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Abstract Portable robotic machine tools potentially allow
feature machining processes to be brought to large parts in
various industries, creating an opportunity for capital expen-
diture and operating cost reduction. However, robots lack
the machining capability of conventional equipment, which
ultimately results in dimensional errors in parts. This work
showcases a low-cost hexapod-based robotic machine tool
and presents experimental research conducted to investigate
how the widely researched robotic machining challenges,
e.g. structural dynamics and kinematics, translate to achiev-
able tolerance ranges in real-world production to high-
light currently feasible applications and provide a context
for considering technology improvements. Machining trials
assess the total dimensional errors in the final part over mul-
tiple geometries. A key finding is error variation which is
in the sub-millimetre range, although, in some cases, upper
tolerance limits < 100 μm are achieved. Practical chal-
lenges are also noted. Most significantly, it is demonstrated
that dimensional machining error is mainly systematic in
nature and therefore that the total error can be dramati-
cally reduced with in situ measurement and compensation.
Potential is therefore found to achieve a flexible, high-
performance robotic machining capability despite complex
and diverse underlying scientific challenges. Overall, the
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work presented highlights achievable tolerances in low-
cost robotic machining and opportunities for improvement,
also providing a practical benchmark useful for process
selection.
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1 Introduction

Robots are attracting interest in the nuclear, oil and gas
and aerospace industries for machining relatively small fea-
tures on large parts without reliance on conventional, large
machine tools. This potentially reduces capital expenditure
and operational costs and avoids heavy lifting by bringing
the machining process to the part rather than moving large
components around manufacturing facilities, which causes
a health and safety concern. As noted by Wang et al. in
[1], this is possible due to the availability of high-accuracy
large-volume metrology equipment, such as laser track-
ers and indoor GPS systems, for robot positioning around
large components, which potentially leads to high accu-
racy of feature positions. A brief application case study can
be found in [2], which is particularly relevant to nuclear
power plant components with feature tolerances of 100 μm
to 5 mm for weld prep, weld dressing, instrumentation
penetration, nozzle and manway geometry.

High-tolerance robotic machining of metals is a devel-
oping technology, competing with conventional machine
tools that can achieve tolerances of single microns [3].
Robotic machining has a range of technical barriers asso-
ciated with it, which must be overcome before economic
benefits can be exploited. This investigation provides a valu-
able contribution to the development of robotic machining
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techniques by characterising known technical challenges in
terms of the overall achievable tolerances. Achievable tol-
erance characterisation is novel because it encompasses all
error-contributing phenomena, using low-cost equipment,
rather than a single source as is typical in the literature.

For example, kinematic modelling is widely researched
as a key issue in accurate robot manipulation because
this relates the programmed end effector positions to joint
rotations and actuator extensions. Robot kinematics are dis-
cussed by Weill et al., where dimensional errors in links
and joints are noted to cause assembly misalignments and
therefore differences between the nominal kinematic model,
used in the controller, and the real world [4]. In uncon-
ventional parallel robot structures, which have a complex
configuration of actuators and joints, such differences are
due to difficulties in modelling the non-linear mapping
between actuator and machining coordinate spaces [5]. This
is problematic because parallel kinematic hexapod robots
are desirable for machining due to their stiffness benefits
[6–11].

Fassi and Wiens support kinematic modelling challenges
but note that parallel robotic configurations have a non-
cumulative error stack up in links and joints, which the-
oretically provides improved accuracy compared to serial-
arm alternatives [12]. Agheli and Nategh discuss kinematic
model calibration using a hexapod robot and find that
optimum results are achieved when models are based on
maximum observable robot error measurements, which are
at the limits of the working envelope in this case [9]. This
potentially introduces challenges in identifying the high-
est error levels in other robot configurations because Halaj
and Kurekova conclude that positional errors vary over the
working envelope [13].

As well as kinematic modelling issues, Fassi and Wiens
highlight concerns over dynamic structural rigidity issues
and their influence on part quality in robotic machining
[12]. Zhang et al. note that the stiffness for a typical indus-
trial robot is around 1 N/μm, whereas a typical machine
tool has stiffness greater than 50 N/μm and also expresses
accuracy concerns for robotic machining due to machining
forces and imperfect kinematic models [14]. This is sup-
ported by Doukas et al. who present experimental results on
deflection behaviour [15]. Pandremenos et al. back up rigid-
ity concerns further with experimental results highlighting
accuracy and chatter issues [16]. In addition, joint stiffness
is specifically discussed as an influence on part quality by
Dumas et al., although data is difficult to obtain from robot
manufacturers and user evaluation is recommended [17].

Work done by Sornmo et al. attempts to counteract rigid-
ity problems with adaptive force control in robot machining,
discussing how part inaccuracy is caused by excessive pro-
cess forces that result in deviations from programmed paths
[18]. Matsuoka et al. also highlight the importance of

this issue by testing different machining strategies for best
force management [19]. Lehmann et al. combine adaptive
force control, strategy optimisation and off-line force com-
pensation techniques for part accuracy improvement [20].
Olofsson et al. also consider machining force compensation
by using a piezo-actuated micro-manipulator to compensate
for tool deflection [21].

