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Abstract Method and preliminary results of multiple sound sources localization in free field
using the acoustic vector sensor were presented in this study. Direction of arrival (DOA) for
considered source was determined based on sound intensity method supported by Fourier
analysis. Obtained spectrum components for considered signal allowed to determine the DOA
value for the particular frequency independently. The accuracy of the developed and practically
implemented algorithm was evaluated on the basis of laboratory tests. Both synthetic acoustic
signals (pure tones and noises) and real sounds were used during the measurements. Real
signals had the same or different energy distribution both on time and frequency domain. The
setup of the experiment and obtained results were described in details in the text. Taking the
obtained results into consideration is important to emphasize that the localization of the multiple
sound sources using single acoustic vector sensor is possible. The localization accuracy was the
best for signals which spectral energy distribution was different.

Keywords Sound detection . Sound source localization . Audio surveillance

1 Introduction

Audio source localization using an array of sensors is a rich topic which has interested many
signal processing researchers for many years. Applications e.g. include speaker location
discovering in a teleconference, event detection and tracking, robot movement in an
unknown environment, etc. A lot of techniques were proposed and can be found in the
literature. Currently considered issues focuses on improving the well-known techniques, or
the search for new solutions. For example Blandin et al. introduced several multi-source
TDOA estimation methods based on angular spectra and clustering. They consider the
problem of estimating the time differences of arrival (TDOAs) of two or more sources for
a given pair of sensors in a reverberant environment. They evaluated his own method and
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five most popular state-of-the-art methods on 1482 different configurations. They conclude
that the tested techniques that have been successful for anechoic TDOA estimation and
audio source separation bring a little or no improvement for reverberant TDOA estimation.
So that more specific approaches are needed to solve this problem in the future [3]. Pavlidi et
al. proposed a novel real-time adaptative localization approach for multiple sources using a
8 microphone circular array, in order to suppress the localization ambiguities faced with
linear arrays, and assuming a weak sound source sparsity which is derived from blind source
separation methods [16]. They conclude that his method performs very well both in
simulations and in real conditions at online processing. Different approach to the sound
source localization was proposed by Stanacevic and Cauwenberghs. They used a gradient
flow technique for localization of an acoustic source using miniature microphone arrays by
relating temporal and spatial gradients of the impinging source signal [22].

This work base on acoustic data obtained by matrix of microphones in different config-
urations. In this paper author applied 3D Acoustic Vector Sensor to multiple sound sources
localization. Acoustic vector sensors were first applied to acoustic source localization in the
air by Raangs et al. in 2002, who used measured sound intensity vector to localize a single
monopole source [20]. A more recent development is the application of acoustic vector
sensors to the problem of localizing multiple sources in the far field. In 2009, Basten et al.
applied the MUSIC method to localize up to two sources using a single acoustic vector
sensor [1]. In the same year Wind et al. applied the same method to localize up to four
sources using two acoustic vector sensors [23, 24].

In author previous works the sound source localization methods based on sound intensity
computed in time domain were presented [5, 9–15, 23, 24]. Those techniques worked with
broadband signals received from multichannel acoustic vector sensor [6]. Single, dominant
sound source was localized properly bymeans of those methods [5, 6, 11–15].When more than
one sound source produced the acoustic energy simultaneously, determination their positions
was very difficult. Quite different approach to multiple sound sources localization online using
the acoustic vector sensor was presented in this study [7, 8]. Online processing means that the
algorithm deliver the localization results with very small time delay, around 0.1 [s]. Term of the
multiple sound sources in this research means that two sources produced the acoustic energy
simultaneously from different directions. Main differences depends on computation the sound
intensity components in the frequency domain. Fast Fourier Transform was applied for this
purpose. Obtained spectrum coefficients for considered signal allowed to determine the DOA
values for the particular frequency independently. Developed algorithm was designed to
analyze the acoustic signals in real time. It was presented in details in Section 2. Due to the
computation of sound intensity for particular frequency independently, the method should work
properly for signals which are different in the frequency domain. It is important to emphasize
that localization process of sound source takes into consideration the dynamic of acoustic
energy emission. It means that even if the particular sound sources have the same average
spectral energy distributions they can still be localized properly. It will took place if they will
produce the energy in different parts of time (sound sources should be incoherent). Applied
method, used signals and organization of measurement tests were described in details in
Section 4. Obtained results were presented in Section 5.

