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Abstract We describe observation driven time series models for Student-t and EGB2
conditional distributions in which the signal is a linear function of past values of the
score of the conditional distribution. These specifications producemodels that are easy
to implement and deal with outliers by what amounts to a soft form of trimming in the
case of t and a soft form of Winsorizing in the case of EGB2. We show how a model
with trend and seasonal components can be used as the basis for a seasonal adjustment
procedure. The methods are illustrated with US and Spanish data.

Keywords Fat tails · EGB2 · Score · Robustness · Student’s t · Trimming ·
Winsorizing
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1 Introduction

Time series are often subject to observations that, when judged by the Gaussian
yardstick, are outliers. This is a very real issue for many economic time series.
Agustin Maravall’s seasonal adjustment program, TRAMO-SEATS, which he devel-
oped jointlywithVictor Gomez, tackles the problem by identifying outliers and, where
appropriate, replacing them by dummy variables. Here we take a different approach
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in which we employ a new class of robust models where the dynamics of the level,
or location, are driven by the score of the conditional distribution of the observations.
These called dynamic conditional score (DCS) models have recently been developed
by Creal et al. (2011, 2013) and Harvey (2013). They are relatively easy to implement
and their form facilitates the development of a comprehensive and relatively straight-
forward theory for the asymptotic distribution of the maximum likelihood estimator.

The changing level of a Gaussian time series is usually obtained from an ARIMA
process or explicitlymodeled as an unobserved component. The statistical treatment of
linear Gaussian unobserved components models is straightforward, with the Kalman
filter playing a key role. Additive outliers may be captured by dummy variables.
A different way forward is to let the noise have a Student t-distribution, thereby
accommodating the outliers. However, the treatment of such a model requires com-
putationally intensive procedures, as described in Durbin and Koopman (2012). The
DCS-t model proposed by Harvey and Luati (2014) provides an alternative approach
which is observation-driven in that the conditional distribution of the observations is
specified. A model of this kind may be compared and contrasted with the methods in
the robustness literature; see Maronna, Martin and Yohai (2006, ch 8) and McDon-
ald and Newey (1988), where a parametric approach is called ‘partially adaptive’.
Robust procedures for guarding against additive outliers typically respond to large
observations in one of two ways: either the response function converges to a positive
(negative) constant for observations tending to plus (or minus) infinity or it goes to
zero. These two procedures are usually classified as Winsorizing or as trimming. The
score for a t-distribution converges to zero and so can be regarded as a parametric form
of trimming. Similarly a parametric form of Winsorizing is given by the exponential
generalized beta distribution of the second kind (EGB2) distribution. The article by
Caivano and Harvey (2014) sets out the theory for the DCS location model with an
EGB2 distribution and illustrates its practical value.

The article is organized as follows. Section 2 reviews the idea behind the DCS
location model and expands on the reason for using the conditional score. The various
classifications of distributions in terms of their tails are then set out and this is followed
by a discussion of the score as it relates to location and scale and the link with robust
estimation. This material leads on to the contrast between the DCS t and EGB2
models in Sect. 3. Section 4 compares the fit of EGB2 and t-distributions for two US
macroeconomic time series. A comparison between the way in which Gaussian and
DCS models adapt to structural breaks is made in Sect. 5. This issue is important,
because it may be thought that the price paid by DCS models for their robustness is a
slow response to structural breaks.

DCS models with trend and seasonal components are described in Sect. 6. These
models can be regarded as robust counterparts to the unobserved components ‘basic
structural model’ (BSM). Seasonal adjustment can be carried out with the BSM
by extracting smoothed components using the standard Kalman filter and smoother.
Because DCSmodels only give filtered components, it is necessary to devise a method
for smoothing. In Sect. 7 we apply this method to a monthly series of tourists arriving
in Spain and compare the extracted trend and seasonal components with those obtained
by fitting a BSM with the outliers handled by dummy variables.
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2 Filters, heavy tails and robust estimation

The first sub-section below sets out a simple unobserved componentsmodel and shows
how the innovations form of the Kalman filter may be adapted to form a DCS model.
The second sub-section provides a rationale for the use of the conditional score. The
way in which tails of distributions may be classified is reviewed in the third sub-
section and in the fourth, tail behaviour is related to the considerations of robustness.
The treatment of these topics is more general and integrated than in Harvey (2013).

