
J Supercomput (2016) 72:961–984
DOI 10.1007/s11227-016-1627-9

Sibling virtual machine co-location confirmation and
avoidance tactics for Public Infrastructure Clouds

John O’Loughlin1 · Lee Gillam1

Published online: 10 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract InfrastructureClouds offer large scale resources for rent,which are typically
shared with other users—unless you are willing to pay a premium for single tenancy
(if available). There is no guarantee that your instances will run on separate hosts, and
this can cause a range of issues when your instances are co-locating on the same host
including: mutual performance degradation, exposure to underlying host failures, and
increased threat surface area for host compromise. Determining when your instances
are co-located is useful then, as a user can implement policies for host separation. Co-
locationmethods to date have typically focused on identifying co-locationwith another
user’s instance, as this is a prerequisite for targeted attacks on the Cloud. However, as
providers update their environments these methods either no longer work, or have yet
to be proven on the Public Cloud. Further, they are not suitable to the task of simply
and quickly detecting co-location amongst a large number of instances. We propose a
method suitable for Xen based Clouds which addresses this problem and demonstrate
it on EC2—the largest Public Cloud Infrastructure.

Keywords Virtualisation · Cloud computing · Xen · Co-location · Security and
performance

B John O’Loughlin
john.oloughlin@surrey.ac.uk

Lee Gillam
l.gillam@surrey.ac.uk

1 Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1627-9&domain=pdf
http://orcid.org/0000-0002-5293-5508


962 J. O’Loughlin, L. Gillam

1 Introduction

Infrastructure Clouds offer compute resources for rent on-demand, typically on a per
hour basis [1]. One of the most popular offerings is the virtual server, which is the
mainstay of providers of InfrastructureClouds such asAmazon,Google andMicrosoft.
Customers can rapidly acquire running virtual servers (known as instances), use them
for as long as required, then release them when no longer needed, with the equivalent
resource then available for use by other customers.

The ability for a user to scale their infrastructure up and down as required is referred
to as elasticity, or ‘elastic infrastructure’. In such environments, instances may be
relatively short lived and applications designed for Cloud deployments do not, or
certainly should not, rely on the permanence of any particular instance.

Infrastructure Clouds support elasticity through the use of hypervisors, such as Xen
and KVM, which can logically partition a physical server into multiple virtual servers
on request. This allows a provider to share each physical host between multiple cus-
tomers, and any given physical host may well have instances from multiple customers
co-located on it at any given time. Providers argue that through multi-tenancy they
can achieve high utilization rates [2], although they do not publish the rates achieved,
and resulting cost savings can be passed onto customers, who in turn are more likely
to use Cloud services, with resultant increases in utilization. Amazon refers to this as
a ‘virtuous circle’, and it is clear that multi-tenancy with high occupancy rates is at
the heart of the Cloud Infrastructure business model.

However, multi-tenancy does raise various concerns for users of such systems, of
which security and performance are key. For security, such concerns include hyper-
visor breakouts, whereby hypervisor security is compromised and a guest virtual
machine can run arbitrary code with the same privileges as the hypervisor on the
underlying host. All virtual machines co-located on a host compromised in this man-
ner are now vulnerable to attack from the malicious virtual machine. Even without
a breakout, certain shared resources, such as L2 caches and network cards, may be
exploitable for various purposes. The L2 cache in particular is vulnerable to informa-
tion leakage whereby one virtual machine can extract information from another, with
demonstrations of this vulnerability including the extraction of encryption keys. For
performance, one such concern is noisy neighbours, where performance degradation
occurs for co-located instances when the (legitimate and not necessarily malicious)
resource consuming actions of co-locating instances coincide in the shared compo-
nents of the hardware—for example, requiring a large memory bandwidth.

Multi-tenant environments also offer the potential for targeted attacks. Whilst tar-
geted attacks themselves are not new, with Distributed Denial of Service (DDoS) and
brute force SSH attacks commonplace on the public Internet, Clouds offer a new vector
for them: it may be possible to place an instance on the same physical host as the target
instance. Of course, before such an attack can be carried out, the first requirement is
that of detecting co-location, i.e. determining whether your instance is on the same
host as the intended target—which is assumed to be owned by another user.

123



Sibling virtual machine co-location confirmation… 963

However, for the majority of users, identifying co-location amongst their own
instances may be of even more use. Sibling instances1 that are co-located may be
undesirable for at least the following reasons:

1. They may degrade the performance of each other when running compute bound
workloads.

2. They are all vulnerable to failure, or degradation, of the underlying host. This
complicates the building of redundant services on top of Infrastructure Clouds.

3. They are all vulnerable to the same noisy neighbours.
4. There is more exposure to a security compromise on a single host.

If a user can detect when their siblings instances are co-locating, they could put in
place a host separation policy to ensure that instances that should not be on the same
host can be detected and corrected for. Such a policy would involve starting additional
instance of the desired type and only putting into deployment those instances that are
not co-locating, and could be incorporated into instance deployment systems.

To date, methods for identifying co-location with a targeted virtual machine,
assumed to be owned by another user, include (1) simple network probes (2) water-
marking network flows and (3)measuring shared cache usage. These techniques can of
course be applied to detecting co-locating siblings. However, as we discuss in detail in
Sect. 2, these methods are either no longer viable or are as yet unproven on the Public
Cloud. There is a need, then, for a simple test that can address the sibling co-location
problem in elastic deployments. We list our test requirements as follows:

1. Simple to implement
2. Can quickly determine non co-location
3. Can determine co-location with a high degree of assurance
4. Scales with the size of the deployment being tested

In this paper, we address these requirements by exploring a trace derived from data
exported by the Xen hypervisor [3]—domain ids (domids). We demonstrate how an
arbitrary minimum distance between co-locating domids may be introduced, and we
use this as a watermark for determining co-location. We also suggest values for this
based on measured rates of domid increases.

The rest of the paper is structured as follows: in Sect. 2 we review literature relevant
to co-location, in particular we review extent work on performance and security issues
as well previuous techniques for determining co-location. In Sect. 3 we discuss Xen
domains and in particular the domain identification (domid) generation process. In
Sect. 4 we demonstrate co-location detection in sole tenancy, which serves to validate
and link the methods and ideas discussed in Sect. 3 to the multi-tenant case. Detection
in the multi-tenant environment is described and results discussed in Sects. 5–8. In
Sect. 9 we consider how we might address the same problem for containers, which are
gaining popularity for workload packaging on the Public Cloud. Section 10 considers
possible detection of previous locations—and the implications this has for targeted
attacks as well as so-called instance seekers. In Sect. 11 we consider costs involved for

1 We will refer to instances started by the same user as sibling instances in the remainder of this paper.

123



964 J. O’Loughlin, L. Gillam

implementing a host separation policy, and finally, in Sect. 12 we present a summary,
conclusions and future work.

2 Related work

2.1 Performance issues

In a virtualized environment, no matter whether Public Cloud or on-premise or
remotely hosted data centre, the ability for one instance to degrade the performance
of other co-located instances is well documented [4] and is referred to as ‘noisy
neighbours’. Intel identifies the primary cause of noisy neighbours as the sharing of
resources, such as the L2 cache, which cannot be partitioned [5]; that is, there is
no mechanism to limit how much of the resource an instance may consume. Conse-
quently, it is possible for some instances to use such resources disproportionately, to
the detriment of others.