2 Multiple sound sources localization algorithm

Proposed, implemented and practically evaluated algorithm to multiple sound sources
localization is based on calculation sound intensity level in frequency domain. It is a quite

4236 Multimed Tools Appl (2015) 74:4235–4251



different approach in opposite to methods which rely on sound intensity calculation in the
time domain. The block diagram of the algorithm was presented in Fig. 1. Calculation
process was divided into six functionally different steps. Particular phases were described in
details below.

The applied multichannel acoustic vector sensor produces the following signals: sound
pressure p and three orthogonal particle velocity components ux, uy, uz. It is important to
emphasize that various transducers topologies can be used to measure the acoustic velocity
directly or indirectly and such kind of sensors could be also applied in the proposed
algorithm [4]. In the first step each signals were buffered and prepared to FFT calculation.
The Hanning window was applied in this case [21]. Next the 4096 point FFT calculation for
each signals were performed, sampling frequency was equal to 48 kHz (frequency resolu-
tion: 11.7 Hz). Such parameters provide sufficient spectral resolution. It is important to
emphasize that the proper overlapping technique is crucial for the next steps. The overlap
degree from 0 % to 75 % was tested (it was explained and illustrated in the results section). It
means that in the next FFT frame from 4096 to 1024 samples were new. On the other hand
for 4096 signal samples from 1 to 4 FFT frames were calculated. The FFT calculation were
performed for each acoustic components separately. In block 3 the sound intensity in
frequency domain was computed. Intensity component for x direction and i-th frequencies
was defined as

I x ið Þ ¼ X p ið Þ⋅Xux ið Þ ð1Þ
where:

Xp(i) coefficients of complex spectrum for i-th frequencies for acoustic pressure signal
X ux ið Þ conjugated spectrum coefficients for particle velocity into x direction.

Intensity components for y and z direction were computed in the same way. The final
intensity vector was given by equation [2]

I
!¼ I x e

!
x þ I y e

!
y þ I z e

!
z ð2Þ

It is the most important part of whole algorithm. The direction of arrival for particular
frequency was obtained as a result of this block (with given spectral resolution, 11.7 Hz in
this case). After that the direction of arrival for each frequencies were determined. The
values of azimuth and elevation angles were calculated based on transformation from
Cartesian to spherical coordinate system. Obtained DOA values were used to compute its
time distribution. The time distribution collects the intensity values for given direction with 1
degree quantization. To reduce the noise level in the computed time distribution character-
istics not all intensity vectors were used. During the computation process, the noise floor (the
average magnitude values of acoustic pressure obtained in step 2) for particular frequencies
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buffering (p, x, y, z)

4 FFT with 
overlapping

Intensity calculation 
in frequency domain

Time distribution
of the DOA values

Final information about 
position of the sound sources

Determination of 
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1 2 3
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x

Fig. 1 The block diagram of the proposed algorithm. Red rectangle indicate the most important part of the
developed method
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was calculated. The part of the signal between the end of first reference sequence and
beginning of the fist acoustic event of the measurement session was used for this purpose
(the measuring scenarios were presented in details in the paragraph 3.3). Only the intensity
vectors which value exceeded the noise floor increased by the defined threshold were used to
accumulate the time distribution for given direction. In presented algorithm the threshold
was equal to 10 dB (for this value the noise influence can be neglected, moreover in future
practical implementation the threshold value could be specified by the user). In the accu-
mulating process the value of the intensity vector was additionally used. In fact the time
distribution indicate the total value of intensity vectors which occurred for given direction in
considered time period. The maximum value observed in the time distribution characteristics
indicate the position of the sound source. When more than one sound source was present in
the acoustic field in considered time period, the additional maximum value on time distri-
bution characteristic can occur. At the end of the calculation process (block 6), the final
information about the position of particular sound sources position was indicated. The final
time distribution of DOA values was smooth by means of weighted moving average. Angle
values for particular peaks were obtained using local difference calculation. The difference
between the actual and next DOA value was computed. When the difference changes the
sign from positive to negative, the local maximum should occur. If the difference is greater
than assumed threshold it means that it indicate the possible position of sound source.