2.1 Unobserved components and filters

A simple Gaussian signal plus noise model is

yt = μt + εt , εt ∼ N I D
(
0, σ 2

ε

)
, t = 1, . . . , T,

μt+1 = φμt + ηt , ηt ∼ N I D
(
0, σ 2

η

)
, (1)

where the irregular and level disturbances, εt and ηt respectively, are mutually inde-
pendent and the notation N I D

(
0, σ 2

)
denotes normally and independently distributed

with mean zero and variance σ 2. The autoregressive parameter is φ, while the signal-
noise ratio, q = σ 2

η /σ 2
ε , plays the key role in determining how observations should

be weighted for prediction and signal extraction. The reduced form (RF) of (1) is an
ARMA(1,1) process

yt = φyt−1 + ξt − θξt−1, ξt ∼ N I D
(
0, σ 2

)
, t = 1, ..., T (2)

but with restrictions on θ. For example, when φ = 1, 0 ≤ θ ≤ 1.
TheUCmodel in (1) is effectively in state space form and, as such, itmay be handled

by theKalmanfilter (KF); seeHarvey (1989). Theparametersφ andqmaybe estimated
by maximum likelihood (ML), with the likelihood function constructed from the one-
step ahead prediction errors. The KF can be expressed as a single equation which
combines μt |t−1, the optimal estimator of μt based on information at time t − 1, with
yt in order to produce the best estimator of μt+1. Writing this equation together with
an equation that defines the one-step ahead prediction error, vt , gives the innovations
form of the KF:

yt = μt |t−1 + vt ,

μt+1|t = φμt |t−1 + ktvt .
(3)

The Kalman gain, kt , depends on φ and q. In the steady-state, kt is constant. Setting
it equal to κ in (3) and re-arranging gives the ARMA model (2) with ξt = vt and
φ − κ = θ.

When the noise in (1) comes from a heavy-tailed distribution such as Student’s t it
can give rise to observations which, when judged against the yardstick of a Gaussian
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distribution, are additive outliers. As a result fitting a Gaussian model is inefficient and
may even yield estimatorswhich are inconsistent. Simulationmethods, such asMarkov
chain Monte Carlo (MCMC) and particle filtering, provide the basis for a direct attack
on such non-Gaussianmodels; seeDurbin andKoopman (2012). However, simulation-
based estimation can be time-consuming and subject to a degree of uncertainty. In
addition the statistical properties of the estimators are not easy to establish.

TheDCS approach begins bywriting down ft (yt ), the distribution of the t-th obser-
vation conditional on past observations. The time-varying parameter is then updated
by a suitably defined filter. Such a model is said to be observation driven. In a linear
Gaussian UCmodel, the KF depends on the one step-ahead prediction error. The main
ingredient in the DCS filter for non-Gaussian distributions is the replacement of vt in
the KF equation by a variable, ut , that is proportional to the score of the conditional
distribution; compare Maronna, Martin and Yohai (2006, p. 272–4) and the references
therein. Thus the second equation in (3) becomes

μt+1|t = φμt |t−1 + κut , (4)

where ut = ∂ ln ft (yt )/∂μt |t−1 and κ is treated as an unknown parameter. This filter
could be regarded as an approximation to the computer intensive solution for the
parameter driven unobserved components model. The attraction of regarding it as a
model in its own right is that it becomes possible to derive the asymptotic distribution
of the maximum likelihood estimator and generalize in various directions.

2.2 Why the Score?

Suppose that at time t − 1 we have θ̂t−1 the ML estimate of a parameter, θ. Then the
score is zero, that is

∂ ln Lt−1(θ)

∂θ
=

t−1∑
j=1

∂ ln 
 j (θ)

∂θ
= 0 at θ = θ̂t−1, (5)

where 
 j (θ; y j ) = f (y j ; θ). When a new observation becomes available, a single
iteration of the method of scoring gives

θ̂t = θ̂t−1 + 1

It
(
θ̂t−1

) ∂ ln Lt (θ)

∂θ
= θ̂t−1 + 1

It
(
θ̂t−1

) ∂ ln 
t (θ)

∂θ
,

where It (θ̂t−1) = t.I (θ̂t−1) is the information matrix for t observations and the last
expression follows because of (5). For a Gaussian distribution a single update goes
straight to the ML estimate at time t (recursive least squares).

Remark 1 Wemay sometimes be able to choose a link function so that the information
quantity does not depend on θ.
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As t → ∞, It (θ̂t−1) → ∞ so the recursion becomes closed to new information.
If it is thought that θ changes over time, the filter needs to be opened up. This may be
done by replacing 1/t by a constant, which may be denoted as κ. Thus

θ̂t = θ̂t−1 + κ
1

I
(
θ̂t−1

) ∂ ln 
t (θ)

∂θ
.

With no information about how θ might evolve, the above equationmight be converted
to the predictive form by letting θ̂t+1|t = θ̂t . Thus

θ̂t+1|t = θ̂t |t−1 + κ
1

I
(
θ̂t |t−1

) ∂ ln 
t (θ)

∂θ
. (6)

For a Gaussian distribution in which θ is the mean and the variance is known to be
σ 2,

1

I
(
θ̂t |t−1

) ∂ ln 
t (θ)

∂θ
= yt − θ̂t |t−1

and (6) is an exponentially weighted moving average (EWMA).
If there is reason to think that the parameter tends to revert to an underlying level,

ω, the updating scheme might become

θ̂t+1|t = ω(1 − φ) + φθ̂t |t−1 + κ
1

I
(
θ̂t |t−1

) ∂ ln 
t (θ)

∂θ

where |φ| < 1. This scheme corresponds to a first-order autoregressive process. More
generally wemight introduce lags so as to smooth out the changes or allow for periodic
effects.