Further robotic machining literature is available that
backs up kinematic and structural dynamic concerns. For
example, the research of Abele et al. focuses on both the
kinematic and stiffness modelling of a serial-arm robotic
machine tool, highlighting dynamic differences from con-
ventional machine tools and tool displacement problems
[22]. Also, Bouzgarrou et al. and Li et al. follow a similar
theme in the context of a parallel kinematic design robot [23,
24]. The influence of cutting force, structural rigidity and
full kinematics compensation on robotic machining accu-
racy is, again, noted by Wu et al. and Pessi et al. [25–27].
Pan and Zhang expand on the issues mentioned by consid-
ering the impact of rigidity on low material removal rate
and chatter, and implement a real-time compensation algo-
rithm based on stiffness modelling to counteract this [28].
Work by Pan et al. relates cutting force and structural rigid-
ity models to chatter issues in robotic machining, presenting
stability criteria and highlighting the difference between
conventional machine tool characteristics [29].

Conventional machine tool issues, including gear back
lash and wear [30], are exaggerated in robotic machining
due to structural differences [31]. Gong et al. also suggest
that non-geometric robot errors should also be offset by
accounting for thermal variations and joint flexibility under
load [32]. Thermal concerns are supported by Kamrani et
al. [33]. In research published by Antunes Simoes et al., the
relationship between optimised process variable selection
and the surface quality and dimensional error is highlighted,
although this is in the context of robotic machining of plas-
ter parts [34]. Olabi et al. highlights that trajectory planning
is a key non-geometric contributor to path error [35], backed
up by Zargarbashi et al. [36, 37]. This issue and robot feed
rate accuracy, as assessed by Young and Pickin [38], are
key research areas for improving machined surface quality.
Chen and Dong show that robot repeatability decreases with
reach and supports concerns over chatter, path planning,
calibration and low material removal rates [39].

Overall, the robotic machining literature available high-
lights a complex and diverse range of research issues that
result in poor part quality. This literature is well justi-
fied for tackling other challenges but it does not give a
thorough insight into the combined overall impact that
robotic machining downfalls have on achievable tolerances
in real-world production. Here, a novel low-cost robotic
machine tool is proposed using the Fanuc F200iB hexa-
pod and achievable tolerance ranges are investigated for
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various geometries with machining trials. More specifically,
the experimental investigation presented builds on the work
of Tunc et al. [40–42] who assess dynamic stiffness variance
of the same Fanuc F200iB hexapod robot over its working
volume and the implications for machining accuracy.

The contribution made is the provision of practical data
and analysis for use by manufacturers to improve low-cost
industrial robot-based machine tools and to determine appli-
cations for current implementation. This is needed because
the literature associated with specific issues contributing to
dimensional errors does not completely provide this high-
level perspective alone. The intended impact is therefore to
encourage development by highlighting applications where
robotic machining can be feasibly adopted in addition to
the scale of challenges. The results presented also serve
as a benchmark for comparing technology improvements
against, which is necessary to push robotic machining tech-
nology further. It therefore allows advances associated with
individual error contributors to be considered in the context
of a key high-level problem.

An account of work done is presented beginning with
definitions of terms and the analysis procedure used in
Section 2. An overview of the equipment used, details of
the experimental set-up and methodology are then given in
Sections 3 and 4, respectively. Finally, data is analysed to
determine machining performance indices in Section 5 and
findings are summarised in Section 6.

2 Definitions and theory

This section describes the definitions and theory associated
with the experiments in Section 2.1 and analysing the data
acquired in Section 2.2.

2.1 Machining parameters

Spindle speed, N in RPM, for maximum stable machin-
ing efficiency is determined through modal analysis, as
explained in the Section 3. N is related to feed rate, vf in
millimetres per minute, using Eq. 1, where fz is the chip
load per tooth in millimetres, taken from tool manufacturer
recommendations, and zc is the number of tool teeth.

vf = fz × N × zc (1)

Material removal rate, Q in cubic centimetres per minute,
is given by Eq. 2, where ap is the axial depth of cut in mil-
limetres and ae is the radial depth of cut in millimetre, also
determined through modal analysis.

Q = ap × ae × vf

1000
(2)

The tool life criterion used to approximate useful tool
cutting time, T in minutes, before degradation occurs to
the degree that the tool can no longer cut required dimen-
sions, is defined as a uniform flank wear land, VB, of
0.3 mm averaged over all teeth in dry cutting conditions.
This criterion is recommended by ISO 8688-2 [43] and
is estimated according to Taylor method [44]. Taylor tool
life estimation is widely utilised and recommended in var-
ious works [45–50]. Wang et al. support the idea that tool
life can be estimated in robotic machining when stable
cutting parameters are established [51], i.e. with modal
analysis. Tool life estimates are qualitatively verified by
the operator with regular visual tool inspection in between
operations and by listening for changes in machining
noise.