3 Evaluation of the proposed algorithm

For simplify and reduce the complexity of the description of localization accuracy only
azimuth angle was taken into consideration. Elevation angle was neglected. The sound
source localization accuracy (αerr) was defined in that case as a difference between the
computed direction of arrival angle (αAVS) and Ground Truth angle value (αGT) (it indicate
the real position of the sound source) for considered acoustic event. This parameter was
given by the equation

αerr ¼ αAVS−αGT ð3Þ

The evaluation process relied on determination the αerr value for every sound source. To
proper determination of this parameter both αAVS and αGT should be known. The proposed
sound sources localization algorithm returns the result as a value of the angular direction of
arrival for particular sound sources (αAVS). The angular values and localization accuracy are
expressed in degrees. The multichannel loudspeaker system placed in the anechoic chamber
was used to simulate the sound sources, therefore the αGT values were easy to determine.
The prepared measurement system, used test signals and realized scenarios were described in
this section.

3.1 Measurement system

Setup of the measurement equipment employed in the experiment is presented in Fig. 2.
Placement of speakers and angles (α) between them and the USP probe were presented in
Figs. 2 and 3.

In the anechoic chamber 8 REVEAL 601p speakers [19], an USP probe were installed.
The USP probe was fixed about 1.5 m above the floor. In the control room a PC computer
with Marc 8 Multichannel audio interface was used to generate test signals. Signals from the
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USP probe were recorded using MAYA44 USB audio interface [17]. Two SLA-4 type 4-
channel amplifiers were employed to power the speakers [18]. The width of the speakers
(0.21 [m]) was also measured and illustrated in Fig. 3 (Left). This value was used to calculate
ΔαGT parameter. Real angle values between the speakers and USP Probe were used as a
reference data during the evaluation process (see αGT in Eq. 3). Details positions of
particular loudspeakers and hardware setup were presented in Fig. 3. Right picture presents
the interior of anechoic chamber, red circle indicate the position of used acoustic vector
sensor (USP probe). Used loudspeaker system can also be noticed. The anechoic chamber
simulates the conditions of the free acoustic field. Reflections coming from different surfaces
can be neglected. It is important to emphasize two essential things. First, the distance
between the USP probe and loudspeaker is rather small. The dimensions of the sound source
(width of the used loudspeakers) was taken into consideration in the localization accuracy
estimation. Second, the used loudspeakers only simulate the real sound source. In practice,
the sound source that produce considered type of acoustic signal can have different di-
mensions. That facts can be important to estimate the correctness of the sound sources
localization in real conditions.

The detailed values of ground truth data of DOA for particular loudspeakers and results
obtained for references signals presented at the beginning and end of given measurement
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Fig. 2 Setup of measurement system, red and green color of the loudspeakers presents one of the scenario,
when two different sounds were played
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Fig. 3 Left – details positions of particular loudspeakers. Right picture presents the interior of anechoic
chamber, red circle indicate the position of used acoustic vector sensor (USP probe)
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scenario were presented in Table 1. The used measurement scenarios and calibration
procedure were described in details in the next sections.

3.2 Calibration procedure

For every measurement session two reference sequence were used, before (αAVSRef.1.) and
after (αAVS Ref.2.) the test signals presentation. Pure tone about 1 kHz frequency and one
second duration time was played by particular loudspeakers sequentially. This signal was
used to prepare and calibrate the whole measurement system. Hardware setup and measure-
ment session were proper when the localization results of the particular loudspeakers for
both calibration sequences were the same. The localization results of particular reference
signals emitted in sequence by particular loudspeakers were presented in Fig. 4. Spectrogram
DOA for reference sequence was also depicted. For better presentation the angular data
positions of the loudspeakers were normalized.