2.3 Heavy tails

The Gaussian distribution has kurtosis of three and a distribution is said to exhibit
excess kurtosis, or to be leptokurtic, if its kurtosis is greater than three. Although
some researchers take excess kurtosis as defining heavy tails, it is not, in itself, an
ideal measure, particularly for asymmetric distributions. Most classifications in the
insurance and finance literature begin with the behaviour of the upper tail for a non-
negative variable, or one that is only defined above a minimum value; see Embrechts
et al. (1997). The two which are relevant here are as follows.

A distribution is said to be heavy-tailed if

lim
y→∞ exp(y/α)F(y) = ∞ for all α > 0, (7)
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where F(y) = Pr(Y > y) = 1 − F(y) is the survival function. When y has an
exponential distribution, F(y) = exp(−y/α), so exp(y/α)F(y) = 1 for all y. Thus
the exponential distribution is not heavy-tailed.

A distribution is said to be fat-tailed if, for a fixed positive value of η,

F(y) = cL(y)y−η, η > 0, (8)

where c is a non-negative constant and L(y) is slowly varying,1 that is

lim
y→∞

L(ky)

L(y)
= 1.

The parameter η is the tail index. The implied PDF is a power law PDF

f (y) ∼ cL(y)ηy−η−1, y → ∞, η > 0, (9)

where ∼ is defined such that a(x) ∼ b(x) as x → x0 if limx→x0(a/b) → 1. Them-th
moment exists ifm < η. The Pareto distribution is a simple case in which F(y) = y−η

for y > 1. If a distribution is fat-tailed then it must be heavy-tailed, but the converse
is not true; see Embrechts, Kluppelberg and Mikosch (1997, p. 41–2).

The above criteria are related to the behavior of the conditional score and whether
or not it discounts large observations. This, in turn, connects to robustness, as shown
in the sub-section following. More specifically, consider a power law PDF, (9), with
y divided by a scale parameter, ϕ, so that F(y/ϕ) = cL(y/ϕ)(y/ϕ)−η and f (y) ∼
cL(y)ϕ−1η(y/ϕ)−η−1. Then

∂ ln f/∂ϕ ∼ η/ϕ as y → ∞ (10)

and so the score is bounded. With the exponential link function, ϕ = exp(λ),
∂ ln f/∂λ ∼ η as y → ∞. Similarly as y → 0, ∂ ln f/∂λ ∼ η.

The logarithm of a variable with a fat-tailed distribution has exponential tails.
Let x denote a variable with a fat-tailed distribution in which the scale is written as
ϕ = exp(μ) and let y = ln x . Then for large y

f (y) ∼ cL(ey)ηe−η(y−μ), η > 0, as y → ∞,

whereas as y → −∞, f (y) ∼ cL(ey)ηeη(y−μ), η > 0. Thus y is not heavy-tailed,
but it may exhibit excess kurtosis. The score with respect to location,μ, is the same as
the original score with respect to the logarithm of scale and so tends to η as y → ∞.

1 More generally regularly varying is limy→∞(L(ky)/L(y)) = kβ ; see Embrechts, Kluppelberg and
Mikosch (1997, p. 37, 564). Fat-tailed distributions are regularly varying with η = −β > 0.
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2.4 Robust estimation

The location-dispersion model is

yt = μ + ϕεt , t = 1, ..., T, (11)

where εt is a standardized variable with PDF denoted exp ρ(εt ) and the scale, ϕ, is
called the dispersion for yt ; see Maronna, Martin and Yohai (2006, p. 37–8). The
density for yt is

f (yt ;μ, ϕ, ξ) = ϕ−1 exp ρ((yt − μ)/ϕ),

where ξ denotes one or more shape parameters, and the scores for μ and ϕ are given
by differentiating ln f (yt ) = ρ((yt − μ)/ϕ) − ln ϕ. The score for location is

∂ ln ft
∂μ

= ∂ρ(zt )

∂μ
= ψL(zt ),

where zt = (yt − μ)/ϕ, whereas the score for scale is

∂ ln ft
∂ϕ

= ∂ρ(zt )

∂ϕ
− 1

ϕ
= ψS(zt ) − 1

ϕ
.

Note thatψS(zt ) = ϕ−1ztψL(zt ).When the scale is parameterizedwith an exponential
link function, ϕ = exp λ, the score is

∂ ln f

∂λ
= ∂ρ(zt )

∂λ
− 1 = ztψL(zt ) − 1. (12)

If yt = ln xt , where xt = ϕεt as in (11) and then the logarithm of the scale parameter
for xt , that is ln ϕ, becomes the location for yt . Hence ψL(yt ) = ψS(xt ).

The ML estimators are asymptotically efficient, assuming certain regularity condi-
tions hold. More generally ρ(.) may be any function deemed to yield estimators with
good statistical properties. In particular, the estimators should be robust to observations
which would be considered to be outliers for a normal distribution. When normality
is assumed, the ML estimators of the mean and variance are just the corresponding
sample moments, but these can be subject to considerable distortion when outliers are
present. Robust estimators, on the other hand, are resistant to outliers while retaining
relatively high efficiency when the data are from a normal distribution.