Xen itself can exacerbate the noisy neighbor problem by the way it accounts for
CPU time used by instances. Xen uses weights and CPU limits to allocate CPU time
to instances on the same host, and two instances which are assigned the same CPU
weight should obtain the same amount of CPU time as each other. Instances perform
I/O operations (e.g. reading data from disk) by making hyper-calls to Xen, so Xen
will perform a significant amount of work on behalf of instances running I/O bound
workloads. However, the CPU time that Xen spends doing this is not accounted for
in the instance’s use of the CPU [6]. Consequently, an instance running an I/O bound
workload can obtain a disproportionate amount of CPU time at the expense of co-
located instances.

In multi-tenant environments, identifying if the performance of a running task is
being affected by a noisy neighbor, and therefore likely to take longer to complete than
expected, is difficult. On their production clusters, Google [4] attempt to detect tasks
which are likely to be performing poorly—and also the noisy neighbor responsible!
They do so bymeasuring a task’s cycles per instruction (CPI), i.e. the number of cycles
required to execute an instruction, on a per second basis. In this way they build a CPI
distribution for the task. Due to architectural differences between CPU models, a task
has a CPI distribution per CPU model. During a task’s execution they compare the
CPI measurements with the known CPI distribution and search for outliers. Here, an
outlier is defined as being more than 2 standard deviations from the mean, and if more
outliers are detected than the CPI distribution predicts, then performance of the task is
likely to be poor. The protagonist, i.e. the noisy neighbour, is identified by correlating
co-locating instances’ CPU usage with the increase in CPI outliers for the victim. That
is, if task A’s use of the CPU repeatedly coincides with the occurrence of an outlier for
task B, then task B is identified as a noisy neighbor. If a task is identified as being a
noisy neighbour, its CPU usage may be throttled, or indeed it may even be terminated.

Google manages dynamic CPU allocation for tasks by packaging them into a Linux
Container [7], which is an Operating Systems virtualisation technology, similar to
Solaris Zones [8] and BSD jails [9]. These containers share the underlying OS, but are
provided with their own namespaces. Processes started within the same container can

123



Sibling virtual machine co-location confirmation… 965

see each other through standard process listing, but will not show processes started
in other containers. Resource allocation to containers is managed via control groups,
(cgroups) [10] which allows a tasks CPU usage to be managed dynamically. As well
as throttling CPU usage for noisy neighbors, Google also allows tasks to use more
than their allotted CPU usage if the resource is available.

The ability to identify noisy neighbors, and dynamically manage resource alloca-
tion, is crucial to Google as its web searches are latency sensitive. That is, each web
search starts a number of tasks, all of which must complete within a fixed time. Pre-
viously, all tasks ran for the specified time, however the work done by any task which
did not complete in time was not included in the results, and hence were a waste of
resources. Now these tasks can be identified and terminated.

On a Public Cloud, avoiding being your own noisy neighbor has a performance and
cost benefit. Public Clouds operate a ‘pay as you use’ billingmodel: onAmazon’s EC2,
instances are rented by the hour, whilst on GCE and Azure the billing is per minute.
Tasks whose performance is being degraded will likely take longer to complete than
expected (based on past performance), and this may lead to higher costs.

2.2 Security issues

The recent spate [11] of hypervisor vulnerabilities, resulting in the large scale reboot
of many Public Clouds, including EC2, GoGrid and Rackspace, has heightened the
awareness of hypervisor vulnerabilities and their potential impact on large numbers
of customers. At the time of writing there is limited evidence of any such breakouts in
the wild. However, as we have already noted, security breaches in multi-tenant envi-
ronments do not necessarily require a compromised hypervisor and may be achieved
through the use of shared resources, such as the L2 cache, as we now discuss.

The problem of extracting information between co-locating virtual machines has
been investigated by a number of authors. In [12], the sharing of an L2 cache between
VMs was shown to be a possible vulnerability when it was demonstrated that one VM
may extract cryptographic keys from another VM on the same host. Such an attack
is known as an access driven side channel attack. Particularly noteworthy is the fact
that the attack was demonstrated on an SMP system. In this case the challenge of
core migrations i.e. the scheduling of a VM onto different cores during its lifetime, as
would be encountered in a Cloud environment, needs to be overcome.

The vulnerability of a shared cache relies, in part, on exploiting hypervisor schedul-
ing. Methods to increase the difficulty of successfully using such attacks are under
development [13] and are already being integrated into Xen. Whilst such work mit-
igates fine-grained attacks, other attacks that seek to obtain a large share of the L2
cache are considered viable. In this case then, the intention is to be a noisy neighbour.

2.3 Co-location techniques

The potential to extract information between co-locating virtual machines has led
to work on targeted attacks in the Cloud, where an attacker seeks to co-locate with
a specific target. The attacker identifies the target via a publically available service

123



966 J. O’Loughlin, L. Gillam

(such as http) that they are running, and from this the IP address of the service can be
determined. The initial identification that a target is running on a Public Cloud comes
from comparing this IP address with known IP ranges used by Public Clouds. Next, the
attacker must also attempt to determine the target’s location within the Cloud i.e. the
Region and Zone. Having done so, the attacker then speculatively launches instances
within the same location in the hope that one of those instances is started on the same
host as the target.

Such a targeted attack requires techniques for determining co-location with the
target before the attack can be launched successfully.We classify techniques developed
to date as:

1. Simple Network Based Probes
2. Network Flow Watermarking
3. Cache Avoidance

In [14], a number of network based probes were proposed including (1) ping round
trip time and (2) common IP address of dom0. The latter technique works as follows:
suppose we have two instances, A and B. In instance B we have a service running that
any machine on the internet may connect to (for example an HTTP service). Instance
Awill launch a traceroute using a TCP probe against the open port on instance B. Note
that, as ICMP echo replies (pings) may be disabled, the technique requires a running
service on B. The traceroute command will output the list of IP addresses that have
responded to the tcp probe. The last IP address to respond is the address of the service.
On Xen, the penultimate response is from the Xen hypervisor, which is the dom0. In
this way, instance A may determine the IP address of the dom0 which is running and
managing instance B. Similarly, instance A can launch such a probe against itself, and
determine the IP address of the dom0 it is running on. If the two IP addresses are the
same then the instances are running on the same host.

To test the veracity of these methods they also use access timings of shared drives.
No details are provided of the type of drive being used (local or network) or how the
disk is being shared. Whilst access times to shared drives may potentially be used for
detecting co-locating siblings, there are a number of issues not discussed that demand
further investigation. Perhaps most important, is the widely reported variation in disk
read/write timings on EC2 [1], which clearly needs to be accounted for in any test that
uses such timings as a method for detection. Perhaps unsurprisingly, dom0 no long
responds in a traceroute, as we and others [15] have confirmed and so the method is
no longer viable.

Whilst simple network probes no longer work, the observation that instances on
the same host most likely share the network card has led to the development [15] of
a technique which allows one instance to inject a watermark into the network flow of
another instance (on the same host). This time we require instances A, B and C. As
before, instance B is the target, and must be running a publically accessible network
service. Instance C is the control instance, whilst instance A is being tested for co-
location with B. As B is running an accessible service, instance C connects to this
service and maintains an open connection with it. In doing so instance C establishes
a network flow from instance B to itself. Similarly, instance C establishes a network
flow from itself to instance A. If A and B are on the same host then they are (most

123



Sibling virtual machine co-location confirmation… 967

likely) sharing a network interface; that is, both their network flows to instance C are
through the same physical network card. The aim then is to exploit this shared physical
network card, with instance A being able to inject a watermark into the flow from B
to C. If it is possible for instance A to do this, then A and B are (most likely) on the
same host.