The detailed values of ground truth data of DOA for particular loudspeakers and results
obtained for references signals presented at the beginning and end of all measurement
scenarios were presented in Table 2. The values obtained during both reference sequences
were the same. It means that the hardware setup was proper during whole experiment.

3.3 Test signals and measurement scenarios

Both synthetic acoustic signals (such as pure tones and narrow band pink noises) and real
sounds were used during the measurements. Pure tones has the following frequencies:
250 Hz, 500 Hz, 800 Hz, 1000 Hz, 1250 Hz, 2000 Hz, 4000 Hz. Noises signals were
prepared on the basis of pink noise broadband signal filtrated by means one third octave

Table 1 Ground Truth data, distance to the AVS sensor (in [m]) and Δα for each speaker

Sp. No. 1 2 3 4 5 6 7 8

αGT 40 314 294 255 197 143 110 77

dist. 1.984 2.182 3.476 3.259 1.687 2.098 2.737 3.223

ΔαGT ±3.0 ±2.7 ±1.7 ±1.8 ±3.5 ±2.9 ±2.2 ±1.9
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Fig. 4 The localization of the reference signals emitted in sequence by particular loudspeakers
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band filters. Center frequencies of particular filters were the same like for tonal signals.
Signal amplitudes have been normalized therefore they had the same acoustic energy.
Selected real signals used during the tests were different in the frequency and time domain.
Exemplary recordings several type of sound sources such like: speech, scream, car horn, shot
and broken glass were prepared and applied during the tests. The main assumption of the
prepared measurement scenarios was simultaneous presentation signals which have the same
or different energy distribution both in time and frequency domain. Main aim of such
scenarios was evaluation of localization accuracy as a function of characteristic of the sound
source. For this purpose during one session the particular sound source was used two times.
First the single sound source from one direction was played, next second sound source
played from other direction and finally both sound sources were played simultaneously from
their directions. The time organization of the measurement scenarios was presented in Fig. 5.

For such arrangement of the sound source reproduction, the localization accuracy of single
and multiple sound sources can be determined. Another parameter which was taken into
consideration was the cohesion of sound sources. It was verified by reproduction different or
the identical sounds from given directions. For identical sound sources we do not notice any
differences between the sound sources both on time and frequency domain. It means that
proposed algorithm in such conditions cannot work properly. The example frequency charac-
teristic of selected test signals and measure scenario were presented in Fig. 6.

All calculations and experiments were performed using ASUSB50A computer (Intel Core 2
Duo 2.2 GHz CPU with 3 GB RAM memory) with 32-bit Windows Vista operating system.

4 Results

4.1 Calculation of time distribution of DOA values

During evaluation of the developed algorithm a several methods used to calculation time
distribution of DOAwere taken into consideration. First method (H1) assumed that the DOA
values for particular direction was incremented by 1 if the frequency component in that
direction was present. This approach worked well for signals whose time duration was
longer than 0.5 [s]. For impulse sound sources (shot, broken glass) it was difficult to
determine the main direction of arrival properly. In second method (H2), level of intensity
vector for particular frequency of spectrum was taken into account. It means that the time
distribution for given angle value indicate the total value of intensity vectors which occurred

Table 2 Ground Truth data and αerr obtained for both reference signals

Sp. No. 1 2 3 4 5 6 7 8

αGT 40 314 294 255 197 143 110 77

αAVS Ref.1. 43 309 294 251 205 132 110 79

αAVS Ref.2. 43 309 294 251 205 132 110 79

αerr. −3 5 0 4 −8 11 0 −3

First reference sequence Measurement session Seccond reference sequence

Fig. 5 Time organization of measurement scenarios
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for given direction in considered time period. Thanks to this modification, the selectivity of
obtained results increased rapidly. But for impulse sounds sources many additional local
peaks were still observed. In some cases uncertainty of final decision about position of
particular sound sources was high, because two or more local maximum were observed.
Application of weighted moving average solved that problem (H3). Averaged period was
equal to 7. Weighted coefficients were calculated based on Hanning window. In Figs. 7 and
8 normalized time distribution of DOAvalues (Hnv[%]) for impulse sound sources obtained
by means of particular method were presented. In Fig. 9 the polar representation of the DOA
values were shown.