The M-estimator, which features prominently in the robustness literature, has a
Gaussian response until a certain threshold, K ,whereupon it is constant; seeMaronna,
Martin and Yohai (2006, p. 25–31). This is known as Winsorizing as opposed to
trimming, where observations greater than K in absolute value are given a weight of
zero.2

2 In both cases a (robust) estimate of scale needs to be pre-computed and the process of computing
M-estimates is then often iterated to convergence.
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3 DCS location models

The stationary first-order DCS model corresponds to the Gaussian innovations form,
(3), and is

yt = μt |t−1 + vt = μt |t−1 + exp(λ)εt , t = 1, ..., T,

μt+1|t = δ + φμt |t−1 + κut , |φ| < 1, (13)

where ω = δ/(1−φ) is the unconditional mean of μt |t−1, εt is a serially independent
variate with unit scale3 and ut is proportional to the conditional score, that is ut =
k.∂ ln f (yt | yt−1, yt−2, ...)/∂μt |t−1, where k is a constant.

More generally, an ARMA-type model of order (p, r) is

μt+1|t = δ + φ1μt |t−1 + ... + φpμt−p+1|t−p + κ0ut + κ1ut−1 + ... + κr ut−r .

(14)

In the Gaussian case ut = yt −μt |t−1 and if q is defined asmax(p, r+1), then yt is an
ARMA(p, q) processwithMAcoefficients θi = φi−κi−1, i = 1, .., q.Nonstationary
ARIMA-type models may also be constructed as may structural times series models
with trend and seasonal components. Explanatory variables can be introduced into
DCS models, as described in Harvey and Luati (2014).

Maronna, Martin and Yohai (2006, Sect 8.6 and 8.8) give a robust algorithm for
AR and ARMA models with additive outliers. For a first-order model their filter is
essentially the same as (13) except that their dynamic equation is driven by a robust
ψ − f unction and they regard the model as an approximation to a UC model.4

3.1 Student t model

The Student tν distribution has fat tails for finite degrees of freedom, ν, with the tail
index given by ν. Moments exist only up to and including ν − 1. The excess kurtosis,
that is the amount by which the normal distribution’s kurtosis of three is exceeded, is
6/(ν − 4), provided that ν > 4.

When the location changes over time, it may be captured by a model in which,
conditional on past observations, yt has a tν-distribution with μt |t−1 generated by a
linear function of

ut =
(
1 + ν−1e−2λ (

yt − μt |t−1
)2)−1

vt , t = 1, ..., T, (15)

3 The standard deviation is
√

ν/(ν − 2) times the scale.
4 Muler, Peña and Yohai (2009, p. 817) note two shortcomings of the estimates obtained in this way. They
write: ‘First, these estimates are asymptotically biased. Second, there is not an asymptotic theory for these
estimators, and therefore inference procedures like tests or confidence regions are not available.’ They then
suggest a different approach and show that it allows an asymptotic theory to be developed.
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wherevt = yt−μt |t−1 is the prediction error.Differentiating the log-density shows that
ut is proportional to the conditional score, ∂ ln ft/∂μt |t−1 = (ν +1)ν−1 exp(−2λ)ut .
For low degrees of freedom, the score function is such that observations that would be
seen as outliers for a Gaussian distribution are far less influential. As |y| → ∞, the
response tends to zero. Redescending M-estimators, which feature in the robustness
literature, have the same property. For example, Tukey’s biweight function is ψ(z) =
[1 − (x/4.685)2]2+z, where [ ]+ denotes the positive part of the term in [ ]. This
function implements ‘soft trimming’, as opposed to metric trimming, whereψ(z) = z
for |z| ≤ K and is zero thereafter. The t score function is even softer.

The variable ut can be written ut = (1 − bt )(yt − μt |t−1), where

bt =
(
yt − μt |t−1

)2
/ν exp (2λ)

1 + (
yt − μt |t−1

)2
/ν exp(2λ)

, 0 ≤ bt ≤ 1, 0 < ν < ∞, (16)

is distributed as beta(1/2, ν/2); see Harvey (2013, Chap. 3). Because the u′
t s are

I I D(0, σ 2
u ), μt |t−1 is weakly and strictly stationary so long as |φ| < 1. Although

determining the statistical properties of μt |t−1 requires assuming that it started in the
infinite past, the filter needs to be initialized in practice and this may be done by setting
μ1|0 = ω.

All moments of ut exist and the existence of moments of yt is not affected by the
dynamics. The autocorrelations can be found from the infinite MA representation; the
patterns are as they would be for a Gaussian model.

Maximum likelihood estimation is straightforward and for a first-order dynamic
equation, as in (13), an analytic expression for the information matrix is available.

There are a number of ways in which skewness may be introduced into a t-
distribution. One possibility is the method proposed by Fernandez and Steel (1998).
There is a minor technical issue in that the score is not differentiable at the mode but
as, Zhu and Galbraith (2011) show, the asymptotic theory for the ML estimator still
goes through in the usual way. The asymptotic theory for the DCS skew-t location
model also goes through; see Harvey (2013, Sect 3.11).