T is given by the following equations [48]. n is Taylor
tool life exponent and is computed from reference tool lives,
TRA and TRB, at the extreme upper and lower ranges for a
given tool, which correspond to the reference cutting speeds
vcRA and vcRB in metres per minute. These reference val-
ues are provided for each tool by their manufacturer in dry
cutting conditions. C is the Taylor constant and computed
using n and vcRA. Finally, T for the real cutting conditions
used in experiments is estimated using Eq. 5, where vc is the
cutting speed dependent on the cutting diameter at ap, Dcap,
determined through modal analysis of the specific robot and
tool set-up.

n = ln vcRB − ln vcRA

ln TRA − ln TRB
(3)

C = vcRA × T n
RA (4)

T =
(

C

vc

)1/n

(5)

vc = Dcap × π × N

1000
(6)

2.2 Experimental data analysis

Experimental data analysis theory is based on previous work
done to develop a robotic machine tool performance evalua-
tion methodology based on standards published on robotics
and machining independently [2]. Interested readers are
directed to this paper for detailed information on the theory
used.

In machining trials, the upper machine performance
index, P̂mkU, is estimated with a confidence interval to
judge the ability of the process to achieve upper tolerances
limits according to methods described in [2]. A prerequi-
site to index computation is to plot errors between nom-
inal and measured dimensions with a run chart to assess
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statistical control, where instability is indicated by stepped
variation. Non-normally distributed data may occur due to
outliers, process variables shifts, biases and process limits
or because it has a different distribution. To determine the
specific estimation method for P̂mkU, distribution class is
assessed to check for normality, which is indicated graphi-
cally using histograms with fitted ideal normal distribution
curves and using normality tests when sample size is ≥ 30,
as recommended by Razali et al. [52].

The Anderson-Darling normality test is chosen because
it achieved a consistently high statistical power in the
Razali et al. study in comparison to alternatives. Normal-
ity tests reject the null hypothesis that the data is normally
distributed if the estimated probability, P value, of com-
puting the test statistic, A2, for a normal distribution is
≤ 0.05. The P value is determined from critical values of
A2 [53, 54].

In cases where a normal distribution is not observed,
data is transformed using the Box-Cox method [55], as rec-
ommended by Hosseinifard et al. [56]. To do this, each
individual value from the dataset, yi , is raised to the power
of λ, which is found by searching for the optimum value
between - 5 and 5 to achieve normality according to A2,
excluding zero where the natural logarithm of the dataset is
taken. If transformation is unsuccessful, alternate computa-
tion methods are used as specified in the key reference given
above [2].

y
(λ)
i =

{
yλ
i −1
λ

; λ �= 0
log yi; λ = 0

(7)

In analysis of variance (ANOVA) tables plotted on
graphs, the ‘Groups’ row contains analysis statistics for
testing variation between data groups and the ‘Error’ row
contains analysis statistics for testing variation within data
groups. For both rows, the sum of squares of the observa-
tions is given by SS, the degrees of freedom is given by
df and the ratio between SS and df is given by the mean
squared error, MS. The ratio between MS for each variation
source is given by the F-statistic, F . The probability of F

actually being higher is given by Prob > F and indicates
a significant difference between data groups when it has a
value ≤ 0.05.

3 Equipment and set-up

The following sub-sections describe the equipment and set-
up procedures used to conduct experiments. This begins
with a description of the robotic machine tool proposed and
tested in Section 3.1 and then its alignment and position-
ing procedures in Section 3.2. Test geometry, tooling and
programming details are given in Sections 3.3–3.5.

Fig. 1 Robotic machining set-up with the tool centre point highlighted
by the red circle

3.1 Robotic machine tool

As shown in Fig 1, the robot used for performance investi-
gation is a Fanuc F200iB hexapod controlled by the Fanuc
R-30iA controller. This has a six-degree-of-freedom parallel
kinematic design with stiffness and geometric error accu-
mulation benefits over serial-arm alternatives [12, 27]. The
robot manipulates an 8-KW Gamfior machining spindle and
uses a T-slotted vertical fixture as a machine bed, where
plate material is mounted using finger clamps. An example
of this is seen in Fig. 2.

3.2 Alignment and positioning

For machining trials, robot axes are aligned to be parallel
and square to the fixture using a dial test indicator (DTI)
mounted in the spindle. In this procedure, the robot is first
traversed along its X and Y-axes in its working frame with

Fig. 2 Robotic machining set-up with work-piece mounted on the
fixture with finger clamps
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the indicator pressed against the fixture. Non-parallelism is
detected when values on the DTI are not constant during
these motions. Corrections are made by manually adjusting
the working frame rotations to achieve a constant indicator
reading during traverse motions.

Squareness is corrected by manually rotating the DTI in
the spindle, with it offset from the centre of rotation and
pressed on the fixture, to trace out a circular path. The
spindle is shown not to be square to the fixture if values indi-
cated are not constant. Squareness corrections are made by
manually adjusting the tool frame rotations, which relates
the robot world coordinate system to the end effector. The
overall alignment quality is limited by the flatness of the
fixture and the uncertainty of the DTI.

To position the robot origin at the part origin, the Leica
AT401 laser tracker is used. The process is summarised in
Fig. 3 and involves fitting planes to measurement points
taken on the face and sides of the plate to be machined and
fitting a coordinate system at their intersection. The robot is
then measured in this coordinate system, with the tracker’s
SMR mounted in the robot’s spindle as its tool centre point.
The result is a coordinate that is used to translate the robot
to the part origin, where its working frame origin is set after
adjustments are made to account for tool length.

