies in the Atlantic sector can translate into substantial 
improvement in atmospheric weather prediction over many 
continental regions, which has many beneficial implica-
tions for the economies and societies (Mathieu et al. 2004; 
Stockdale et al. 2006; Robertson et al. 2015). However, 
the mechanisms that govern Atlantic SST predictability 
on seasonal to decadal timescales are not well understood 
(Stocker et al. 2013).

Operational forecasting centers around the globe spend 
a considerable amount of effort to improve predictions 
on sub-seasonal to decadal timescales. Yet, most coupled 
modeling systems have poor forecast skill (Stockdale et al. 
2011; Meehl et al. 2013) in predicting events on these 
timescales such as tropical cyclones (Hodges and Emerton 
2015), the MJO (Klingaman et al. 2015) and atmospheric 
blocking (Matsueda 2009) events. Many of these events are 
significantly influenced by the SST, which can help keep 
memory longer than a couple of weeks in the system. Skill-
ful forecasts on seasonal timescales have been made in 
the Tropics (e.g., Barnston et al. 2012). However, the skill 
and use of seasonal forecasts in the extratropics is more 
questionable for events such as heat waves, blocking and 
extreme storms. Yet, the demand for such forecasts over the 
past few decades for various uses from the energy sector 
to water resource management is increasing and providing 
skillful forecasts for these events would be very useful for 
many applications (Robertson et al. 2015).

Much of the variability in the extratropics can be directly 
attributed to the internal variability and nonlinearity of the 
system, unlike in the Tropics where the internal chaotic var-
iability of the large-scale flow is relatively weak. Hence, a 
theoretical assessment of the potential predictability on sea-
sonal timescales in the extra tropics is harder than for the 
tropical large-scale flow (Palmer and Anderson 1994). Pre-
vious studies of predictability in the extra-tropics suggest 
that the summer season should have enhanced predictability 
compared to winter months due to reduced internal variabil-
ity in summer (Branković et al. 1994; Palmer et al. 2004). 
Yet, much of the extratropical predictability originates from 
the tropically forced Rossby wave teleconnections. These 
teleconnections are strongest in the winter season due to the 
enhanced meridional potential vorticity gradients and hence 
imply that winter seasons may have enhanced predictabil-
ity associated with the tropical predictability (Palmer and 
Anderson 1994). Recent studies show that multi-model 
ensemble forecast systems have varied levels of skill on sea-
sonal timescales for different decades in the North Atlantic 
(Shi et al. 2015; Kumar 2009) with no evidence of ensem-
ble overdispersion. On the other hand, results from Eade 
et al. (2014) claim that a single model ensemble forecast-
ing system is over-dispersive and the real world is more 
predictable than predictability estimates from perfect model 

experiments in this region. The potential predictability of 
Atlantic SST and ocean circulation on interannual to dec-
adal timescales studied extensively using modeling experi-
ments (e.g., Meehl et al. 2009; Jung et al. 2011) does not 
necessarily translate into equivalent forecast skill on these 
timescales. They show that the many sources of uncertaini-
ties in the forecast system, such as hindcast length, sampling 
size and model inaccuracies can influence the assessment of 
the true potential predictability in the system (Palmer and 
Hagedorn 2006 and references therein). Hence, being able 
to find the true sources of predictability in the system and 
improving the modeling of these components in forecast 
systems will lead to improvement in the forecast skill.

Current Earth system models (ESMs) being developed 
for seamless predictions in forecasting centers around the 
world are highly complex and imperfect. These models are 
being tested extensively for their forecast skill and are con-
tinuously being improved in their formulation. Along with 
these comprehensive ESMs, we also have extensive long-
term observations which can be used further for improving 
our understanding of predictability and forecast skill on 
different time scales (Rodwell et al. 2013). Our main goal 
in this study is to use one of the longest observed records 
of SST in the Atlantic (Rayner et al. 2003) and study its 
statistical properties using an idealized stochastic-dynamic 
model. We further investigate issues related to predictabil-
ity and forecast skill over the region and compare the sto-
chastic-dynamic model to the state-of-the-art seasonal and 
decadal forecasting systems. We use similar configurations 
of the linear inverse model for evaluating both the seasonal 
and decadal forecasts to emulate the concept of a “seamless 
forecasting” linear inverse modeling system.