This technique was demonstrated on a variety of stand-alone virtual systems. It is
notable as the only hypervisor agnostic test we have found, as all others seek to exploit
properties of hypervisors—as indeed we ourselves do. However, as the authors state,
there a number of defenses against watermarking in place in Public Clouds, and in
particular on EC2, and to date the authors have been unable to successfully implement
the test on a Public Cloud.

In [16] a technique is developed for detecting the presence of any other instances
on the host. The aim of the work is to detect sole tenancy violations. With sole ten-
ancy instances a provider makes a guarantee that the instance will not co-locate with
instances owned by another user, however multiple sibling sole-tenancy instances may
co-locate. To detect violations, a cache avoidance strategy is used whereby an instance
avoids use of the L2 cache, and the resulting cache speed ismeasured after doing so. By
detecting variation in cache timings, an instance detects if it is sharing the cache with
other instances on the same host. To avoid use of the cache requires modifications to
the kernel running the guest, which is technically challenging, and has a performance
overhead.

In a sole tenancy environment—and assuming no violations of the tenancy
agreement—multiple sibling instances can co-ordinate their use and avoidance of
the cache and in doing so can detect each other. However, it is not clear if this tech-
nique can be extended to a multi-tenancy environment, where we expect the presence
of other instances. As such the technique is unproven in this case.

In summary, neither simple network probes nor network flows watermarking co-
location tests work on EC2 due to measures already in place, whilst cache avoidance
in the multi tenancy environment remains unproven and technically challenging. This
amplifies the need for simple, and workable, methods.

3 Xen domain identifiers (domids)

The Xen system is a widely deployed hypervisor in Infrastructure Cloud systems, and
is in use at Amazon, Rackspace, IBM and GoGrid, amongst others. The Xen system
consists of theXen hypervisor together with a privilegedVMcalled domain 0 or dom0.
Xen is a bare-metal hypervisor, started by the BIOS, which in turn starts dom0. The
dom0 is a privileged VM and can directly access hardware such as network cards and
local disk storage. Dom0 provides a management interface for the Xen system, from
which system administrators can launch and manage the life cycle of VMs. These
VMs are unprivileged domains and are referred to as domUs.

The Xen hypervisor is responsible for scheduling VM CPU time, managing mem-
ory, and handling interrupts. On an x86 CPU, dom0 privilege escalation is provided by
running dom0 in ring 1, whilst the Xen hypervisor runs in ring 0 (and the unprivileged

123



968 J. O’Loughlin, L. Gillam

VMs, domUs, run in ring 3). DomUs gain access to hardware devices such as disks
and network cards via calls to dom0, commonly referred to as hyper-calls.

Upon creation, each domain is given a UUID, which serves as a unique identifier
amongst a deployment of multiple Xen systems; that is, it uniquely identifies a domain
amongst the set of all domains across the Xen systems. For example, on EC2 theUUID
assigned to a new instance will (in theory) be unique to that instance, at least within
the Region in which it was launched.

In addition, a newly launched domain is assigned a domain identifier, referred to
as the domid. This uniquely identifies domains on the physical server only. On EC2,
instances on the same physical server will have different domids. However, these may
well clash with domids for instances on other hosts. The domid is a 16 bit integer
and allocation starts at 1 and is monotonically increasing with Xen assigning the next
available domid, 2, 3 and so on.

When domid 65536 has been assigned, a ‘wraparound’ occurs, and Xen assigns
the next available domid starting again from 1 to allocate new—but only available—
domids: allocation will again occur in a monotonically increasing manner, but may
be interrupted if an existing domain already has the next number in the sequence as
a domid. For example, if the last assigned domid was 900, but existing domains have
domids of 901 and 902, then the next available domid is 903. Domids do not, however,
survive an underlying host reboot, and in this case the next available domid is reset
to 1.

Generally, then, instances that are started one after the other will obtain consecutive
domids. On EC2, therefore, we would typically expect co-locating instances that are
started at the same time to have consecutive domids—or, with other requests also
being satisfied, quite close to each other.

Xen domids have a rather interesting property, and one which will be crucial to us
later: an instance can obtain a new domid simply by rebooting. Upon rebooting, an
instance will obtain the next available domid. It is not possible to predict what this will
be as its depends upon a number of factors, including the number of new instances
that have started on the same host, the number of other instance reboots that have
occurred, and whether or not the underlying host itself has been rebooted. In the later
case, a host reboot is likely detectable since running instances will also be rebooted
and the new domids will be assigned in the lower end of the range 1–65536. Of course,
if an instance has an existing domid at the lower end then it may not be possible to
distinguish between a host reboot and an unexpected instance reboot.

In the case where there is only one instance on a host and it is guaranteed that there
are no co-locating instances, then the instance can cause its domid to monotonically
increment simply by repeated reboots. That is, if the current domid is Y , then the
only activity on the host which can cause the next available domid to increment is the
activity of the instance itself. In this case, a reboot produces a new domid of Y + 1, a
second reboot increments the domid to Y + 2, and after k > 0 reboots the instance’s
domid is Y + k. If a wraparound occurs then the value of domid is Y + k + 1 modulo
65537. Note that we need to include a +1 on our expression as the domid of 0 is already
assigned to the dom0. For example, if an instance’s current domid is 65536, then a
reboot will produce a new domid of (65536 + 1 + 1) modulo 65537 which is 1.

123



Sibling virtual machine co-location confirmation… 969

Sibling instances on the same host, and in the guaranteed absence of non-siblings,
can coordinate their reboots, and in doing so can use this to increment the next avail-
able domid by at least some agreed fixed amount each time. That is, instance A can
increment the next available domid by k> 0 and this is observable by a sibling instance
B, as A and B have the next available domid in common. In turn, B can also increment
by at least a fixed amount, and again this should then be observable by A.

In multi-tenant environments, we can increment in this fashion by at least a fixed
amount and not an exact amount. That is, an instance which reboots itself k> 0 times
causes the next available domid to increment by at least k. There maywell be instances
other than the siblings on the host, which of course also share the next available domid,
and whose activity causes it to increment, as well as new instances being launched
on the same host. Before we consider the more general case of detecting co-locating
siblings in a multi-tenant environment we first consider the case of detecting in a
sole-tenancy environment.

4 Detecting sibling co-location in single tenancy instances

Some Cloud providers, such as Amazon, offer single-tenancy instances, also known
as dedicated instances. Single-tenancy instances are guaranteed not to co-locate with
any other users’ instances. This does come at an increase in costs. Although the host
may not be shared with others users, it is entirely possible that siblings can co-locate.
Indeed, it would seemmore efficient fromAmazon’s point of view to co-locate single-
tenancy siblings.

In this section we show how we can detect co-location of a pair of sibling single
tenancy instances. We exploit the properties of domids discussed in Sect. 3, as well
as the guaranteed absence of any other instances on the hosts which the siblings are
running on. We begin by explaining how domids are obtained. (Note: In this section
all instances under discussion are single tenancy instances.)

4.1 Obtaining the domid

A user does not have administrative access to Xen on EC2 (or indeed any Public
Cloud). However, we can determine an instance’s domid via Xenstore. Xenstore [17]
is a data area exported from dom0 to domUs, the interface of which is a pseudo file
system which can be mounted on /proc/xen within a guest. This is analogous to the
/proc and /sys pseudo file systems in Linux which provide an interface for user space
processes to the Linux kernel. Under a standard Xen system, a domain can extract
information such as the domids of all the running domains and the CPU weightings
assigned to them. As one would expect, on EC2 the data exported to the instances via
Xenstore is restricted, and does not allow a domain to obtain any information other
than about itself. However, it is particularly useful for our purposes that a domain can
obtain its own domid.