3.3 Machining test geometry

Three artefacts are machined from aluminium in experi-
ments, which contain features representative of those on
large components. Aluminium is not necessarily universally
relevant for all industries and applications but it can be
efficiently machined in comparison to steels, for example,
which, at the current state of low-cost robotic machining
technology, is impractically time-consuming due to the shal-
low depths of cut necessary to avoid excessive tool wear

Fig. 3 Positional alignment diagram

and complete failure. Test results presented in [42] indicate
that axial cut depths would not exceed 250 μm at a 60%
radial cutting engagement, although this is dependent on a
range of dynamic conditions including tool length, spindle
speed and stiffness i.e. extension of robot actuators and posi-
tion in working envelope [57–60]. This challenge is partly
due to its being impractical to use as coolant in robotic
machining as operations are conducted in an open environ-
ment, subjecting the process to higher than ideal cutting
forces [61]. Aluminium is appropriate as it allows a robotic
machine tool performance reference to be defined, using
complex geometry, for comparing improvements against in
the future, regardless of other challenges.

Potential applications for robotic feature machining on
large components are as follows. These are inspired by
the nuclear industry, although the primitive geometry types,
i.e. lines, planes and circles/arcs, are common to most
conceivable features on engineered components.

• Nozzle opening boring on vessels
• Nozzle weld preparation geometry
• Facing off welded nozzle blanks for hydrostatic testing
• Weld dressing
• Instrumentation bores
• Manways
• Mating surfaces between vessel faces
• Tube sheet baffle slots

Ideally, a robotic machine tool performance study would
test geometry that is common to such features and include
large enough combination of bores, radii, angled cuts,
flat surfaces, straight profiles and circular profiles to
draw statistically significant conclusions on. Test artefacts
are chosen to assess flexible machining performance in
a varied range of relevant situations and are shown in
Figs. 4, 5 and 6. These are inspected with a Hexagon Metrol-
ogy Global Silver 7107 CMM with a calibration uncertainty
of 1.5 μm + 3 μm per metre, defined according to ISO
10360-2 [62].

Fig. 4 NAS 979 machine tool test artefact. ∼ 200 × 200 × 50 mm
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Fig. 5 Cylindrical pocket test artefact. ∼ 270 × 270 × 60 mm

The primary artefact used to assess generic performance
in flexible three-axis flexible machining is the NAS 979
Machine Tool Test Artefact [63], which tests the impact of
the robot, control system and spindle on error over multiple
geometric conditions.

To assess ability to machine cylindrical geometry over
the working envelope of the robot, the Cylindrical Pocket
Test Artefact is machined, which contains 25 cylinders, each
measuring 50-mm � with a 53-mm depth. Here, diame-
ters at various cylinder depths and cylindricity are measured
to gage performance. This is custom designed and not
associated with a standard.

Finally, a test artefact composed of 20 weld prepared noz-
zles is used, each measuring 47.78-mm � overall with a
25-mm � internal bore and a 15-mm depth. Alongside the
Cylindrical Pocket Test Artefact, a wide range of feature
positions, depths, flatness, diameters, cylindricity, perpen-
dicularity, parallelism, radii and angularity are machined.
Overall, the artefacts cover geometry common to many
feature machining operations on large components, mak-
ing conclusions drawn using them for performance studies
useful in a wide range of scenarios.

3.4 Tooling and parameters

Tooling is recommended and supplied by Sandvik Coro-
mant, according to specific machining strategies as tabu-
lated with machining parameters in Tables 1 and 2.

Tool setting is done manually using the robot controllers
built-in tool centre point teaching facility. This involves

Fig. 6 Nozzle test artefact. ∼ 300 × 240 × 20 mm

mounting a turned spike in place of a cutting tool in the
robots spindle and directing the robot to point the spikes tip
at a fixed point from three different orientations. This com-
putes values for the tool frame position, i.e. the tool centre
point. Every time a tool is changed, the Z coordinate of the
tool frame must be offset by the difference between the tool
length and the length of turned spike to teach the original
value.

Prior to CAM programming, axial and radial cut depth
and spindle speed are selected based on stability limits
for each tool using modal analysis i.e. tap testing. Modal
analysis quantifies structural dynamic characteristics of the
machine tool by measuring unique vibration signatures
resulting from hammer impacts to determine frequency
response functions (FRF). Responses enable stability lobes
to be plotted and highlight low-resonance cut depth regions
for given spindle speeds, making it possible to tune param-
eters for the highest material removal rate without chatter
for a given tool, tool overhang length and tool holder
[64–66].

Stability lobes were determined for each tool used
according to the methodology discussed in the work of Tunc
et al. [40–42], which experimentally investigates robotic
machining dynamics and stable cutting parameters using the
exact same robot and some of the same tools used here.
This work should be consulted for a deeper insight into the
procedure for estimating optimum cutting parameters.