The green line - H1 indicates the method 1, red line - H2 and blue line - H3, method 2 and
3 respectively. The black peaks indicate the reference position of the sound sources. If the
black peak is common with the peak of the DOA it means that the position of sound source
was indicated properly. Sound sources were simulated by speakers 2 and 6. In the left plot
the localization results for shot sounds were depicted. Localization results for two broken
glass played simultaneously were shown in right plot. It is clearly to notice that indication of
localization for impulse sound sources for method H1 and H2 is ambiguous. Weighted
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moving average produce smooth DOA characteristic. Two main peaks can be observed.
Automatic precise localization of the sound source position were possible in consider case.

4.2 Length of overlap

Another issue that was considered in evaluation process was the length of overlap used in the
FFT calculations. Three different overlap values were tested: 0 %, 50 % and 75 %. It was
explained in Fig. 10. Particular FFT frames were marked with different color. It means that
in the next FFT frame from 4096 to 1024 samples were new. On the other hand for 4096
signal samples from 1 to 4 FFT frames were calculated. The FFT calculations were
performed for each acoustic components separately. In Figs. 11 and 12 time distribution of
DOAvalues for different overlapping lengths were presented. The results for impulse sounds
like shots or broken glass were shown.

For longer acoustic events the difference was very low and it was not presented here. On
the basis of obtained DOA characteristics optimal length of overlap was specified. It was
equal to 50 %. Lower value can cause the loss of data, especially for impulse sounds. Such
situation can be observed in Fig. 12.
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On the other hand greater overlap value did not deliver more data during the time
distribution calculation. High similarity of green and blue curves proved this statement.
50 % overlap was finally applied in the designed localization method.

4.3 Localization results for synthetic signals

The localization results for pure tones and 1/3 octave band pink noise were presented in
Fig. 13. Test signals were emitted from loudspeaker 1 and 6.

For signals different in the frequency domain the localization accuracy was the best.
Particular sound sources were localized perfectly. But when the identical, time synchronized,
signals were presented from different directions, the proper localization of sound sources
was insufficient and in some cases completely impossible.

4.4 Localization results for real signals

Results of localization accuracy obtained by means of real signals are presented below. In
Fig. 14 car horn and scream were played from speaker 3 and 4. In this case the localization
was precise for different signals. High inaccuracy was noticed for coherent sound sources.

Additionally, the localization accuracy goes down rapidly if sound sources were close to
each other and amplitude one of them was dominant. It is important to emphasize, that for
impulse sound sources the localization was based on few FFT frames (it depended on length
of the considered acoustic event). Angular resolution of multiple sound sources localization
also depended on the type of analyzed signal. Length of particular signals has crucial role for
final accuracy. The best results were obtained for signals lasting more that 1 s. The type of
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given sound source is main difficulty for proper blind localization process in real time. If the
analysis will be done offline during the situation reconstruction process, user can precisely
select interest part of signal and do the localization process more accurate. Proposed
algorithm can be used as an interesting and useful tool during the offline forensic audio
analysis. In such case all of described parameters could be selected and changed manually
adequate to considered signal. In Fig. 15 the localization results of impulse sound were
shown. The localization was proper for signals different in frequency domain. In Fig. 16
localization results for different type of sound sources were shown.

4.5 Localization accuracy for synthetic signals

In this section the detailed data of calculated localization accuracy results for synthetic
signals are presented. The localization error was calculated according to formula 3 defined in
Section 3 and was expressed in degrees. The complete results both for tonal signals and 1/3
octave band noise signals were presented in Table 3. Labels S1 and S2 indicate the signals
that was played during the measurement session. For scenario no. 1 both signal has the same
frequency. This case was indicated in the table by a grey color. When the signals were
presented separately, their direction of arrival was indicated properly. During the simulta-
neous presentation of the same signals the localization results were insufficient. Only one
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Fig. 13 Localization results for synthetic signals. Left plot - pure tones 1000 Hz and 1250 Hz, right plot - 1/3
octave band filtered pink noise, the centre frequency 1000 Hz and 1250 Hz
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sound source was observed and its position was between the real position of the
sound sources. Second sound source was missing and it was marked in the table as
ND (not detected). It means that for coherent signals (both in time and frequency
domain) the proposed algorithm did not work properly. For different sound sources
the localization accuracy obtained for simultaneous presentation of two sources was
the same like for a single presentation. The similar accuracy results was obtained for
tonal and noise signals.