A user can obtain the domid with the following steps:

1. Install the xen-utils package

123



970 J. O’Loughlin, L. Gillam

2. mount the /proc/xen filesystem with the following command: mount –t xenfs none
/proc/xen

3. Run the command: sudo xenstore-read domid

4.2 Single tenancy sibling co-location detection

Consider a pair of single-tenancy sibling instances in the same AZ. Further, suppose
the user has no other running instances apart from this pair. Note that as we have single
tenancy, the instances are either on the same host as each other i.e. are co-locating, or
each is running on a host entirely free of co-locating instances.

Suppose that the current domids of the two instances are X and Y respectively, and
that X > Y , and we refer to these instances as A and B respectively.

Suppose we reboot the instance with the higher domid, A, k times where 0 < k <

65536, whilst ensuring that instance B is not rebooted during this period. We can of
course ensure this since they are siblings. Further, assume that a wraparound did not
occur for instance A with respect to its new domid. In this case then, instance A’s
new domid is X + k. On the host A is running on, the next available domid is either
X + k + 1, or 1 if A has domid 65536. For instance B, there are only two choices for
its next available domid, which correspond to it co-locating with A or not. If B is not
co-locating with A, then the next domid it will obtain is Y +1, with Y +1 < X +k +1
since Y < X . If it is co-locating, then next available domid B can obtain is X + k + 1
or 1. To determine co-location, we simply reboot B and obtain its new domid.

Now, suppose a wraparound did occur while we rebooted A k > 0 times. As stated
in Sect. 3, its new domid is Z = X + k + 1 modulo 65537. Now, the next available
domid on the host A is running on Z + 1. If B is not co-locating with A, then upon a
reboot B will obtain a new domid of Y + 1 ≤ 65536, since Y < X ≤ 65536. If B is
co-locating with A then its next domid will be Z +1. Again, to determine co-location,
we simply reboot B and obtain its new domid.

For the rest of this paper, when discussing instance reboots, we assume for the
sake of simplicity that a wraparound does not occur, and note that an extension of the
argument being made is possible to the wraparound case.

4.3 Investigating co-location in single tenancy

We investigate single tenancy on Amazon’s EC2, and we start by launching four pairs
of m4.large instances in the US-East-1 Region. For each pair was launched from the
same request as single-tenancy instances, and further each pair was launched in a
different availability zone (AZ): us-east-1a, us-east-1b, us-east-1c and us-east-1e. For
each pair we recorded the domids, and these are shown in the Table 1.

We can observe that the domids for our pairs are all consecutive. Instances started
consecutively on the same host, and in the absence of any other instance launching
activity, would of course have consecutive domids. This is a first strong hint that the
pairs of instances may be co-locating. For each of the pairs, we then rebooted the
instance with the higher domid four times, and ensured the instance with the lower
domidwas not rebooted. As per the co-location test described, if we reboot the instance

123



Sibling virtual machine co-location confirmation… 971

Table 1 Domid pairs
AZ Domid pairs

A 35, 36

B 59, 60

C 21, 22

E 47, 48

with the lower domid, we would now expect its domid will either increment by 1 or
by 5. We reiterate that because we are in a single tenancy environment these should
be the only choices available. If the increment is by 1, then the instances cannot be
co-locating, since this value is less than the domid of the other instance. If it has
incremented by 5, then as the only activity on the host that could have caused this
is the other instance, they must be co-locating. For all four pairs of instances above,
the domid of the second instance was incremented by five each time, and this was
true for further five pairs of m4.large instances. This kind of incrementality was also
seen for pairs of sole-tenancy m4.xlarge instances and also for pairs of sole-tenancy
m4.2xlarge instances.

Next we launched three single tenancy instances, one of each type of m4.large,
m4.xlarge and m4.2xlarge. Using our domid test we determined that the instances
were not co-locating, and we suspect that this was entirely due to the fact that they are
of different types. We kept these three instances running and launched an additional
three single tenancy instances, again one each of m4.large, m4.xlarge and m4.2xlarge,
in the same AZ. Using our domid test we find the new m4.large was co-located with
the existing m4.large, and similarly for the m4.xlarge and m4.2xlarge. That is, we find
that instances of the same type appear to co-locate, whilst instances of different types
do not, even though the types are part of in the same instance family—the M4 class.
Finally we did not find any m4.10xlarge types co-locating, this type has 40 vCPUs
and from the Amazon documentation we know that 1 vCPU is assigned one hardware
hyper thread, and so the m4.10xlarge is running on a host with at least 20 real cores,
and 40 hyper-threaded cores. The lack of co-location may point to the m4.10xlarge
consuming an entire host. Our attempts to co-locate a smaller instance type with the
m4.10xlarge did not succeed.

As this discussion shows, it may be possible to make inferences regarding VM
allocation policies by using co-location detection methods, and this could prove a
useful tool for researchers in this area wishing to investigate VM allocation at hyper-
scale.

We now wish to extend co-location detection via domids to the multi-tenant envi-
ronment. We begin by collecting domids to see if we can find evidence of potential
co-location, and in particular we look for consecutive (or close) domids as instances
started on the same host within a short period would have this.

5 Collecting domids in multi tenant instances

Having collected domids in single tenancy instances, and shown how we can use
domids to determine co-location, we now turn our attention to the multi-tenant case.

123



972 J. O’Loughlin, L. Gillam

Table 2 Consecutive domids
Seq Domids

1 563, 564, 565, 566, 567 and 568

2 723, 724, 725, 726, 727, 728 and 729

3 752, 753, 754, 755, 756, 757 and 758

We begin by collecting domids for multi-tenant instances and discuss the degree to
which they hint at co-location in this case. Using an Ubuntu precise 12.04 AMI, we
can readily launch 20 m1.small instances as a single request in the Region US-East-1,
in AZ us-east-1b. Each instance gets xenstore-utils installed, and has the exported Xen
store file system mounted on /proc/xen. In this setup, it is then possible to obtain an
instance’s domid, uuid and cpuid.

In Table 2, we list 20 domids obtained from just such a setup (on 07/10/2014), which
are readily organised into three sequences of consecutive domids. For all instances,
the CPU model was an E5-2651.

The simplest explanation for these consecutive domids is that the 20 instances are
allocated to just three hosts. It may also be possible that these sequences are obtained
simply by chance across a large number of hosts that are churning VMs at similar
rates, and we discuss this possibility in Sect. 5.

The AZ us-east-1b appears homogeneous (just one CPUmodel) for the account we
were using. To simplify concerns further, we instead examine domids in us-east-1a
as this provides heterogeneous hosts. This helps to improve clarity over co-location
since instances with consecutive domids on different CPU models are clearly not co-
located, and so here the consecutive domids are more likely to indicate co-locating
instances—unless, of course, cpuid and domid values are spoofed.

We ran 5 requests, with 20 instances per request, on Amazon’s spot market for
us-east-1b. Of the 100 instances started, 3 were reclaimed and so we have results
for just 97 instances. As before, we determine the domid, uuid and cupid. After this
information was obtained, the instances were released. Each request was made at a
different time over a 2 days period, from 07/10/2014 to 08/10/2014. In Table 3, below,
we list only the sequences with consecutive domids found in each request, together
with the instance CPU models—one of E5645, E5507 or E5-2650.