We use a linear inverse model (LIM, Penland and Mago-
rian 1993) in a forecast framework. LIM is a reduced sys-
tem of equations of a complete stochastic-dynamic model 
for the climate (Majda et al. 1999, 2008). LIM has been 
used for forecast skill evaluation of global, tropical and 
extratropical weather and climate (Pegion and Sardesh-
mukh 2011; Vimont 2012; Zanna 2012; Newman 2013). 
These studies have shown that LIM has a comparable fore-
cast skill from medium-range to decadal timescales to that 
of global circulation models, despite their reduced order.

LIM has been shown to make skillful predictions of dec-
adal variability in SST using annually averaged fields in the 
North Atlantic sector (Hawkins and Sutton 2009; Zanna 
2012). We use monthly mean SST data to construct a suite 
of LIMs (using temporal filters) to investigate their fore-
cast skill on seasonal and decadal timescales. We study the 
modal interactions on different spatio-temporal scales and 
how they contribute to the predictability of Atlantic SST 
anomalies using this framework. We conclude by compar-
ing the forecast skill of these models to some of the cli-
mate models currently employed: decadal prediction using 
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DePreSys and the ECMWF Seasonal Forecast System 4 
(ECMWF S4).

This paper is organized as follows. In Sect. 2 we explain 
how SST anomalies were constructed from the data avail-
able and how these can be used to train our LIM. Here we 
also address how the SST anomaly is filtered for the con-
struction of temporally filtered LIM. These models are 
tested and a comparison of their forecast skill is made with 
current climate models in Sect. 3. A discussion of the results 
as well as an evaluation of the model is contained in Sect. 4.

2  Methods and model description

2.1  Data

We use the Met Office Hadley Centre’s SST interpolated 
dataset (HadISST1) on a 1◦ by 1◦ latitude–longitude grid 
from 1870 to 2015 (Rayner et al. 2003). We use an inter-
polated monthly SST data set to have continuous records 
throughout the time period of interest for making predic-
tions on various timescales. Data collected before 1900 
was discarded, due to poor data coverage and less accu-
rate measurement in the nineteenth century (Rayner et al. 
2003).

The domain considered is the North Atlantic basin 
between latitudes 22◦S and 66◦N and longitudes of 90◦W 
and 25◦W. Monthly SST anomalies (SSTa) in this region 
were constructed by first removing the monthly clima-
tology at each grid-point. The data is then detrended and 
the time mean anomaly at each grid cell is set to zero. We 
define this to be our monthly SSTa, which will further be 
used for comparison with operational model forecasts.

We normalize the anomalies at each grid cell by their 
standard deviations to compare models of biased variability 
with the forecast fields made from observations. We then 
further normalize the temperature anomaly at each location 
by the surface area of the grid cell to weight equally tropi-
cal and extratropical one degree grid cells. The forecast 
fields are de-normalized prior to analysis and comparison 
with other model forecasts as to make the SSTa consistent 
with the definition above.

2.2  Linear inverse modelling

The SSTa field is decomposed into empirical orthogonal 
functions (EOFs) and associated principal components 
(PCs) that describe their spatial patterns and time evolution, 
respectively using singular value decomposition (SVD). 
The first three EOFs are shown in Fig. 1 and discussed fur-
ther in the following section. The total SSTa field, T(x, y, t), 
as a function of space and time can be decomposed as 
follows:

Only those EOFs/PCs contributing a significant fraction 
of the variance, �i, to the SSTa are retained, generating a 
reduced space representation of the data. In linear inverse 
modelling (LIM) we assume that the time evolution of the 
PC state vector, P, can be written as a linear dynamical sys-
tem forced with white stochastic forcing N such that

(1)T(x, y, t) =
∑

i

�i EOFi(x, y)PCi(t).