3.2 Exponential generalized beta distribution model

The exponential generalized beta distribution of the second kind (EGB2) is obtained
by taking the logarithm of a variable with a generalized beta distribution of the sec-
ond kind (GB2) distribution. What was the logarithm of scale in GB2 now becomes
location in EGB. A reparameterization in terms of the standard deviation, σ, gives the
PDF as

f (y;μ, σ, ξ, ς) = h exp {ξh(y − μ)/σ }
σ B (ξ, ς) (1 + exp {h(y − μ)/σ })ξ+ς

,

where ξ and ς are shape parameters which determine skewness and kurtosis and
h = √

ψ ′(ξ) + ψ ′(ς) . The EGB2 distribution has exponential tails and all moments
exist. When ξ = ς , the distribution is symmetric; for ξ = ς = 1 it is a logistic
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distribution and when ξ = ς → ∞ it tends to a normal distribution. When ξ =
ς = 0 the distribution is double exponential or Laplace. The distribution is positively
(negatively) skewed when ξ > ς (ξ < ς ) and its kurtosis decreases as ξ and ς

increase. Skewness ranges between −2 and 2 and kurtosis lies between 3 and 9. There
is excess kurtosis for finite ξ and/or ς. The EGB2 distribution is more peaked than a
t with the same kurtosis, but as kurtosis increases, the differences between the peaks
become more marked.

Multiplying the score function with respect to location by the variance gives

ut = σ 2 ∂ ln ft
∂μt �t−1

= σh [(ξ + ς)bt (ξ, ς) − ξ ] , (17)

where

bt (ξ, ς) = e(yt−μt �t−1)h/σ

e(yt−μt �t−1)h/σ + 1
.

Because 0 ≤ bt (ξ, ς) ≤ 1, it follows that as y → ∞, the score approaches an upper
bound of σ

√
2, whereas y → −∞ gives a lower bound of −σ

√
2. As ς = ξ → ∞,

the distribution becomes normal with ut � yt − μt �t−1.

Figure 1 shows the score functions for EGB2 and t distributions with a standard
deviation of one and an excess kurtosis of two. The shape parameters for the two
distributions are ξ = 0.5 and ν = 7. As can be seen, the score for the t-distribution
is redescending, reflecting the fact that it has fat tails, whereas the EGB2 score is
bounded.

-2 -1 1 2 3 4 5 6 7 8 9 10

-2

-1

1

2

y

Score

Fig. 1 Score functions for t and EGB2 (solid line) with excess kurtosis of two, together with the (linear)
score for a normal distribution
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4 Macroeconomic time series

Dynamic location models were fitted to the growth rate of US GDP and industrial
production using EGB2, Student’s t and normal distributions. GDP is quarterly, rang-
ing from 1947q1 to 2012q4. Industrial production data are monthly and range from
January 1960 to February 2013. All data are seasonally adjusted and taken from
the Federal Reserve Economic Data (FRED) database of the Federal Reserve of
St. Louis.

When first-order Gaussian models are fitted, there is little indication of residual
serial correlation. There is excess kurtosis in all cases, but no evidence of asymme-
try. For example, with GDP the Bowman-Shenton statistic is 30.04, which is clearly
significant because the distribution under the null hypothesis of Gaussianity is χ2

2 .

The non-normality clearly comes from excess kurtosis, which is 1.9, rather than from
skewness, which is only 0.18 (with a p value of 0.24). Comparing the residuals with
a fitted normal shows them to have a higher peak at the mean, as well as heavier tails;
see Fig. 2.

Tables 1 and 2 report the estimation results and Table 3 compares goodness of fit.
The Student-t model and the EGB2 outperform the Gaussian model with the shape
parameter, ν or ξ, confirming the excess kurtosis. The λ parameter is the logarithm
of scale, ν, but the estimates of σ are shown because these are comparable across
different distributions. For GDP the EGB2 models gives a slightly better fit, whereas
the t-distribution is better for industrial production. However, the differences between
the two are small compared with the Gaussian model.

N(s=0.999)

-4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Density
N(s=0.999)

Fig. 2 Residuals from fitting a first-order Gaussian model to GDP
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Table 1 US GDP (quarterly)

κ φ ω λ ξ (or ν) σ

EGB2 0.30 0.50 0.008 −5.40 0.88 0.0091

Num SE (0.063) (0.103) (0.001) (0.324) (0.394)

Asy SE (0.054) (0.143) (0.001) (0.415) (0.502)

t 0.50 0.50 0.008 −4.88 6.49 0.0091

Num SE (0.094) (0.103) (0.001) (0.071) (2.364)

Asy SE (0.089) (0.141) (0.001) (0.056) (1.887)

Gaussian 0.35 0.49 0.008 −4.70 − 0.0091

Num SE (0.058) (0.112) (0.001) (0.044)

Asy SE (0.061) (0.141) (0.001) (0.044)

Table 2 US Industrial production (monthly)

κ φ ω λ ξ (or ν) σ

EGB2 0.20 0.85 0.003 −6.05 0.55 0.0069

Num SE (0.033) (0.036) (0.001) (0.214) (0.147)