3 out of 5 of the requests evidence consecutive domids with E5645 CPUs, and all
three contain at least two such sequences. The most common pattern is of two consec-
utive domids, and the longest sequence is 7. We note consecutive domids in request
1 of 1671 and 1672, with different CPU models—E5645 and E5-2650 respectively—
which clearly cannot be co-located (unless, again, the cpuid is spoofed). In request 1,
it would appear that 10 of 20 instances are not host separated, in request 3 this is 14,
and in request 4 it is 12.

6 Necessary conditions for co-location in multi-tenant instances

In a single tenancy environment, we can express exact conditions for co-location using
domids. This is done using the properties of how domids are generated, and as we

123



Sibling virtual machine co-location confirmation… 973

Table 3 Domids from multiple time-separated requests

Request, date and time CPU model Consecutive domids

1: 07/10/2014: 17:05 E5645 242, 243, 244

E5645 469, 470

E5645 1499, 1500

E5645 + E5-2650 1671, 1672

E5-2650 2627, 2628, 2629

2: 07/10/2014: 17:58 None

3: 07/10/2014: 21:57 E5645 250, 251, 252, 253, 254, 255,256

E5507 732, 733

E5645 1501, 1502

E5-2650 2630, 2631, 2632

4: 08/10/2014: 10:25 E5645 263, 264, 265, 266

E5645 501, 502

E5645 1505, 1506

E5-2650 2637, 2638, 2639, 2640

5: 08/10/2014: 21:50 None

are in a single tenancy environment we do not have to consider the possible effects
non-sibling instances may have on the next available domid. In this section we extend
this to multi-tenant environments, taking into account the potential presence of other
instances on the host.

Suppose we launch two (multi-tenant, not sole-tenant) instances A and B at the
same time, what conditions must be satisfied if the instances are co-located? First,
their underlying host must have the same CPU model. Secondly, the values of their
domids must be sufficiently close to each other.

For the second condition, we note that we do not require that the domids be consecu-
tive but should be sufficiently close to each other. How close depends upon the amount
of domid increasing activity that can occur between the instances being started. In turn,
this depends in large part on howmany instances a host can have running concurrently
on it. Suppose a host supports up to k instances, and that two sibling instances A and
B are scheduled onto the host. From our previous work, based on launching close to
10,000 instances on EC2, we estimate that instances started from the same request
typically launch within a minute of each other at most, which offers just a minute of
opportunity for domid increasing activity on the host between the two sibling instances
being launched. We consider two cases at the extremity:

1. The maximum number of instances a host can run is given by ‘n > 0’. The host
has n − 2 instances already running when A and B are scheduled onto it. Further,
suppose all these instances are rebooted in between A and B launching. This
would set the domid distance between A and B to at least n − 2. Now, from our
experiments we estimate that it takes between 60 and 90 s from initiating a reboot
of an instance to it becoming available again so that a user can log into it and

123



974 J. O’Loughlin, L. Gillam

reboot again. Therefore the majority of the existing instances could only reboot
once in the time period. Note that the 60–90 s is predominately taken up with OS
shutting down services, followed by the OS restart, during which time the domain
is active. This then leaves little, if any, time for other instances, in addition to the
existing n − 2 to start.

2. The host had no instances running on it. Between starting A and B, another request
was satisfied and this resulted in the launch of n −2 instances. EC2 states that boot
times for instances with EBS root volumes is in the region of 60–90 s, which is in
agreement with data we have collected.Further, instance termination can take up
to a minute. Therefore there is no time for one of the n − 2 instances to have been
started and terminated and an additional instance started before B is launched.

From the discussion above, if a host can support n instances, then n is a good bound
for the maximum distance between the domid of two sibling instances launching on
the host from the same request.We could of course take multiples of n and increase the
bound, and the larger we set the bound the less likely sibling instances, launched from
the same request on the same host, will have a distance between their domids greater
than this. From our empirical data, we would suggest that a bound of 2n is highly
unlikely to be exceeded, and would perhaps indicate some somewhat pathological
behavior on the host.

We can estimate values of n, i.e. the number of instances a host can support, from
the CPU model and from the vCPU to CPU core allocation. On EC2 (and indeed
on GCE, HP Helion and others) all current generation instance types schedule one
vCPU as one hardware hyper thread. In these cases, we can obtain a hyper thread
count from the CPU specification, and we assume a dual socket configuration. For
previous generation instances, such as the m1.small in Sect. 5, we have to do more
work. We have previously shown [18] that m1.small instances on EC2 may be backed
by 6 different CPUmodels, including theAMD2218 and the Intel Xeon E5-2651—the
oldest and newest CPU models respectively. The former is a dual core CPU, so a host
with dual socket can have at most 4 cores. The latter, however, has 10 cores per socket
and dual socket would have 20 cores. Further, if hyper threading is enabled—common
practice on EC2 on CPU models which support it—the core count rises to 40. Finally,
the configured ratio of vCPUs to physical cores determines k. As a rule of thumb we
will take n to be two times the core count of a CPU, and times again by 2 if the CPU
supports hyper threading.

Note that as we are estimating themaximum number of vCPU that may be available
for instances, and further that the maximum number of concurrent instances running
corresponds to this. In practice, our estimate of n by this method is an over estimate
in most cases, since most instance types will have more 1 vCPU. That is, if a host
has 40 vCPUs, it may support up to 40 concurrent instances each with 1 vCPU or 20
instances with 2 vCPUs and so on.

In Table 4 below, we list the six models we identified (to the time of writing)
as backing m1.small instances, together with a domids range based on the above
reasoning:

We state our necessary conditions for sibling co-location as:

1. The instances have the same CPU model

123



Sibling virtual machine co-location confirmation… 975

Table 4 CPU model and domid
range for siblings

CPU model Domid range

AMD 2218 8

Intel Xeon E5430 16

Intel Xeon E5507 16

Intel Xeon E5645 48

Intel Xeon E5-2650 64

Intel Xeon E5-2651 80

2. The instances have domids within 2n of each other, where n is the number of
concurrent instances we have inferred to be supportable by the CPU model

Whilst the two conditions are necessary for co-location, they are not sufficient. It is
entirely possible that the instances have been allocated to hosts, with the same CPU,
whose next available domids are close simply by chance. In this case then the instances
can satisfy the conditions but not be co-locating. Indeed, this becomes more likely if
the hardware platform and configuration is identical, and if the churn rate of VMs is
similar. In fact, we have already seen an example in Table 3, batch 1, of instances
with domids of 1671 and 1672, but which had different CPU models—and so were
not co-locating.

Whilst emphasis has to date been on instances launched from the same request, we
can drop this restriction and consider two instances A and B started at any time. By
rebooting them both they would obtain new domids, and we can now consider them
as equivalent to newly launched instances with regards to their new domids.

We note that the conditions here give a very quick test for non co-location. This
allows a user to separate instances between non co-located and candidates for being
co-located. This fulfills the first two requirements for our co-location testing, as stated
in Sect. 1.

We therefore need to address the question of the likelihood that non-co-locating
instances have domids near to each other, and we consider this in the next section.

7 Domids and the almost birthday problem

The question of how likely are two instances with close domids to be co-locating is
similar to the well known ‘birthday’ and ‘almost birthday’ problems. The birthday
problem can be stated like this: How many people do we need in a room in order for
there to be a 0.5 chance that at least 2 people will share the same birthday? In this case
the answer is 23. As we are interested in near domids our problem is more akin the
‘almost birthday problem’: In a room of 23 people how likely is it to have at least one
pair of consecutive birthdays? An analytic solution to this is presented in [19], with
the answer 0.89.