4.6 Localization accuracy for real signals

Tables 4, 5 and 6 include the localization accuracy obtained for real signals. Gray color
indicate the situation when the same signal was presented through two different
speakers. For this situation the high localization error was observed or only one sound
source was indicated. Missing sound sources were marked in the tables as ND (not
detected). In some cases (no. 15 scream) the localization was correct even for the same
signals presented simultaneously from different directions. For all other measurement
scenarios particular harmonic sound source was localized correctly. For these cases the
localization accuracy was the same like for the presentation of particular signals
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Fig. 14 Localization results for real acoustic signals presented simultaneously by speakers 3 and 4. Left plot -
car horn, right plot - scream
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Fig. 15 Localization results for real acoustic signals presented simultaneously by speakers 4 and 8. Left plot -
shot, right plot - broken glass
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independently. It means that the same type of sound source can be localized properly
even if they were presented simultaneously.

Table 5 includes the results for impulsive sound sources. Such sounds were very difficult
to localize when they were presented simultaneously. It is important to emphasize that the
sound sources were synchronized precisely. We can observe the situation that often only one
sound source was indicated properly. Such situation occurs for short time signals because the
localization result of particular sound sources were calculated for few FFT frames (if the
signal is 0.1 [s] length we have only 2 FFT frames). It means that the presented algorithm
works properly with the harmonics sound sources (it is the property of the FFT analysis).

In the Table 6 the results for mixed type of sound sources were presented. In this
measurement scenarios the harmonic signals were also presented together with impulse
sounds. We can observe very high localization accuracy when the two sound sources were
presented together. It was generally the same like for a particular single source presented
separately. This scenario could be common for typical situations than could occur in a real
life. Typically we can observe many different sound sources active at the same time. Based
on the obtained results it was shown that the proposed algorithm could be useful in the
localization of particular sound sources even they produce acoustic energy simultaneously.
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Fig. 16 Localization results for different kind of sound sources presented simultaneously. Left plot – car horn
and broken glass, right plot – scream and broken glass

Table 3 The localization accuracy results for tonal and 1/3 octave band noise signals

No. S1 S2 Tonal signals 1/3 octave band noise signals

Single source Two sources Single source Two sources

f [Hz] f [Hz] αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2

1 1000 1000 −2 12 ND 25 −10 3 ND 49

2 1000 250 −2 8 −2 8 −10 9 −10 9

3 1000 500 −2 10 −2 10 −10 5 −10 5

4 1000 800 −2 5 −2 5 −10 4 −10 5

5 1000 1250 −2 1 −2 1 −10 3 −10 2

6 1000 2000 −2 1 −2 0 −10 2 −10 2

7 1000 4000 −2 3 −2 3 −10 2 −10 2
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Table 4 The localization accuracy results for signals: car horn and scream (harmonic signals)

No. S1 S2 Car horn Scream

Single source Two sources Single source Two sources

αGT αGT αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2

1 40 197 −10 −6 −108 −19 −10 −5 −119 −13
2 314 110 7 4 5 3 5 2 5 2

3 294 40 5 −7 5 −7 5 −9 5 −8
4 255 294 −3 4 −3 3 −1 3 −2 3

5 197 143 −6 4 −4 4 −6 3 −6 2

6 143 77 2 −5 21 ND 3 −2 25 ND

7 110 314 4 3 4 3 2 4 1 5

8 77 255 −5 1 −6 1 −2 −1 −6 −2
9 40 143 −11 4 −11 5 −7 3 −8 3

10 314 77 3 −2 21 ND 4 −1 −24 ND

11 294 314 2 3 0 3 3 4 2 5

12 255 197 1 −5 1 −5 −1 −4 0 −4
13 197 110 −3 3 29 −74 −4 2 25 −49
14 143 40 4 −9 3 −9 2 −7 2 −6
15 110 294 0 2 −4 ND 2 4 2 1