Asy SE (0.027) (0.040) (0.001) (0.287) (0.196)

t 0.40 0.85 0.002 −5.25 4.49 0.0071

Num SE (0.060) (0.036) (0.001) (0.046) (0.743)

Asy SE (0.055) (0.040) (0.001) (0.038) (0.634)

Gaussian 0.25 0.83 0.002 −4.95 − 0.0071

Num SE (0.032) (0.041) (0.001) (0.028)

Asy SE (0.035) (0.046) (0.001) (0.028)

Table 3 US macroeconomic
series—Model comparison

Log-Likelihood AIC BIC

GDP

EGB2 868.376 −6.566 −6.498

t 868.242 −6.565 −6.497

Gaussian 862.212 −6.526 −6.472

Industrial production

EGB2 2291.66 −7.168 −7.133

t 2293.56 −7.174 −7.139

Gaussian 2255.21 −7.057 −7.029

5 Structural breaks

It might be thought that the EGB2 and t filters will be less responsive to a permanent
change in the level than the linear Gaussian filter. However, for moderate size shifts,

123



SERIEs (2016) 7:99–120 111

2009 2010 2011

−0.02

−0.01

0.00

0.01

0.02

1 standard deviation level shift

US Industrial production (level shift) 
US Industrial production (actual data) 
Location EGB2 
Location T 
Location Gaussian 

Fig. 3 Response of Gaussian, EGB2 and t-filters to a one SD shift in level in January 2010

the score functions in Fig. 1 suggest that this might not be the case, because only
for large observations is the Gaussian response bigger than the response of the robust
filters. For example, for the logistic (EGB2 with unit shape parameters), the score is
only smaller than the observation (and hence the linear filter) when it is more than
(approximately) 1.6 standard deviations from the mean. The behaviour of the t-filter
is similar.

In order to investigate the issue of adapting to a permanent change in level, an
upward shift was added to the US industrial production data at the beginning of 2010.
The size of the shift was calibrated so as to be proportional to the sample standard
deviation of the series. The results are shown in the Figs. 3 and 4. For a one standard
deviation shift the paths of all three filters after the break are similar. For two standard
deviations the Gaussian filter adapts more quickly, but it is still well below the new
level initially and after 9 or 10 months it is virtually indistinguishable from the other
two filters.

6 Trend and seasonality

The simplest nonstationary unobserved components model is the Gaussian local level
model, that is a random walk plus noise. In this case the Kalman filter is an expo-
nentially weighted moving average (EWMA) of past observations. For the DCS-t
filter

yt = μt |t−1 + vt ,

μt+1|t = μt |t−1 + κut .
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Fig. 4 Response of Gaussian, EGB2 and t-filters to a two SD shift in level in January 2010

and the initial value, μ1|0,is treated as an unknown parameter that needs to estimated
along with κ and ν. Since ut = (1 − bt )(yt − μt |t−1), re-arranging the dynamic
equation gives

μt+1|t = (1 − κ(1 − bt )) μt |t−1 + κ(1 − bt )yt ,

which can be regarded as an EWMA modified to deal with outliers: when y2t is large,
bt is close to one.

Generalizing the above model to include a slope and seasonals provides the basis
for a robust treatment of seasonal adjustment.

6.1 Basic structural model

Stochastic trend and seasonal components may be introduced into Gaussian unob-
served components models for location. These models, called structural time series
models, are implemented in the STAMP package of Koopman et al. (2009). The BSM
is made up of mutually independent trend, seasonal and irregular components. Thus

yt = μt + γt + εt , t = 1, ..., T,

where μt is a local linear trend with a stochastic level and slope and γt is a stochastic
seasonal. The trend is
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μt = μt−1 + βt−1 + ηt , ηt ∼ N I D
(
0, σ 2

η

)
,

βt = βt−1 + ζt , ζt ∼ N I D
(
0, σ 2

ζ

)
,

where ζt and ηt are independent of each other and of εt .The randomwalk plus noise or
local level model is a special case. As regards the seasonal component, let γ j t denote
the effect of season j at time t and define γt = (γ1t , ..., γst )

′. The full set of seasonals
evolves as a multivariate random walk

γt = γt−1 + ωt , t = 1, ...., T,

whereωt =(ω1t , ..., ωst )
′ is a zeromean disturbancewith Var (ωt )=σ 2

ω

(
I − s−1ii′

)
,

with σ 2
ω > 0. Although all s seasonal components are continually changing, only one

affects the observations at any particular time, that is γt = γ j t when season j is
prevailing at time t. The requirement that the seasonal components always sum to
zero is enforced by the restriction that the disturbances sum to zero at each t . This
restriction is implemented by the correlation structure of ωt , where Var

(
i′ωt

) = 0,
coupled with initial conditions constraining the seasonals to sum to zero at t = 0.