(2)
dP

dt
= AP +N.
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Fig. 1  First three EOFs for the monthly SST anomalies over the North Atlantic are shown. The contour intervals are equal for each of the plots. 
The fraction of variance associated with each mode is indicated in the parentheses
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The matrix A, a time-independent and stable dynamics 
matrix (with all negative eigenvalues), describes the time 
evolution as estimated from linear regression (Penland and 
Sardeshmukh 1995) as

We use a lead time of τ0 = 1 month, ensuring that the 
propagator (see later) is real, allowing month-to-month 
predictions to be made. The time-lagged and zero-lag 
covariance matrices are given by C(τ0) = �P(t + τ0)P

T(t)� 
and C(0) = �P(t)PT(t)� respectively, where 〈...〉 denotes 
the average over t. We use 30 EOFs/PCs to determine A, 
explaining 92% of the total variance (further properties 
of the EOFs and PCs are discussed in the Supplementary 
Material).

Evaluating the logarithm of a matrix can result in com-
putational errors, particularly if some of the matrix ele-
ments are small. We therefore work exclusively with the 
exponential of A, the propagator B, which is given as:

We can then use the propagator to make forecasts of P, 
given by ˆP(t + τ) = B(τ )P(t). Projection of these principal 
components onto the EOFs then gives anomaly predictions 
for the region.

We will later refer to a “perfect reconstruction” of the 
SSTa field when assessing the skill of forecasts made using 
the LIM. We reconstruct the data set using (1), including 
the same number of EOFs as are used in training the model. 
These reconstructions coincide with the forecast SSTa 
in the case where the model captures the dynamics of the 
principal components exactly.

2.3  Filtered linear inverse model

In this study we use a third order Butterworth filter to fil-
ter the SSTa time series into three different timescales: 
decadal with periods greater than 10 years, interannual 
with periods between 1 and 10 years and intraannual with 
periods of less than 1 year. We therefore end up with three 
data sets, each containing only variability within a certain 
frequency band. EOFs and PCs are constructed separately 
from each of these subsets and the EOFs corresponding 
to each of time scales are shown in Fig. 2. The fraction 
of variance contained within each timescale is estimated 
from the SSTa power spectrum (Fig. 3) and the fraction 
of this belonging to each mode (within a given timescale) 
is deduced from the singular value decomposition, as 
before.

(3)A =

ln[C(τ0)C(0)
−1

]

τ0
.

(4)B(τ ) = exp(Aτ) =

[

C(τ0)

C(0)

]
τ
τ0

.

The most significant PCs from each timescale form the PC 
state vector P(t) = (d1, . . . , dNd

, e1, . . . , eNe , a1, . . . , aNa)
T, 

where d, e and a label the modes with decadal, interannual 
and intraannual variability, respectively. The time lagged 
and zero lag covariance matrices corresponding to this state 
vector are used to determine the propagator, as described in 
the previous section.

This propagator is used to predict ˆP(t + τ) from the 
combined PC state vector. We then isolate the compo-
nents of ˆP(t + τ) corresponding to the decadal variability 
and project these onto the decadal EOFs to yield predic-
tions for the decadal component of future SSTa. Though we 
only consider the decadal parts of the resulting state vector, 
the propagator will, in general, include coupling between 
modes at different timescales and hence the values of dec-
adal PCs could depend on those of interannual and intraan-
nual PCs at earlier times. This model therefore allows us to 
study the influence of higher frequency variability on dec-
adal forecasts.

2.4  Forecasts made using GCMs

The forecast fields obtained using the LIM are compared 
with those from two coupled GCMs for two different 
timescales. The shorter time scale predictions made using 
the unfiltered LIM are compared with forecasts made 
using ECMWF seasonal forecast system 4. Details for the 
ECMWF System 4 can be found in Molteni et al. (2011) 
and http://www.ecmwf.int/products/forecasts/seasonal/
documentation/system4. The decadal component of SSTa 
predicted by the filtered LIM is compared with results from 
DePreSys. DePreSys is the UK Met Office decadal climate 
prediction system (Smith et al. 2007).

For the ECMWF model we have sets of 7-month long 
forecasts of SST (with monthly data), initialized in Novem-
ber or May of the years 1991–2009. There are 41 ensemble 
members for each initialization date; here we work solely 
with the ensemble mean, which is usually the best esti-
mate of the ensemble forecast. We do not use the proba-
bilistic information of the ensemble, as the LIM forecasts 
are deterministic, with no uncertainty information in the 
forecasts. The data has a 1.25◦ by 1.25◦ resolution so linear 
interpolation was used to regrid the data to allow compari-
son with HadISST1. Anomalies were calculated for both 
observations and model fields by subtracting the respective 
monthly climatologies.