3.5 CAM programming

Robot programming is done using Delcam PowerMILL
with the Robot Interface plug-in, which allows tool paths
to be calculated, simulated and programmed. Point-to-point
programming was necessary, even when circular inter-
polation is justified, due to limited support for parallel
kinematic robots in the CAM software. Improved CAM
support is therefore a practical opportunity for reduc-
ing programme sizes and potentially improving accuracy
in circular geometry. Nevertheless, programmes are writ-
ten as conventional NC files and then converted into
robot language and formatted. When programmes exceed
∼ 11,000, it is also necessary to split them into smaller pro-
grammes due to controller storage restrictions. Finally, pro-
grammes are converted into the Fanuc .TP binary format for
execution.

4 Methodology

As with Section 2.2, the methodology used to conduct
experiments is based on previous work done to develop a
robotic machine tool performance evaluation methodology,
which can be accessed at [2].
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Table 1 Cutting tool parameters

Tool N RPM fz (mm) vf (mm/min) ae (mm) ap (mm) vc (m/min) T (h) Stage Q (cm3/min)

25-mm CoroMill 390 end-mill 3700 0.18 1332.0 15.0 0.35 290.597 ∼ 3.0 R 6.993

16-mm CoroMill 390 end-mill 5300 0.15 1590.0 9.6 1.5 266.407 ∼ 3.0 R & SF 22.896

5-mm CoroMill Plura end-mill 5500 0.0657 1084.05 3.0 0.4 86.394 ∼ 18.0 SF 1.301

10-mm CoroMill Plura end-mill 5500 0.16 3520.0 6.0 0.4 172.788 ∼ 8.0 SF 8.448

18-mm CoroMill Plura end-mill 5500 0.282 3102.0 10.8 0.5 311.018 ∼ 8.0 SF 16.751

5-mm CoroMill Plura end-mill 5500 0.0657 1084.05 3.0 0.1 86.394 ∼ 15.0 FF 0.325

10-mm CoroMill Plura end-mill 5500 0.16 3520.0 6.0 0.1 172.788 ∼ 8.0 FF 2.112

5-mm CoroMill Plura ball-nose 5500 0.147 1617.0 3.0 0.1 86.394 ∼ 5.0 FF 0.485

18-mm CoroMill Plura end-mill 5500 0.282 3102.0 10.8 0.1 311.018 ∼ 8.0 FF 3.35

Note that in finishing operations, ae is a maximum value as the material thickness left from roughing only allows this to be fully reached during
floor machining operations whereas only up to 0.4 mm of material is available to cut on walls (nominally). Using maximum parameter values in
computations allows T to be estimated conservatively

As summarised in Table 2, the procedure for running the
machining trial programmes for each test artefact are sim-
ilar. Each begins with a roughing stage (R) that leaves a
material thickness of 0.5 mm, and then goes onto semi-
finishing (SF) which leaves a material thickness of 0.1 mm
before final finishing (FF). Unused tools/inserts are used
for each artefact and are selected dependent on geometry,
as summarised in Tables 1 and 2. Each tool is mounted
using a Sandvik Hydro-Grip tool holder with adaptive col-
lets where necessary, excluding the 16-mm � Coromill 390
indexable end-mill, which has a threaded coupling to a HSK
63A tool holder to increase stiffness during roughing. Tool
parameters reflect the dynamic stability of each tool set-
up, determined with modal analysis, although in finishing

stages radial cut depths can be very low on wall geometry,
given that most of the material is already removed.

For the Cylindrical Pocket Test Artefact, stock was faced
off initially to create a reference surface for inspection and
then the main roughing operations were performed with
the CoroMill 390 25-mm � indexable end-mill, with new
inserts for each pocket in this case, which has a length suit-
able for the cylinder depths. Tool retraction moves were
included in roughing programmes for material removal, tool
cooling and chip adherence prevention. Semi-finishing and
finishing operations were done using an extended cut length
Coromill Plura 18-mm � end-mill. Whilst necessary for
collision avoidance, this combination of factors results in
less stability, which is why Q is low despite relatively high

Table 2 Machining times for each artefact, stage and tool used

Artefact and stage Tool Machining time (h:min:s) per
feature (total)

NAS artefact

R 16-mm-� CoroMill 390 indexable end-mill (02:03:55)

SF 16-mm-� CoroMill 390 indexable end-mill (00:46:42)

F 18-mm-� Coromill Plura end-mill (02:34:14)

Cylindrical pocket artefact

R 25-mm-� CoroMill 390 indexable end-mill 00:18:50 (07:50:50)

SF 18-mm-� Coromill Plura end-mill 00:04:59 (02:04:35)

F 18-mm-� Coromill Plura end-mill 00:05:08 (02:08:20)

Nozzle artefact

R 16-mm-� CoroMill 390 indexable end-mill 00:03:30 (01:10:06)

SF 10-mm-� Coromill Plura end-mill 00:00:50 (00:16:42)

F 10-mm-� Coromill Plura end-mill 00:01:39 (00:32:59)

SF 5-mm-� Coromill Plura end-mill 00:00:47 (00:15:30)

F 5-mm-� Coromill Plura end-mill 00:00:34 (00:11:23)

F 5-mm-� Coromill Plura ball-nose 00:01:55 (00:38:37)
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tool diameters. In contrast to this, operations performed
using the 16-mm � CoroMill 390 indexable end-mill are
highly stable, achieving high values for Q, due to the tools
shorter length and threaded interface with the tool holder.