The multiplicative seasonal ARIMA model known as the ‘airline model’ is

��s yt = (1 + θL)
(
1 + �Ls) ξt , ξt ∼ N I D

(
0, σ 2

ξ

)

Box and Jenkins (1976, pp. 305–6) gave a rationale for this model in terms of
EWMAs at monthly and yearly intervals. The reduced form of the BSM is ��s yt ∼
MA (s + 1). Maravall (1985), compared the autocorrelation functions of ��s yt for
the BSM and airline model for some typical values of the parameters and finds them
to be quite similar, particularly when the seasonal MA parameter, �, is close to minus
one. In the limiting case when � is equal to minus one, the airline model is equivalent
to a BSM with σ 2

ζ = σ 2
ω = 0.

6.2 Stochastic trend and seasonal in the DCS model

The DCS model for trends and seasonals,

yt = μt |t−1 + γt |t−1 + vt , t = 1, ..., T,

has a structure which is similar to that of the innovations form of the Kalman filter for
the BSM.

The filter for the trend is

μt+1|t = μt |t−1 + βt |t−1 + κ1ut
βt+1|t = βt |t−1 + κ2ut .

An integrated random walk (IRW) trend in the UC local linear trend model implies
the constraint κ2 = κ2

1/(2 − κ1), 0 < κ1 < 1, which may be found from Harvey
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(1989, p. 177). The restriction can be imposed on the DCS-t model by treating κ1 = κ

as the unknown parameter, but without unity imposed as an upper bound.
The filter for the seasonal is

γt |t−1 = z′
tγt |t−1, γt+1|t = γt |t−1 + κt ut ,

where the s × 1 vector zt picks out the current season from the vector γt |t−1. If κ j t ,
j = 1, .., s, denotes the j th element of κt , then in season j we set κ j t = κs,where κs is
a non-negative unknown parameter, whereas κi t = −κs/(s − 1), i 	= j, i = 1, .., s.
The amounts by which the seasonal effects change therefore sum to zero. The initial
conditions at time t = 0 are estimated by treating them as parameters.

The above filtermay be regarded as a robust version of thewell-knownHolt-Winters
filter; see Harvey (1989, p. 31). However, it differs from Holt-Winters in the Gaussian
case by enforcing the restriction that the seasonals sum to zero. This is an important
advantage.

6.3 Seasonal adjustment

In contrast to the Gaussian BSM, the DCS model has no exact solution for smoothing.
Some possibilities are suggested in Harvey (2013, Sect 3.7), but these are difficult
to generalize beyond the local level model. The best way to employ the DCS model
for seasonal adjustment is to use it to mitigate the effects of outliers by modifying
them rather than eliminating them by dummy variables. A dummy variable effectively
means that the corresponding observation is treated as though it were missing; in other
words it corresponds to hard trimming.

We first fit the DCS model and use it to construct pseudo-observations from the
signal, that is μs

t |t−1 = μt |t−1 + γt |t−1. Thus

yt
(
μs
t |t−1

)
= μs

t |t−1 + ut , t = 1, ..., T . (18)

For the DCS-t model we can write

yt
(
μs
t |t−1

)
= (1 − bt ) yt + btμ

s
t |t−1, t = 1, ..., T,

where bt is as in (16) with μt |t−1 replaced by μs
t |t−1. In the EGB2, we work directly

with (18).
The pseudo-observations are now used to estimate the parameters in a BSM and

the signal is estimated by smoothing. This new signal, denoted μs
t |T , is then used to

construct new pseudo-observations as

yt
(
μs
t |T

)
= μs

t |T + ut , t = 1, ..., T, (19)

123



SERIEs (2016) 7:99–120 115

with bt replaced by

bt |T = bt |T
(
μs
t |T

)
=

(
yt − μs

t |T
)2

/ν exp(2λ)

1 +
(
yt − μs

t |T
)2

/ν exp(2λ)

for the t-distribution and by

bt |T =
exp

{(
yt − μs

t |T
)

/h/σ
}

1 + exp
{(

yt − μs
t |T

)
h/σ

}

for the EGB2. The BSM may be re-estimated and the whole process iterated until
convergence. If desired, λ and σ can be updated at each step using the sample variance
of the u′

t s. The relationship between variance of the u
′
t s and λ for the t-distribution is

given in Harvey (2013, p. 62). For the EGB2 (with ξ = ς) it follows from Caivano
and Harvey (2014) that σ 2

u = σ 2h2ξ2/(2ξ + 1).
The seasonally adjusted observations are constructed as

yst = yt − γt |T = μt |T + vt |T , t = 1, ..., T, (20)

where vt |T = yt − μs
t |T . If it is felt that the outliers should be modified to make them

less extreme, we could let yst = μt |T + ut |T .

The above procedure could be implemented with TRAMO-SEATS rather than the
unobserved components BSM.

7 Tourists in Spain

The logarithmof the number of tourists enteringSpain fromJanuary 2000 toApril 2014
(source: Frontur) is plotted in Fig. 5. Comparing a Gaussian unobserved components
model with dummy variables with a DCS-t model provides a contrast between hard
and soft trimming.