Monte Carlo methods can be used to tackle the birthday problems stated above.
We can assume that a birthday is equally likely to fall on any day in the year. We then
generate random samples, of size 23, drawn from the uniform distribution. For each

123



976 J. O’Loughlin, L. Gillam

sample we record a success if there is a matching (or consecutive, depending upon
the problem of interest) birthday. The number of successes divided by the number of
trials is then the estimate of the probability.

We note that the assumption that birthdays are uniformly distributed is not entirely
accurate and that seasonal variations do exist. However, the uniform distribution does
provide a good approximation.

Canwe apply suchmethods to estimate the probabilities of instances having consec-
utive, or near, domids by chance—and not because they are necessarily co-locating?
An immediate requirement is a reasonable approximation for the distribution of domids
across hosts. In theory, a domid is in the range [1, 65536], however we have so far
only observed domids within a restricted range. Further, the domid distribution is
likely CPU dependent to some degree. CPUs with more cores, such as the E5-2651,
will likely increment domids at a different rate to the E5645, as they can run more
instances.

We could assume that the range of domids for hosts with the same CPU model is
equally likely to be between the observed minimum and maximum. Applying this to
the E5645, that would be between 252 and 20,708.Using aMonteCarlo simulation, we
find that 20 non co-located instances, placed on randomly selected hosts with E5645
CPUs, will have at least one pair of consecutive domids with a probability of 0.009.
That is, approximately 1 in 100 batches of 20 instances would have at least one pair
with consecutive domids.

However, it is not obvious that we can model the problem in a manner similar to
the birthday problems. Consider for example, a power failure in one portion of a data
centre resulting in a large number of E5645 hosts being rebooted. In this case then, we
initially have a large number of E5645 hosts with small domids. Instances allocated
to these hosts would have a far greater chance of consecutive, or near, domids than
our estimate would imply. Whereas birth dates do not tend to change in such a way.

Indeed, it is not clear that the domid range should be well approximated by any sta-
tistical distribution. Further, the VM allocationmechanisms in use, by which instances
are assigned to hosts, are not advertised, maywell produce domid ranges whereby near
domids are more likely, and perhaps considerably so, than our assumptions would
allow for. However, developing a model to accurately represent domid distribution
across hosts is beyond the scope of this paper, so we do not rely on purely statistical
arguments and instead look for further evidence for co-location, which we describe in
the next section.

8 Co-location testing in multi-tenant instances

We have already seen that when an instance is rebooted it acquires a new domid. This
will be the number of new instances started on the host plus the number of instance
reboots. This observation allows us to add an additional condition: suppose, then, that
we have two instances on hosts with the same CPU model. If they have identical
domids they are not on the same host. Therefore, suppose that the instances’ domids
are different but within a host’s domid range (from Table 4). We denote the lower
domid by m, and refer to the instance with this domid by A. We refer to the higher

123



Sibling virtual machine co-location confirmation… 977

domid by n and the instance with this domid by B. Upon rebooting A, its new domid
must, simply, be greater than the domid of B, if not they are on different hosts.

We now state this as a third necessary condition for co-location:

1. A and B are instances with domids (m, n) respectively, where m < n. If A and B
are co-locating, then upon rebooting A, its new domid, p, must satisfy p > n.

Of course, we still do not have a sufficient condition—instances may satisfy the
above by chance. However, a user is free to reboot their instances as often as they like.
So we can strengthen the condition as follows:

(a) Reboot the instance A, which has domid p, an additional k times. Upon rebooting
instance B, it will obtain a new domid, q, that must satisfy q > p + k.

Proceeding in this waywe can use the actions of A to introduce aminimum distance
to the next available domid for B, and vice versa. Again thismay be satisfied by chance.
It may the case that whilst we were rebooting instance A k times, there were sufficient
domid increasing events on the host B is running on, so that the condition is satisfied.
However we can introduce a fixed minimum distance which must always be satisfied,
and repetition of this test increases confidence that A and B are indeed co-locating
and we are not observing the minimum domid distance injection merely be chance.

The question now is: What value should we set k? As noted, if the domid increase
on host B is high then we may have a false positive—even with repeated tests. The
value of k then should be chosen on the basis of likely domid increase. We determine
rate of domid increase we launched 100 m3.medium instances for a period of 3 h and
determined the domid for each instance at the start and at the end of the period. From
this we can calculate the rate of domid increase on the hosts the instances are running
on. Below we present summary statistics as well as a histogram for our results.

We find then that on average we have a per hour rate of domid increase less than 2,
and indeed for 50% of our instances it is less than 1. We note that we would expect

123



978 J. O’Loughlin, L. Gillam

Table 5 Per hour rate of domid
increase

Mean SD Median Min Max

1.56 1.64 0.67 0.34 6.67

our tests based on obtaining domids and reboots to take considerably less than 1 h.
Therefore, based on the above, if we set a value of k of 7 (larger than maximum
per hour rate of increase) we could perform the co-location test in less than 10 min
(Table 5).

Finally, we note that a user may have long running instances, and want to know
if newly started instances are co-located with any long running instance. In this case,
a long running instance’s domid is likely not representative of the current domids
available from the host due to requests and reboots in the intervening period. In this
case, rebooting the long running instance will update its domid, and bring the domid
into range of new instances, allowing for further confirmatory tests to be run.

We now state our test for co-location as follows: two instances, A and B, chosen
because they have domids, m and n, such that m < n are likely co-locating if they
satisfy the following:

1. Same CPU model
2. Values of domids are in range (by Table 4). That is, n − m ≤ k where k is the CPU

domid range in Table 4.
3. Upon rebooting instance A, its new domid satisfies p > n.

If 3 is satisfied, then we strengthen the condition as follows:

3a. Upon rebooting instance A a further k times, a reboot of B results in a new domid,
q satisfying q > p + k.

We reiterate that (3a) can be carried out as many times as the user wishes, for any
value of k, which should be chosen on the basis of rate of domid as described.

To test this,weuse twopairs of instances, thefirst pairwhich obtaineddomids (7635,
7638) respectively, and the second pair (9536, 9538). As the first pair of instances were
on E5-2650 hosts (condition 1), and have close domids (condition 2) they are good
candidates for co-location. However, upon rebooting the instance with domid 7635,
its new domid was 7636, and so cannot be co-locating with the instance with domid
7638 (due to condition 3). For the second pair, again both with CPUmodel of E5-2650
(condition 1) when rebooting the instance with domid 9536, its new domid was 9539,
and so greater than 9538 (condition 3). We rebooted this instance a further 5 times and
after the last reboot its domid was 9544. We then rebooted the instance with domid
9538, after which its domid was 9545 (condition 3a). This more strongly suggests
co-location, and we note again that a user is of course free to set the domid distance
to any value they like by rebooting (we set to 6), and to repeat as many times as they
wish.

123



Sibling virtual machine co-location confirmation… 979

9 Detecting past locations

In addition to some degree of co-location, we also observe that instances started
from later requests appear to be scheduled onto the same hosts as earlier ones. This
observation is also based on domids, as we explain now.

In request 1 we obtain instances with domids 1499 and 1500, and both have E5645
CPUs. In request 3 we obtain instances with domids of 1501 and 1502, and in request
4 we have 1505 and 1506—again all E5645. One explanation is that these instances
were scheduled onto just one host. As another example, we have the domids 2627,
2628 and 2629 in request 1, followed by 2630, 2631 and 2632 in request 3 and then
followed by 2637, 2638, 2639 and 2640 in request 4. All of the instances were running
on a host with a E5-2650 CPU, so could again have been scheduled onto just one same
host.