For each artefact, stage and tool, Tables 1 and 2 show that
machining time does not exceed estimated tool life. This is
qualitatively verified by the operator during machining by
listening for tool wear and visually inspecting tools.

In this investigation, variables associated with cutting
forces, temperature, vibration, chip formation etc. are not
monitored. This is because the aim of this work is to build on
the available robotic machining literature by exploring the
overall dimensional tolerances achievable despite the com-
plex contributing phenomena that is already well studied.
Expanding experiments and analysis to robustly ascertain
specific origins of a given error is therefore likely to add
little to the field, as summarised in Section 1.

5 Results

This section presents and discusses experimental results
and analysis conducted to assess robotic machining pro-
cess performance. The NAS 979 Machine Tool Test Artefact
is considered in Section 5.1, the Cylindrical Pocket Test
Artefact is considered in Section 5.2 and the Nozzle Test
Artefact is considered in Section 5.3.

5.1 NAS 979 machining trials

Errors between measured and nominal dimensions are plot-
ted in approximate machining order for the NAS 979
Machine Tool Test Artefact in Fig. 7, as stipulated in the
standards that the theoretical analysis methodology, sum-
marised in Section 2, is based upon. Further details of this
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can be found in [2]. With this artefact, the aim is to quantita-
tively assess performance over multiple conditions, thereby
allowing judgements to be made on the ability to flexibly
use low-cost robotic machine tools in complex machining
operations. Measurements of different geometrical errors
are therefore analysed together as they each have an ideal
value of zero. This means that, if the technology is robust, all
errors should be consistently low, regardless of differences
between the features they originate from.

Specific features referenced are listed below, which cor-
respond to the Fig. 7 X-axis labels, and highlight that some
errors do not have a machining order as they are inher-
ent properties of geometric elements. For example, it is
meaningless to assign a machining order to bore diameter,
perpendicularity and cylindricity as they are measured as
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a property of a single bore that was completed at a single
instant in time.

1. Bore diameter
2. Bore perpendicularity
3. Bore cylindricity
4. Circle face depth
5. Top-square face depth
6. Mid-square face depth
7. Bottom-square plane depth
8. Bore face depth
9. Base face depth

10. Diamond side 1 to 2 perpendicularity
11. Diamond side 2 to 3 perpendicularity
12. Diamond side 3 to 4 perpendicularity
13. Diamond side 4 to 1 perpendicularity
14. Diamond side 1 to 3 parallelism
15. Diamond side 2 to 4 parallelism
16. Diamond side 1 to 3 distance
17. Diamond side 2 to 4 distance
18. Diamond angle
19. Top-square side to large side distance
20. Mid-square side to large side distance
21. Bottom-square side to large side distance
22. Circle face parallelism to diamond face
23. Top-square face parallelism to diamond face
24. Mid-square face parallelism to diamond face
25. Bottom-square face parallelism to diamond face
26. Bore face parallelism to diamond face
27. Outer square side A to B perpendicularity
28. Outer square side B to C perpendicularity
29. Outer square side C to D perpendicularity
30. Outer square side D to A perpendicularity
31. Outer square side A to C parallelism
32. Outer square side B to D parallelism
33. Diamond face flatness

34. Circle face flatness
35. Top-square face flatness
36. Mid-square face flatness
37. Bottom-square face flatness
38. Bore face flatness

No trend or stepped variation in machining errors is
apparent, which fulfils the initial assumption for perfor-
mance index computation. This is expected because no
specific feature machining operations are repeated as this
artefact explores generic performance in a varied range of
conditions.

Normality assumptions are shown to be violated in Fig. 8,
justifying transformation to correct skewness and meet pre-
requisites for performance index and confidence interval
computation. Skewness is due to the zero limit of errors
as they are computed to be absolute rather than directional
to be judged alongside flatness, perpendicularity, paral-
lelism and cylindricity. Successfully transformed error data
is shown in Fig. 9 and used for index computation.

Upper machine performance indices and confidence
intervals are plotted in Fig. 10 for a range of upper toler-
ance limits. A logarithmic relationship is apparent due to
the transformation, although this does not invalidate index
computations [67]. At a confidence of 95%, 9.34–23.58%
of dimensional errors will exceed the upper specification
limit set at 100 μm and 0.01–1.6% will exceed the limit
when set at 1000 μm [68]. Further insight into how errors
relate to robot problem areas may be drawn by repeating the
machining process, which justifies consideration of repeated
cylindrical and nozzle geometry in Sections 5.2 and 5.3.

5.2 Cylindrical pocket machining trials

Errors are plotted over time for each of the ten Cylindri-
cal Pocket Test Artefact features in Fig. 11, as stipulated in

Fig. 10 NAS error performance
indices
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Fig. 11 Cylinder artefact feature error run chart

[2], i.e. Feature1, Cylinder1...25 to Feature10, Cylinder1...25.
These features are given in the X-axis labels of Fig. 13.
Whilst features are labelled with numbers, in reality, they do
not have a meaningful machining order as they are mostly
inherent in a completed cylinder, rather than sequentially
machined. Clusters of data points in Fig. 11 indicate system-
atic error variation during machining between each feature
and therefore a non-normal error distribution across the
whole artefact, shown in Fig. 12.