From DePreSys we have 10-year long forecasts of SST 
initialized yearly in November from 1980 to 2004. The 
model forecast fields, originally at 1.25◦ by 1.25◦ were 
interpolated linearly to the same grid as HadISST for com-
parison. We discuss the results of forecast experiments and 
their implications in the following sections.

http://www.ecmwf.int/products/forecasts/seasonal/documentation/system4
http://www.ecmwf.int/products/forecasts/seasonal/documentation/system4
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3  Results

3.1  Principal components and power spectra

The three most significant EOFs for the North Atlantic 
basin from 1900 to the present are shown in Fig. 1, which 
correspondingly explain 29.4, 10.6 and 9.8% of the total 
variance. These three primary modes of variability are sim-
ilar in spatial pattern and fraction of variance explained to 

the modes identified in other previous studies (Deser and 
Blackmon 1993; Marshall et al. 2001). The SSTa power 
spectrum (Fig. 3) was constructed using the time series 
from 1900 onwards for both the raw data and reconstruc-
tions of SSTa in a truncated EOF space. The reconstruction 
used to train and verify the unfiltered LIM includes only 
the 30 most significant EOFs, while the filtered LIM con-
tains the 20 most significant EOFs corresponding to each of 
the three timescales.

Fig. 2  The leading EOFs for each of the three time scales (decadal, interannual and intraannual). The fraction of variance respresented by each 
EOF, within its particular timescale, is given in parenthesis



1838 B. Huddart et al.

1 3

The power spectra shows the expected behaviour for 
SST: the slope is pink at lower frequencies with a transi-
tion to red noise spectra at higher frequencies as the power 
increases with period. The EOF decomposition does not 
split the variability into distinct frequencies, the three lead-
ing PCs have power at all frequencies, though all three 
have a large proportion of their power in the low frequen-
cies (not shown). The first EOF has the largest power at low 
frequencies. This corresponds to a monopole oscillation of 
the SSTa which varies on decadal timescales. The tripolar 
oscillation seen in the second EOF is characteristic of the 
North Atlantic Oscillation imprint on the SSTs (NAO, Hur-
rell 1995) with power on interannual timescales. The gap in 
power between the raw data and the reconstructions widens 
at higher frequencies which means the reconstruction and 
therefore the LIM will not capture the variability as well at 
for sub-seasonal variability. Integration of the power spec-
tral density gave the contribution to the total power from 
decadal, interannual and intraannual variability as 30.82, 
41.44 and 27.74% respectively.

3.2  Seasonal forecasts

In order to assess the forecast skill of the model, it is use-
ful to compare the forecasts made with those obtained 
from two commonly used reference values: climatology 
and persistence. A climatological forecast implies that the 
sea surface temperature evolves according to their monthly 
mean climatology with the anomalies assumed to be zero, 
ˆP(t + τ) = 0. These forecasts tend to perform better (rela-
tive to other models) at longer lead times, after which the 

initial conditions are not as important. Persistence assumes 
that the SSTa keep their initial values, ˆP(t + τ) = P(t). It 
is generally more accurate than climatology, especially for 
shorter lead times or for more slowly varying fields, as in 
these cases the temperatures will not have deviated too far 
from their initial values.

In order to compare the LIM forecast skill to climato-
logical forecasts we define a relative RMS (Newman et al. 
2009) by

where the root mean square error (RMS) for the predicted 
field is RMSpred and the RMS for the climatology over the 
same period is RMSclim. A relative RMS of less (more) 
than one means the model is performing better (worse) than 
merely predicting climatology. The model is initialized at 
four different months (January, April, July and October) in 
each of the years from 1980 to 1989, with the LIM being 
trained using the data from the 80 years previous to each 
initialization date. EOFs and PCs are calculated for the 
2-year forecast period following each initialization date. 
The LIM is initialized with the zero-lead time PCs and the 
model generates the PC time series for the remainder of the 
forecast period. Projecting the forecast PCs onto the cor-
responding EOFs gives the forecast SSTa, which are then 
compared to the reconstruction obtained using the true PC 
time series.