In a follow up experiment, we launched 100 instances and found 4 consecutive
domids. We terminated these instances, and 5 min later started another 100 instances
(5 of which were reclaimed). The domids in the two sets ranged between 759 and
7292. Comparing domids in the first set to the second, we found a remarkable 51
domids in the first set with consecutive domids in the second set, 27 domids in the
first set with a ‘plus 2’ in the second, 7 at ‘plus three’ and 1 at ‘plus 4’. The likelihood
of our second set of instances being on a completely different set of hosts to the first,
but having domids so close to the first set would appear to be small.

Running 3 further requests, again of size 100, we find the same behavior of later
instances appearing to be scheduled on to previously used hosts. This is also not just
a feature of either on-demand or spot instances, as we observe this for both. Indeed,
when running a batch of spot instances after a batch of on-demand, we again observe
such behavior, suggesting that requests are being satisfied from the same resource
pool.

It is unclear whether this might be a temporal or spatial issue. In the former, it may
simply be the case that whilst there is a large amount of available resource, instances
started shortly after earlier ones are scheduled back on to previously obtained hosts.
In the latter, it may be that a user is restricted to a subset of the available resources. We
know that EC2 is vast in scale, with 28 AZs, most of which comprise at least 2 data
centres—with the largest AZ having 6—and each data centre houses between 50,000
and 80,000 physical servers [20]. For each user, an AZ identifier, such as us-east-1a,
relates to some pool of resources out of which requests are served. It is possible that
AZ identifiers may map to a data centre in an AZ, or indeed to some rather smaller
subset thereof.

Recycling of resources has the clear potential to impact on a user’s ability to separate
co-locating instances. In this case, a user may be interested in the number of attempts
needed, and so the cost, to ensure separation. Perhaps more intriguingly, if a user is
restricted to a subset of resources then launching a targeted attack against them on
EC2 would be much harder—you would only be able to target users that you share
the same resource partition with. With sufficient data, it may be possible to answer
these questions, and also estimate the size of resource pool available for use. From
this, one might also estimate a likely number of people with whom the resource pool

123



980 J. O’Loughlin, L. Gillam

is shared, and could use this number to suggest the risk of security and performance
issues arising.

Finally, given the well established problem of performance variation due to the
heterogeneous [21–23] nature of Public Clouds, there has been interest in so-called
‘instance seeking’ or ‘deploy and ditch’ strategies [24,25]. The assumption behind
these strategies is that a poorly performing instance can be released and a new, better
performing one, found. However, as the performance of an instance is determined by
the hosts it is running on, such strategies are rather less likely to produce performance
gains in the face of resource recycling.

10 Application to containers

Workload and application packing via container technology such as Docker [26] is
receiving increasing attention with companies such as Google deploying all of their
workloads with them on their internal systems. The popularity is being driven by the
ability to isolate workloads and their dependencies and apply resource controls to them
via cgroups without, at least in private systems, the overhead of a hypervisor.

Unsurprisingly, there is interest in using these technologies on the Public Cloud.
However as containers do not (currently) provide strict security isolation it is not rec-
ommended to use containers in a multi-tenant environment. On the Public Cloud then,
container services such as Amazons Container Service and Google Container Engine
are built on top of virtual machines which are provisioned from existing Infrastruc-
ture Clouds. Issues of performance, availability and redundancy that affect virtual
machines in general will then also apply to workloads packaged in Docker and run in
virtual machines. With Docker applications co-located on a VM, better separation of
VMs could become attractive.

A user can use domid testing with the instances they have provisioned to enforce
any desired workload separation. If a user is using workload scheduling services, such
as Kubernetes [27] then they should be aware that such services make no distinction
between scheduling Docker workloads onto virtual machine or physical machines.
It may, however, be possible to extend such services to make them virtual machine
aware and enable them to make scheduling decisions which take into account virtual
machine co-location. Kubernetes uses a distributed key value store to store meta-data
about hosts/virtual machines onto which Docker workloads are scheduled. We would
suggest that this seems a suitable place to mark a host as physical or virtual, and in
the latter case store the CPU model and domid (when used on Xen based systems).

11 Host separation policy costs

By being able to identify co-locating siblings a user can put in place a host separation
policy. Such a policy would specify which sibling instances are allowed to co-locate
and which are not. When starting a, potentially large, number of instances, a user can
obtain their CPU model and domid with no extra costs. From this information alone,
and using the necessary conditions for co-location, as described in Sect. 6, a user can

123



Sibling virtual machine co-location confirmation… 981

quickly filter the instances into those that are not co-locating, and those that may be
co-locating, and require further testing for confirmation.

In the case of single tenancy instances, to determinewhether or not a pair of instances
are co-located simply requires one reboot—that of the instance with the lower domid
(as discussed in Sect. 4). Co-location can be determined within the time taken to
reboot, approximately 60–90 s, with no extra costs involved.

For multi tenancy instances, we require more instances reboots as we seek to put a
minimum distance to the next available domid, and further, we the more we perform
our test the greater our confidence that instances are co-locating. There are no direct
costs associated with this; however there is a time delay—the time taken to perform
the tests. For a user who has two instances that may be co-locating, and whose policy
states they should be separated, is now faced with the following choices: either, reboot
a sufficiently large number of times be confident of detecting co-location, or start
additional instances and in the hope of obtaining the required number that are not
co-locating. In the later case there is a cost implication, as each instance on EC2 has
a minimum rental period of one hour. In the former case, there is the time delay in
detecting co-location to the required confidence, which may or may not be acceptable.
This trade off will depend upon the nature of work being done in the instances.

In future, providers may well offer host separation as a service. We note that in
order to do so for all users likely requires additional physical resource, which incurs
additional cost to the provider, which would be passed on to the user. A comparison of
provider costs for host separation compared to a user implementing their own polices
can be made.

12 Conclusions and future work

Identifying when sibling instances are co-locating is beneficial to users in a number
of situations:

1. Co-located instances may degrade the performance of each other when running
compute bound workloads.

2. Co-located instances are all vulnerable to failure, or degradation, of the underlying
host.

3. Co-located instances are all vulnerable to other noisy neighbours.
4. Co-located instances imply is a greater exposure to a security compromise on a

single host.

Determining co-location is challenging, particularly so on Public Clouds. The
approach we have presented in this paper is based on information provided from Xen,
which is currently the dominant hypervisor technology used in Public Infrastructure
Clouds. Xenstore provides an interface for domains to obtain information such as
domids and uuids. However, as would be expected, on EC2 the interface is restricted
so a domain can only obtain information about itself. But the domid is still very useful
for our purposes. In addition to EC2, we have also been able to obtain domids from
instances running on GoGrid and Rackspace, both of which use Xen. On a standard
Xen system, domids are assigned consecutively when starting domains and are not

123



982 J. O’Loughlin, L. Gillam

recycled—except when the range itself cycles. Instances are assigned the next avail-
able (new) domid when rebooted. Domids also do not survive host reboots, which
resets the next available domid to 1.

These characteristics of domids allow for the formulation of the simple test for
co-locating sibling instances as described, based on the same CPU model and close
domids (per Table 4 for the various CPU models we have observed backing m1.small
instance types). It is still, as we have elaborated, possible that such instances have
close domids simply by chance, and indeed we have seen such examples. Simula-
tion methods could be employed to determine the likelihood of this, but assumptions
regarding the distribution of domids are required, the validity of which is difficult to
establish. Whilst nearness hints at co-location, further evidence is required.