For each feature, i.e. step or cluster of data points in
Fig. 11, statistical control is suggested by random variation,
although outliers are evident. Outlier cylinders are selected
and removed for each feature measured. This is done by
searching for the required multiple of standard deviations
from the mean to create an inlier threshold that maximises
that amount of data kept to achieve a normal distribution.
Results of this are shown in Fig. 13. Normality tests are
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Fig. 13 Outlier removal results

run after outlier removal, proving each feature’s error data
to be normally distributed. Outlier removal therefore allows
assumptions for performance index and confidence interval
computation to be met for each feature, which was not the
case initially.

Results show that most features have few outlier errors,
despite a total of 27. Excessive outliers are observed in
cylinder X-axis positions, suggesting that data is inherently
non-normally distributed and therefore that transformation
is more appropriate, for this feature, to fulfil requirements
for performance index computation. This is done success-
fully.

Cylinders 21 and 25 contribute the most outlier errors,
totalling 9 and 5, respectively, suggesting a systematic
change in process dynamics that is not typical in com-
parison with cylinder errors in other areas of the working
volume. Variance over the working envelope is supported
as being feasible in the initial literature review and prior
experimental work done to quantify positional error [69]
and to measure deflection and dynamic stiffness for cutting
parameter selection [40–42]. The excessive presence of out-
liers casts doubt over validity of remaining data from these
cylinders so they are eliminated entirely.
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Significant variation between feature error levels is
explained in the initial literature review in Section 1 as being
due to varying static errors and dynamic stiffness across
the robot’s working envelope. ISO 22514-3 suggests assess-
ing variation between multiple groups using the ANOVA
technique, as plotted in Figs. 14 and 15.

A statistically significant difference between error means
for each feature inspected is confirmed but not for each
cylinder. Insights into the robot and set-up issues can be
gained from feature-specific errors. X-, Y- and Z-axis prob-
lem areas are identified from the positional and cylindricity
error levels and the change in diameter error over pocket
depths. Nevertheless, at 9–36-mm depths, pocket diameters
have a decreasing trend. This trend may be due to the tool
path geometry, which meant that the most shallow cylin-
der wall sections were re-cut more times than the deeper
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Fig. 16 Cylinder error performance indices

Fig. 17 Nozzle cross section

ones. A relatively high perpendicularity value potentially
suggests part relaxation after clamp release, which may help
to explain X position errors. Note that the X-axis positional
errors only have cylinder 21 and 25 outliers removed for the
reasons mentioned.

In Fig. 16, the upper tolerance limits at which key
levels of performance are achieved are plotted for each fea-
ture investigated with confidence intervals. Results were
found by computing performances indices for a range of
upper tolerances limits and then looking up the tolerance
corresponding to key index levels. The associated confi-
dence intervals are converted into upper and lower tolerance
bounds by using them to search the dataset of indices orig-
inally computed once again. The reference index levels
chosen correspond to 6.68%, 0.13% and 3.4 × 10−6% of
robot-machined features exceeding the upper tolerance limit
at a 95% confidence level, when PmkU is equal to 0.5, 1.0
and 1.5, respectively.

The best performance is achieved when machining cylin-
drical geometry at a 36-mm depth as ∼ 100-μm upper
tolerance is met, although this is not achieved at other
depths. The poorest performance is achieved for cylinder X-
axis position, which has the greatest percentage of errors
predicted at > 600 μm. Systematic error variation between
features highlights that errors can be measured and offset,
which is worthy of investigation to achieve high-tolerance
flexibility in low-cost robotic machining.

5.3 Nozzle machining trials

When machining the Nozzle Test Artefact, practical chal-
lenges meant that error data derived from weld preparations

Fig. 18 Machined nozzle
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could not be gained. This is because geometry could not
be reliably fitted to inspection points probed on the angled
plane and radius on each nozzle due to the machined sur-
face being of insufficient quality. In Figs. 17 and 18, it can
be seen that, rather than achieving smooth surfaces, these
are wave-like due to the limited resolution of the axial and
radial cut depths.

A consequence of using low-cost industrial robotics for
machining is imperfect interfacing between the CAM sys-
tem and robot, making five-axis machining unavailable
and reliance on high-resolution three-axis motion neces-
sary for weld preparations. This restricts quality because
programmes become impractically long when a resolution
is reached that creates the smooth surface desired. Long
programmes are problematic due to the lack of controller
drip feeding capability. This could be alleviated by calling
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Fig. 20 Nozzle geometry error box plot

0

50

100

150

200

250

E
rr

or
, μ

m

Base Height

Base W
idth

Base Flatness

Front−Back Side Parallelism

Left−Right S
ide Parallelism

Front S
ide Perpendicularity

Back Side Perpendicularity

Left S
ide Perpendicularity

Right S
ide Perpendicularity
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canned cycles stored on the controller for interpolation, as
in conventional machining programmed in G-Code.