The ensemble average relative RMS (averaged over the 
basin) obtained from these 10 forecasts for each month is 
shown in Fig. 4. Forecasts show skill for lead times of up 

(5)RMSrelative =
RMSpred

RMSclim
,

10−2 10−1
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Fig. 3  The power spectrum for the raw SST fields (black line) and 
the reconstructions in a reduced EOF space used for training both the 
filtered (blue) and unfiltered LIM (red)
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to 5–6 months, after which the model forecast has similar 
skill to using climatological predictions. Predictions initial-
ized in January or October appear to be the least skillful 
with errors exceeding climatology between 2 and 3 months. 
April forecasts have better skill and outperform climatol-
ogy until about 5 months, which agrees with other GCM 
studies showing improved skill in summer months (Palmer 
et al. 2004). The forecasts later than 6 months are compara-
ble to climatology. The model is also shown to outperform 
persistence at all lead times. The inset in Fig. 4 shows the 
raw RMSpred for each of the predictions. For the unfiltered 
LIM the error at short lead time is largest for October fore-
casts. January and October forecasts have a slightly faster 
error growth (indicated by a steeper gradient) and have 
similar RMSpred until 2 months after which their errors 
diverge. April forecasts also perform the best according to 
this metric, with a much flatter error growth rate.

Another metric for quantifying forecast skill is anomaly 
correlation. Here we construct time series from the model 

output such that each time series consists of anomalies 
calculated at a given lead time. These time series are then 
compared with ones composed of anomalies calculated 
from the perfect reconstruction described in Sect. 2.2 (i.e., 
what one would obtain if the PCs evolved exactly accord-
ing to LIM). The reconstructions are based on the EOF/PC 
decomposition of the next 12 months of SSTa following the 
initialization date. The model is initialized using the initial 
values of these PCs and the forecast PCs projected on the 
EOFs based on this period to allow fair comparison with 
the perfect reconstruction. Carrying out this test at each 
grid cell allows us to quantify the skill of the forecast at a 
given lead time at different parts of the region of interest, 
thereby allowing us to see the areas in which SSTa evolu-
tion is well approximated by linear dynamics.

From the first column of Fig. 5 we see that the corre-
lation deteriorates most rapidly in mid-latitudes and the 
sub-polar gyre, with significant loss of correlation between 
latitudes 20◦N and 40◦N between 4 and 6 months. The 

Fig. 5  Maps of temporal correlations for the SSTa time series fore-
casted at a given lead time. a, e, i Forecasts were made using LIM 
trained on data for the whole domain. b, f, j Forecasts were made 
using LIM trained only on the SSTa in the tropical region. c, g, 

k Forecasts were made using LIM trained only on the SSTa in the 
extratropical region. d, h, l Forecasts were made from the ECMWF 
S4 seasonal forecasting system
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forecast skill is generally better in the tropics, though there 
is a patch of high correlation at the highest latitudes for a 
period of 4–6 months and longer. We see a band of high 
correlation between the equator and 20◦N, lasting for up to 
12 months (not shown). Moderate correlation is retained 
off the east coast of Brazil for up to 4 months; this area 
has a large contribution from EOF #3 which could explain 
the success of linear dynamics in the forecasts. Increased 
predictability in the Tropics is expected due to the smaller 
variability in SST on seasonal timescales and a lot of the 
variability in the Tropical dynamics can be expected to 
be related to linear waves propagating zonally across the 
basin, although strong air–sea interaction and coupled pro-
cesses can disrupt these linear dynamics during various 
periods.

In addition to determining the areas in which skill is 
highest we also investigated possible links between the 
SSTa behaviour in the mid and high-latitude Atlantic with 
those around the tropical region. This was done by divid-
ing the domain into two regions: the tropical region here 
defined as 20◦S to 30◦N and the extratropical region North 
of 30◦N. The LIM was trained separately on each region 
by masking out the data from the rest of the domain; the 
30 leading EOFs calculated from the remaining data are 
retained in each case. We then evaluated the skill at pre-
dicting SST in each region separately (see the second two 
columns in Fig. 5, panels b, c, f, g, j, k). The correlation 
coefficients in different regions are qualitatively similar 
for forecasts made using each region separately and those 
made using the whole domain (first column in Fig. 5); the 
regions with greater skill are the same in each case. How-
ever, small differences in forecast skill do arise when the 
regions are subset for forecasts. The forecast skill in the 
sub-tropical gyre tends to be better for forecasts with data 
from the North Atlantic only (Fig. 5k); when the tropical 
SST is included in the model formulation, it is likely that 
the large variability in the tropics could reduce the strength 
of North Atlantic variability captured in the EOFs over the 
entire domain (Fig. 5i). On the other hand, tropical fore-
casts that exclude the North Atlantic variability tend to be 
worse in some regions (Fig. 5j), which suggests that there 
may be some form of coupling between extratropical and 
tropical variability which is a source of predictability for 
the tropical SST anomalies. The coupling could be a mani-
festation of the interaction between the subpolar and sub-
tropical gyres via Ekman transport or an atmospheric tel-
econnection pathway between high and low latitudes. This 
would need targeted GCM experiments to explore mecha-
nisms that lead to this coupling for enhanced predictability.