Fitting a BSM gives a Bowman-Shenton statistic of 19.29 for the residuals so
normality is clearly rejected. (The 1% critical value for a χ2

2 is 9.21.) The automatic
outlier detection option in STAMP finds five outliers, three of which are in 20012,
along with a small structural break which, although not sudden, is attributed to April
2008. The corresponding (edited) output is shown below. Fitting a BSM with dummy
variables included for the outliers and break gives the smoothed components shown
in Fig. 5.

Date Estimate SE ’t-stat’

Outlier 2002(3) 0.14295 0.02818 5.07283
Outlier 2002(4) -0.14438 0.02824 -5.11205
Outlier 2002(8) 0.10473 0.02775 3.77429
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Fig. 5 Smoothed estimates of components from BSM with outliers treated by dummy variables

Outlier 2005(4) -0.10592 0.02766 -3.82885
Outlier 2010(4) -0.12736 0.02767 -4.60211

Level break 2008(4) -0.10926 0.02429 -4.49895

The ML estimates for the parameters of a DCS-t random walk model (the drift was
not significant) with a seasonal component are as follows:

κ̃ = 0.4906(0.0666) κ̃s = 1.0068 (0.1172)

ν̃ = 6.006 (1.5678) λ̃ = −3.2573 (0.0612)

with initial values μ̃0 = 15.1018(0.0174) and γ̃0 = [−0.5795(0.0270),−0.4761
(0.0269), −0.1780(0.0264), 0.1733(0.0244), 0.1475(0.0291), 0.2648(0.0261),
0.5791(0.0259), 0.4566(0.0209), 0.3157(0.0327), 0.1167(0.0304),
−0.3862(0.0289),−0.4339], for the seasonal factors. The figures in parentheses
are numerical standard errors and the initial value for the last seasonal factor is
γ̃0,12 = 0.018 which is constructed by from the others and thus has no standard
error.

The filtered DCS-t trend shown in Fig. 6 appears not to be affected by the outliers,
which are downweighted, and the trend, shown in the two top panels, adjusts to the fall
in 2008 as quickly as the Gaussian filter from the outlier-adjusted BSMwhich is fitted
with a dummy for a break in 2008(4). The figure also shows the seasonal component
and contrasts the prediction errors (irregular component) and scores; it is evident that
extreme observations are downweighted by the score. The autocorrelation functions
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Fig. 6 Filtered estimates from DCS-t filter
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Fig. 7 Residuals and scores, together with ACFs

of irregular and score are shown in Fig. 7. The autocorrelations of the scores tend to
be slightly bigger in absolute value, reflecting the fact that they are not weakened by
outliers in the same way as the raw predictions errors.

Figure 8 shows the filtered trend together with the smoothed trends for the first
three iterations, obtained as described in Sect. 6.3. The trend at the second iteration is
almost indistinguishable from the one obtained at the third.
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Fig. 8 Smoothed trends from DCS-t model
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Fig. 9 TRAMO-SEATS trend and TRAMO-SEATS-DCS trend

The above procedurewas repeated, but usingTRAMO-SEATS to obtain a smoothed
estimate of the trend from the DCS pseudo-observations. The result is shown in Fig. 9,
together with the smoothed trend obtained from the full (automatic) TRAMO-SEATS
procedure As can be seen, the two trends are very close. Figure 10 shows the corre-
sponding smoothed irregular components.
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Fig. 10 Irregular components for TRAMO-SEATS and TRAMO-SEATS-DCS

We also fitted an EGB2 model, but the fit was not as good as for the DCS-t model.
Generally the results were similar except that the seasonal pattern for EGB2was found
to be deterministic. The ML estimates for the asymmetric model were:

κ̃ = 0.32(0.07) κ̃s = 0

ξ̃ = 0.74 (0.55) ς̃ = 0.66 (0.55) λ̃ = −3.03 (0.07)

The two shape parameters are very close and there is virtually no loss in imposing
symmetry, that is ξ = ς.

8 Conclusions

This article has shown how DCS models with changing location and/or scale can be
successfully extended to cover EGB2 conditional distributions. Most of the theoretical
results on the properties of DCS-t models, including the asymptotic distribution ofML
estimators, carry over to EGB2 models. However, whereas the t-distribution has fat-
tails, and hence subjects extreme observations to a form of soft trimming, the EGB2
distribution has light tails ( but excess kurtosis) and hence gives a gentle form of
Winsorizing. The examples show that the EGB2 distribution can give a better fit to
some macroeconomic series.

The way in which DCS models respond to breaks was examined and it was shown
that, contrary to what might be expected, they adjust almost as rapidly as Gaussian
models.

A seasonal adjustment procedure may be carried out with DCSmodels that include
both trend and seasonal components. Having fitted the DCSmodel, the scores are used
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to adjust the data before smoothing using a standard Gaussian model. Two or three
iterations seem to be sufficient. The method was illustrated with data on tourists in
Spain. There is a case for a structural break in April, 2008, but the DCSmodel quickly
adjusts to it and indeed it could be reasonably argued that it is better to let the change
take place over several months rather than assigning it to just one. In summary, our
new DCS procedure, like TRAMO-SEATS, provides a practical approach to seasonal
adjustment in the presence of outliers.
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