Despite practical challenges other useful data was gained
for performance index computation. A significant differ-
ence is observed between feature error means but not
between nozzle error means, as shown in Figs. 19 and 20
where nozzle and feature data is plotted in machining order.
Dimensions are taken in reference to Fig. 17. Inner cylin-
der perpendicularity is measured with the base plane as the
datum. Nozzle parallelism measurements 1 and 2 are taken
between the nozzle top and bottom faces and the bottom
face and the base, respectively. Error levels measured in the
Nozzle Test Artefact are lower than those in the Cylindrical
Pocket Test Artefact, which could be explained by various
factors, e.g. less operator intervention and differences in
geometry and tooling.

The lowest error levels are found for flatness, perpendic-
ularity and parallelism, indicating that the robot Z-axis is
repeatable and all axes are square. However, Z-axis capa-
bility could be questioned due to depth and height errors.
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Fig. 23 Nozzle error performance indices

As with the Cylindrical Pocket Test Artefact, X-axis errors
are shown to be a relatively large proportion of total error
in comparison to the Y-axis, which may be reflected in
the smaller cylinder diameter and cylindricity errors. This
appears to be less prominent in the outer cylinder diameter
error. Nevertheless, a key observation is that most errors are
systematic and therefore able to be offset, if robustly mea-
sured in situ with machining, despite complex underlying
root causes.

Additionally, overall artefact feature errors are plotted in
Fig. 21. These are not included in performance index com-
putation as they are not repeated, and are too few to give
a robust insight into generic abilities in the same way as
the NAS 979 Machine Tool Test Artefact, but they do sug-
gest some observations may be misleading. This is because
the overall flatness of the base, i.e. the area between the
nozzles, is > 10 times the individual nozzle faces maxi-
mum flatness error. This shows that, whilst a high flatness
tolerance may be achievable over a small area, it is less
achievable on a larger scale, which is likely to be due to
Z-axis repeatability over the working envelope. Parallelism
between base sides and perpendicularity, with the base sur-
face face plane, suggest that axes are only square within a
range of ∼ 100 μm.

Results show overall lack of statistical control and non-
normality due to stepped error variation between features
rather than a uniform error level across the whole part
or nozzle, as expected and validated by Fig. 22. Invalida-
tion of prerequisite assumptions justifies performance index
computation on a feature by feature basis rather than per
nozzle. This is confirmed with hypothesis tests that indicate
normality of data for each feature.

In Fig. 23, the upper tolerance limits at key performance
levels are plotted with confidence intervals for each fea-
ture considered. Again, the reference index levels chosen

correspond to 6.68%, 0.13% and 3.4 × 10−6% of features
exceeding the upper tolerance limit at a 95% confidence
level, when PmkU is equal to 0.5, 1.0 and 1.5, respectively. In
contrast to the Cylindrical Pocket Test Artefact, better per-
formance at lower tolerance limits is observed. Flatness and
perpendicularity achieving upper tolerances limits < 25 μm
and worst case results for X positions and cylinder height
being <280 μm at PmkU = 1.5. Error variation between
features and artefacts, once again, highlights inconsistent
performance but the systematic nature gives evidence that
this problem can be solved with compensation.

6 Summary and conclusions

Experiments have been conducted to quantify the perfor-
mance of a Fanuc F200iB hexapod-format robotic machine
tool to expand on available literature by determining what
the well-documented robotic machining challenges mean in
terms of achievable tolerances. The investigation consid-
ered three machined artefacts to determine the likelihood
of conformance to upper tolerance limits over a range of
geometric features. This has provided a substantial body of
data and analysis that are useful for comparing technology
improvements against.

Error variation is found in the sub-millimetre range,
although, in some cases, upper tolerance limits of < 100 μm
are achieved. Most importantly, it is confirmed that a large
proportion of machining errors observed are systematic in
nature. Whilst this is well known for robots used in conven-
tional ‘pick-and-place’ applications, it is not obvious from
previously available literature for machining applications
where the underlying causes of error are far more compli-
cated and less understood. This result is significant because
it gives evidence that compensation can be reliably applied
to offset these errors and therefore increase the range of
industrial feature machining operations that low-cost hexa-
pod robotics could be applied to. There is a large scope for
compensation as currently observed systematic errors can
be as high as ∼ 400 μm.

Practical challenges are also highlighted, although
machining harder materials is likely to cause greater tool
deflection and therefore greater errors than reported here.
Because of the complexity of error contributors and their
interactions, as described in the initial literature review, and
the challenges associated with fully understanding them for
static and dynamic calibration purposes, it is proposed that
further research aimed at error reduction should focus on in-
situ total error monitoring and compensation. It is therefore
concluded that metrology-assisted robotic machining tech-
niques should be developed as a means of reducing variation
and achieving the maximum benefits of the machining with
industrial hexapod robots.
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Overall, base case performance has been quantified to
determine how commonly researched robotic machining chal-
lenges ultimately relate to achievable tolerances forming a
benchmark for process selection and comparing develop-
ments against. Potential for substantially tolerance improve-
ment has been demonstrated, directing further research.
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