As an attempt to contrast the skill achieved by this sim-
ple statistical model with an advanced forecast model, we 
compare the results of the LIM with the ECMWF S4 sea-
sonal forecasts (Molteni et al. 2011). For each forecast, 

the observations from HadISST corresponding to the same 
time period as the ECMWF S4 forecasts are removed and 
a LIM is trained on the remaining record. The LIM is then 
used to predict the SSTa over this forecast period. Repeat-
ing this over all forecasts results in a data set with the same 
format as the ECMWF data. We then calculate the RMS 
error between the two (LIM, ECMWF S4) model predic-
tions and raw observations. The LIM is now compared to 
the raw SSTa rather than reconstructions in a reduced EOF 
space as before in order to allow a fairer comparison in skill 
with ECMWF S4. Note that observations are linearly inter-
polated in time for comparison with the ECMWF S4 results 
as the ECMWF model gives values centered on the start of 
each month whereas the monthly means in HadISST are 
centered on the middle of each month. The result of aver-
aging over all grid-cells, ensembles and years resulted in 
Fig. 6. This shows us how the RMSE grows with lead time.

The RMSE in predictions using LIM are compara-
ble, though slightly worse than those in forecasts made 
using ECMWF S4, for forecasts initialized in both May 
and November. We did not have access to the value of the 
SSTa at the time of initialization for the ECMWF forecasts. 
Though it is expected that there would be some initial error, 
as ECMWF S4 forecasts are initialized from a coupled 
reanalysis state different from HadISST. For the LIM fore-
casts, the non-zero error at zero lead time is due to errors 
in initial conditions resulting from truncation of the num-
ber of EOFs/PCs. The error growth rate in ECMWF S4 is 
slightly slower than for the LIM forecasts. For both models, 
May forecasts exhibit a faster initial error growth, with the 
RMSE levelling off after around two months; November 
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forecasts show a steadier error growth. In the May initial-
izations we see a dip in the error in both models at lead 
times of about 4 months (corresponding to September). 
However, it was found that this is a property of the RMS of 
SSTa itself rather than a return of skill due to some kind of 
re-emergence phenomena.

Figure 5d, h, l shows the temporal correlation at each 
grid point between the ECMWF S4 seasonal forecast at 
lead time τ for each panel. Contrasting the rate at which 
correlation reduces as a function of lead time between 
the ECMWF S4 and that of the LIM, we note that the 
ECMWF S4 maintains a higher correlation in the subpolar 
gyre region for a longer time, while the correlation decay 
in the Tropics is at a similar rate for both the LIM and the 
ECMWF S4. The temporal correlation in the Gulf Stream 
region falls off faster in the ECMWF S4, as likely the Gulf 
Stream dynamics is poorly resolved in the ocean compo-
nent of the S4 system (Molteni et al. 2011; Balmaseda et al. 
2013). The LIM lacks any nonlinear feedbacks in terms of 
eddy-mean flow interactions and hence, the lack of such 
dynamics helps maintain the predictability in this region 
for longer than a misrepresentation of such dynamics as in 
ECMWF S4.