Further evidence is provided by the observation that one instance can restrict the
possible range of values for another instance’s domid—simply via rebooting itself and
so increasing the next available domid value. The second instance, upon a reboot, can
then in turn restrict possible domid values for the first instances. This process can be
repeated as often as a user chooses, and at the domid distance the user chooses (the
reboot value), and therefore each time this is done the probability that this happens by
chance decreases. Further, this is not limited to instances started close to each other
in time, but can be used when any pair of instances is suspected of co-locating.

We should be clear that whilst passing the tests described in Sect. 8 decreases the
likelihood that the instances are not co-locating, increasingly so when repeated, we
cannot say for certain that the instances are co-locating. From a pragmatic point of
view, a user must balance the risk of having co-located instances with the cost of
(determining and then ensuring) separation.

Determining such costs may be difficult as there appears to be a degree of recycling
of resources, as described in Sect. 6. This also has an immediate and significant
consequence for the probability of success in carrying out a targeted side channel attack
on a Public Cloud. Indeed, from our work here, we find the chance of intentionally
co-locating with sibling instances to be fairly small. Co-locating with any intended
target would therefore be more unlikely still, if it is indeed possible at all. We also
note the impacts for so-called ‘performance seekers’, whereby a user releases back
underperforming instances in the hope of acquiring better performing new instances.
A user may simply be paying to obtain resources they have already had.

In summary, our test is simple to implement and works on Linux, Windows and
FreeBSD Operating Systems, with the appropriate Xenstore client tool, and satisfies
the following criteria, as stated in Sect. 1:

1. Simple to implement
2. Can quickly determine non co-location
3. Can determine co-location with a high degree of assurance
4. Scales with the size of the deployment being tested

In future we intend to use our co-location technique to measure performance corre-
lation for co-locating instances on EC2. This will allow use to quantify performance
risk on EC2, with the aim of pricing SLAs which include QoS terms for performance.

123



Sibling virtual machine co-location confirmation… 983

Further, we will investigate KVM and VMware hypervisors, with the aim of develop-
ing a similar technique as to one described here.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Armbrust M et al (2009) Above the clouds: a Berkeley view of cloud computing. Technical report
EECS-2008-28, EECS Department, University of California, Berkeley

2. Amazon Web Services (2015) What is cloud computing. http://aws.amazon.com/
what-is-cloud-computing/. Accessed 16 July 2015

3. Linux Foundation (2013) The Xen Project. http://www.xenproject.org/. Accessed 16 July 2015
4. Zhang X et al (2013) CPI2: CPU performance isolation for shared compute clusters, EuroSys 13. In:

Proceedings of the 8th ACM European Conference on Computer Systems
5. Intel (2014) http://www.intel.com/content/dam/www/public/use/en/documents/white-papers/intel-

saa-performance-white-paper.pdf. Accessed 16 July 2015
6. Takemura C, Crawford L (2009) The book of Xen. No Starch Press, San Francisco, CA
7. Linux Containers https://linuxcontainers.org/. Accessed 16 July 2015
8. Oracle (2105) Oracle solaris zones. http://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_

zones.htm
9. FreeBSD, Jails https://www.freebsd.org/doc/handbook/jails.html. Accessed 16 July 2015

10. Menage P, CGROUPS https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt. Accessed 16
July 2015

11. Xen Project Xen security announcement. http://wiki.xenproject.org/security_announcements.
Accessed 16 July 2015

12. Zhang Y et al (2012) Cross-VM side channels and their use to extract private keys. In: Proceedings of
the 2012 ACM conference on computer and communications security, pp 305–316

13. Lui F et al (2014) Mitigating cross-VM side channel attacks on multiple tenants cloud platform. J
Comput 9(4):1005–1013

14. Ristenpart T et al (2010) Hey you get off my cloud. In: Proceedings of the 16th ACM conference on
computer and communications security, pp 199–212

15. Bates A et al (2014) On detecting co-resident cloud Instances using network flow watermarking tech-
niques. Int J Inf Secur 13(2):171–189

16. Zhang Y et al (2011) Home alone: co residency detection in the cloud via side channel analysis. In:
Proceedings of 2011 IEEE symposium on security and privacy, pp 313–328

17. Xenstore (2014) http://wiki.xen.org/wiki/XenStoreReference. Accessed 16 July 2015
18. O’Loughlin J, Gillam L (2014) Performance evaluation for cost-efficient public infrastructure cloud

use. In: Altmann J et al(ed) GECON 2014, LNCS 8914, pp 133–145
19. Dasgupta A (2004) The matching, birthday and strong birthday problem: a contemporary review. J

Stat Plan Inference 130:377–389
20. Vanian J (2014) https://gigaom.com/2014/11/12/amazon-details-how-it-does-networking-in-its-

data-centers/. Accessed 16 July 2015
21. Osterman S et al (2010) A performance analysis of EC2 cloud computing services for scientific

computing. Cloud computing. Lecture notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, vol 34, pp 115–131

22. Yelick K et al (2011) The Magellan report on cloud computing for science. http://science.energy.gov/
~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf

23. Phillips S et al (2011)Snowwhite clouds and the sevendwarfs. In: Proceedings of the IEEE international
conference and workshops on cloud computing technology and science (Nov. 2011), pp 738–745

24. Ou Z et al (2012) Exploiting hardware heterogeneity within the same instance type of Amazon EC2.
In: Presented at 4th USENIX workshop on hot topics in cloud computing, Boston, MA

123

http://creativecommons.org/licenses/by/4.0/
http://aws.amazon.com/what-is-cloud-computing/
http://aws.amazon.com/what-is-cloud-computing/
http://www.xenproject.org/
http://www.intel.com/content/dam/www/public/use/en/documents/white-papers/intel-saa-performance-white-paper.pdf
http://www.intel.com/content/dam/www/public/use/en/documents/white-papers/intel-saa-performance-white-paper.pdf
https://linuxcontainers.org/
http://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm
http://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm
https://www.freebsd.org/doc/handbook/jails.html
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://wiki.xenproject.org/security_announcements
http://wiki.xen.org/wiki/XenStoreReference
https://gigaom.com/2014/11/12/amazon-details-how-it-does-networking-in-its-data-centers/
https://gigaom.com/2014/11/12/amazon-details-how-it-does-networking-in-its-data-centers/
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf


984 J. O’Loughlin, L. Gillam

25. Farley B et al (2012) More for your money: exploiting performance heterogeneity in public clouds. In:
Proceedings of the 3rd ACM symposium on cloud computing. Article no. 20

26. Docker (2015) https://www.docker.com/. Accessed 16 July 2015
27. Google (2015) Kubernetes. http://kubernetes.io/. Accessed 16 July 2015

123

https://www.docker.com/
http://kubernetes.io/

	Sibling virtual machine co-location confirmation and avoidance tactics for Public Infrastructure Clouds
	Abstract
	1 Introduction
	2 Related work
	2.1 Performance issues
	2.2 Security issues
	2.3 Co-location techniques

	3 Xen domain identifiers (domids)
	4 Detecting sibling co-location in single tenancy instances
	4.1 Obtaining the domid
	4.2 Single tenancy sibling co-location detection
	4.3 Investigating co-location in single tenancy

	5 Collecting domids in multi tenant instances
	6 Necessary conditions for co-location in multi-tenant instances
	7 Domids and the almost birthday problem
	8 Co-location testing in multi-tenant instances
	9 Detecting past locations
	10 Application to containers
	11 Host separation policy costs
	12 Conclusions and future work
	References