Table 5 The localization accuracy results for signals: shot and broken glass (impulse signals)

No. S1 S2 Shot Broken glass

Single source Two sources Single source Two sources

αGT αGT αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2 αerr S1 αerr S2

1 40 197 −8 −3 ND −9 −7 −2 ND −16
2 314 110 8 5 5 0 5 1 5 1

3 294 40 5 −8 −2 −5 4 −7 7 −11
4 255 294 −2 7 −6 ND −2 7 −6 ND

5 197 143 −4 4 55 1 −4 5 −3 ND

6 143 77 3 −4 30 ND 5 −2 24 ND

7 110 314 2 5 −2 6 2 2 2 −1
8 77 255 −5 −3 −6 −6 −1 −2 −6 −2
9 40 143 −11 4 ND 4 −10 6 −12 ND

10 314 77 8 −1 20 ND 5 −6 19 ND

11 294 314 5 6 ND 11 3 7 ND 9

12 255 197 −2 −5 ND −10 −1 −6 ND −5
13 197 110 −7 3 35 ND −7 4 42 ND

14 143 40 5 −10 ND −15 9 −10 44 ND

15 110 294 2 3 3 ND 2 6 3 33
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5 Conclusions

Method and preliminary results of multiple sound sources localization in a real time using
the acoustic vector sensor were presented in this study. Term of the multiple sound sources in
this research means that two sources produced the acoustic energy simultaneously from
different directions. The several properties of the developed algorithm were discussed in
details on the basis of specially prepared tests conducted in laboratory conditions. First was a
selection of the best method for computation the time distribution of DOA values. Second
was discussion about length of overlap. Hanning weighted moving average and 50 % length
of overlap were optimal and gave the greater localization accuracy. The multiple sound
sources localization can be done by means single acoustic vector sensor and sound intensity
computation in frequency domain.

Localization accuracy and angular resolution depended on length of the analyzed signals
and local differences both in time and frequency domain. The best results were obtained for
signals longer than 1 s and different in time and frequency domain. For shorter signals the
decrease of accuracy and angular resolution were observed. Moreover, the proposed algo-
rithm did not work properly for coherent signals (both in time and frequency domain). The
type of the given sound source is a main difficulty for proper blind localization process in the
real time. In such case the information about the position of detected sound sources is
presented immediately. Additional types of information about the sound source like begin-
ning, end and length of activity can be also obtained and be presented.

Method can be applied to analysis both fixed or moving sound sources. Their trajectory
can be tracked independently. The described method can be useful in a surveillance systems
to monitor and visualize the acoustic field of specified region. The direction of arrival can be
used to control the Pan-Tilt-Zoom (PTZ) camera to automatically pointing it towards the
direction of the detected sound source.

It is important to emphasize that the proposed method can be used as an interesting and
useful tool also during the offline forensic audio analysis. The described algorithm can be also
used as a visualization technique called spectrogram direction of arrival. In such case all of
described parameters could be selected and changed manually adequate to considered signal.

In future work the method will be examined in real disturbance conditions such as bank
operating room. Additional improvements of functionality as spatial filtration into the

Table 6 The localization accuracy for mixed sound sources (harmonics and impulse sounds)

No. S1 S2 Type of source Single source Two sources

αGT αGT αerr S1 αerr S2 αerr S1 αerr S2

1 40 197 car horn scream −10 −4 −10 −4
2 314 110 car horn shot 3 8 2 3

3 294 40 car horn broken glass 4 −5 4 −10
4 255 294 car horn speech −2 6 −2 6

5 197 143 scream shot −4 5 −4 6

6 143 77 scream broken glass 3 −2 3 −1
7 110 314 scream speech 2 6 2 6

8 40 143 shot speech −10 5 −10 5

9 314 255 broken glass speech 7 −2 7 −2
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defined direction and integration with other DSP method such as adaptive detection and
automatic classification of sound events will also be implemented (for this reason the
Hanning window was applied in FFT calculation). The comparison of the presented solution
with traditional methods based on microphone arrays will be done.
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