3.3  Decadal forecasts

We now use the filtering outlined in Sect. 2 to explore 
the predictability of the decadal component of the 
SSTa. We take the number of modes for each to be 

Nd = Ne = Na = 6 . The propagator constructed using 
these PCs (as in Eq. 1) is shown in Fig. 7, for various 
values of τ. The interaction between decadal modes is as 
expected more significant on longer time scales. Coupling 
between intraannual modes is significant at lead times of 
one month, but this variability decays extremely quickly. 
Dependence of intraannual modes on interannual variabil-
ity is seen at short lead times but is no longer significant 
beyond 3 months. Two-way coupling between interannual 
and decadal modes increases with lead time up to about 
1–2 years, after which this coupling begins to diminish. 
The sub-matrix describing the evolution of interannual 
modes becomes less diagonal over time with the magni-
tudes of the off-diagonal elements increases for times up 
to 6 months. For lead times of more than a couple of years, 
the evolution of the interannual variability depends almost 
entirely on the decadal part of the signal. Significant cou-
pling between intraannual and decadal modes is not present 
at any lead times.

In order to facilitate multiple forecasts of several years 
in length we changed the way in which we divide the data 
into training and verification periods as compared to the 
seasonal forecasting experiment. We now remove 10 years 
worth of data from the time series and train the model on 
the remaining data. The model output is then compared to 
a reconstruction of the 10-year verification period using 
the same number of EOFs/PCs as the model. This method 
results in small errors when computing the elements of the 
time-lag correlation matrix at the point where the data from 
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Fig. 7  The propagator matrix constructed from the six leading modes 
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one timescale interacting amongst themselves while the off-diagonal 

block elements are modes from two timescales interacting with each 
other. The legend ‘Dec’ indicates the row/column in each matrix cor-
responding to the modes of decadal timescales. The ‘Iea’ legend indi-
cates the same for inter-annual timescales and the ‘Iaa’ indicates the 
modes of intra-annual variability
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either side of the removed period meet. However, as the lag 
chosen is only one month, this only affects two elements 
from a very long time series. It has the advantage that the 
model is trained using a large amount of the time series 
so the EOFs/PCs used in the model should very closely 
resemble those presented earlier (which were calculated for 
the entire time series). This may be helpful when trying to 
justify features of the predictability in terms of the shapes 
of the EOFs.

As a first test we build a propagator using only the PCs 
describing evolution on decadal timescales; Nd = 20 com-
ponents were used. Forecasts were initialized at subsequent 
months from Jan 1951–Jan 2001, resulting in 600 forecasts. 
The maps of temporal correlation at a range of lead times 
can be seen in Fig. 8. Forecast skill is lost between 3 and 
4 years in most of the domain where the correlation drops 
below 0.2. Differences in skill between different regions 
are not as sharp; skill seems to be more even across the 
basin as compared to the seasonal forecasting skill. This is 
likely to be due to the shape of the EOFs for the decadal 
variability. The leading decadal EOF (Fig. 2a) is close to 
uniform across the basin and contributes a very large frac-
tion of the variance (56%). The skill in the sub-polar gyre 
is comparable to the rest of the basin and forecasts in this 

region now tend to be the most skillful (whereas on sea-
sonal timescales the predictability was the worst in this 
region). This suggests that the non-linear dynamics which 
proved problematic for LIM on monthly timescales are not 
seen in the decadal component of the variability and that 
the decadal timescale variability is more linear than on sea-
sonal timescales.

We now properly utilise the filtered LIM to test if 
knowledge of the shorter timescale variability can improve 
the forecasting of the decadal variability. To do this we 
initialize the filtered LIM with Nd = Ne = Na = 20 and a 
PC state vector containing PCs for each of the time scales. 
Only the PCs corresponding to the decadal part of the sig-
nal from the LIM forecast fields are retained and these are 
projected onto the decadal EOFs to give the forecast field. 
As seen in Fig. 7 the decadal PCs interact with the inter-
annual and the intraannual, so these decadal PCs will vary 
slightly from those calculated using the decadal modes 
only. The temporal correlations at each lag can be seen in 
Fig. 9.

Including the higher frequency components in this man-
ner improves the forecasts everywhere in the region of 
interest. Areas that have improved the most notably are 
along the equator where the region of negative correlation 

Fig. 8  Temporal correlation 
over the region for a range of 
lead times for the decadal com-
ponent of SSTa for the forecast 
fields with HadISST1 field as 
the verification. The LIM was 
constructed using only the 
decadal component of the signal 
after filtering the raw time series
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at τ = 3 years is no longer seen and in the sub-tropical 
gyre where modest correlation is now seen even at leads of 
4 years. We have performed further experiments to isolate 
the impact of including interannual and intraannual vari-
ability separately and find that the interannual variability 
adds to the predictability of the model over having just 
the decadal variability signal. Adding only the intraannual 
variability to the model with decadal variability does not 
change the forecast skill of the model (not shown). This can 
also be inferred by noticing that the decadal modes mostly 
interact with the interannual modes in the LIM dynam-
ics matrix. This result is pleasing as it demonstrates a link 
between short-term weather and long-term climate and 
hence, supports efforts to build unified seamless prediction 
systems for all scales.

We conclude by comparing these predictions of the dec-
adal component of SSTa with the decadal predictions made 
using DePreSys. The metric used here is the predictability 
of the domain averaged SST, with a 3-year running mean. 
This is a similar quantity to the AMO index, but is more 
favourable for the DePreSys model in two regards. The 
10-year running mean used in the calculation of the AMO 
index means this quantity cannot be calculated for predic-
tions extending only to 10-year lead times as in DePreSys. 

The restriction of the domain to the North Atlantic means 
that we would not be measuring how well the tropical SSTa 
were predicted. The shorter running mean used in our index 
means that we can report the value of this index at lead 
times of up to 8 years. The RMSE between this index as cal-
culated by each of the models and observations can be seen 
in Fig. 10. The RMSE is quite flat (particularly in the case 
of DePreSys) and is qualitatively similar (in both magnitude 
and shape) to the predictability of the AMO index reported 
by Newman (2013) with regards to similar models.

4  Discussion

In this study, the hindcast skill for a suite of linear inverse 
models (LIMs) on both seasonal and decadal timescales has 
been presented and compared with two current operational 
forecast systems. Our results reveal that the LIM has good 
forecast skill for time periods of 3–5 months on the sea-
sonal timescale, with increased predictability in the Spring 
season compared to the other seasons. On the decadal time-
scale, the LIM has skill for about 3–4 years over most of 
the North Atlantic domain as found in Zanna (2012) and 
Newman (2013).

Fig. 9  Temporal correlation 
over the region for a range of 
lead times for the decadal com-
ponent of SSTa. The LIM was 
constructed using both the dec-
adal and the higher frequency 
components
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We also evaluate the forecast skill for a LIM formulated 
by using the leading modes of variability from filtered time 
series to study the time scale interactions of SST compo-
nents on longer term predictability. A linear inverse model 
configured with only the decadal leading modes of vari-
ability has good forecast skill up to 4 years in most of the 
North Atlantic domain. Including variability at frequencies 
higher than decadal scales helps improve the LIM forecast 
skill especially in the North Atlantic sub-polar gyre region, 
which indicates that modal interactions of higher frequen-
cies with the low frequency variability is a source of longer 
term predictability in this region.

There is enhanced predictability on seasonal timescales 
over the tropical oceans and subtropical gyre region com-
pared to the sub-polar gyre region for the LIM forecasts. 
On decadal timescales, the sub-polar gyre region tends to 
show increased predictability over the sub-tropical gyre 
region using the LIM.

The LIM forecast skill on both the seasonal and decadal 
timescales were similar to the global operational forecast 
systems ECMWF S4 and DePreSys respectively. This sug-
gests that statistical models such as LIM are a useful tool to 
not only add to our suite of forecast methods but can also 
provide valuable information about regional predictability 
and variability. However, we note that they cannot be used 
as an alternative to global operational forecast systems as 
they are of less value to perform ensemble forecasts and 
evaluate probabilistic forecasts due to their inherent linear 
decay nature. Also, the value of operational ensemble fore-
casting systems are the probabilistic forecasts they provide, 
along with uncertainty estimates on the forecasts. This is 
one of the distinct strengths of a fully nonlinear ensemble 

forecast system, which is not possible to reproduce in a 
LIM with an inherent decay timescale.

The LIM forecasts provide a more skillful baseline than 
using persistence or climatology to evaluate GCM fore-
casts. The knowledge gained from using LIMs can then be 
transferred to evaluate what modes are under represented 
in models that can be improved for extracting predictabil-
ity. Furthermore, we encourage the use of suite of models 
as presented here, including multiple datasets and multiple 
timescales, to emulate the concept of a “seamless forecast-
ing linear inverse modeling system.
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