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Abstract This study investigates how students’ reasoning contributes to their utiliza-
tion of computer-generated feedback. Sixteen 16-year-old students solved a linear
function task designed to present a challenge to them using dynamic software,
GeoGebra, for assistance. The data were analysed with respect both to character of
reasoning and to the use of feedback generated through activities in GeoGebra. The
results showed that students who successfully solved the task were engaged in creative
reasoning and used feedback extensively.
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Introduction

Even though dynamic software has been available for mathematics education for more
than a decade, its potential to assist in mathematical problem-solving, compared to, for
example, pen and paper and calculators, is not yet clear. One proposal for why dynamic
software, for example GeoGebra, alters the conditions for learning activities like
problem-solving is that it offers students the chance to interact with software. Students
may, during this interaction with software, develop mathematical objects step by step,
where every step is guided by the result of the previous step (Villarreal & Borba, 2010).
For example, students may construct and submit mathematical objects such as algebraic
expressions into the software and receive feedback as the software draws the
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corresponding graph. Here, students are creating individual references for the task at
hand (Mariotti, 2000). Furthermore, interacting with dynamic software to explore the
problem at hand may encourage students to engage in reasoning while constructing
mathematical objects to submit into the software as well as while they are interpreting
the provided feedback.

However, the presence of dynamic software alone will not guarantee that students
will manage to solve tasks when they do not know the path towards a solution.
Dynamic software such as GeoGebra only processes what is submitted and provides
feedback, the meaning of which must be interpreted. Some students may not engage in
reasoning that will advance the problem-solving or utilize the appropriate feedback
from GeoGebra. Insights into how different engagement in reasoning relates to suc-
cessful or unsuccessful utilization of feedback from software could be important in the
development of learning situations, including dynamic software. Therefore, this study
investigates how students’ reasoning contributes to their utilization of computer-
generated feedback. Furthermore, the way in which students’ reasoning and their
utilization of feedback relate to success in solving mathematical tasks will be examined.

The research questions guiding this study are the following:

*  How does students’ reasoning contribute to their use of the feedback that GeoGebra
generates?

*  How do students’ paths of reasoning and utilization of feedback from GeoGebra
relate to their success in problem-solving?

To examine the students’ reasoning and their utilization of feedback generated by
GeoGebra, a didactical design (which will be presented in detail later) used in a
previous study (Granberg & Olsson, 2015) was adopted. It was designed in line with
the didactical propositions of Brousseau (1997) and Schoenfeld (1985), and was shown
to provide students with feedback and to invite them to engage in reasoning.

Research Framework

The theoretical concepts that will be used are presented in the following section, starting
with Schoenfeld’s (1985) framework for protocol analysis that will be used to structure
the data. This is followed by a presentation of the theoretical concepts of imitative and
creative reasoning (Lithner, 2008) and the concepts of verificative and elaborative use of
feedback (Shute, 2008). These concepts will be used to analyse the data.

Protocol Analysis of Problem-Solving

Schoenfeld (1985) elaborated and extended Pdlya’s (1954) four problem-solving
phases into the following six: reading the task, analysing (why properties of a task
have certain consequences), exploration (why some outcomes will be useful), planning
(why a certain approach would lead to a solution), implementing (why the problem-
solving is proceeding properly) and verification (why a solution is actually reached).
Furthermore, Schoenfeld (1985) proposed a method of protocol analysis to examine
how a problem-solver’s decisions shape the path through these phases. Schoenfeld
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divided the problem-solving process into episodes, which are periods of time during
which the problem-solver is engaged in any of these phases, i.e. reading, analysing,
exploring, planning, implementing or verifying. Thereafter, the transitions between
these phases are identified. A transition is initiated by any of these three decision
points: the junction between episodes, when new information or the opportunity to
adopt a new approach appears, or when difficulties indicate that a change in approach is
needed. These decisions will shape the path through these phases, i.e. through the task-
solving process. During these problem-solving phases, together with the transitions,
students may be engaged in creative and imitative reasoning (Lithner, 2008).

Reasoning

The student’s reasoning is defined as being her line of thought, the thinking process
during which the learner successfully or unsuccessfully attempts to solve the task.
Reasoning is guided and limited by the student’s competences and is created in a
sociocultural milieu. A student’s reasoning is characterized as being imitative or
creative (Lithner, 2008).

Imitative Reasoning. Reasoning is considered imitative if it consists of the use of
provided or memorized facts, algorithms or procedures for how to solve the problem
(Lithner, 2008). Imitative reasoning (IR) in the form of memorized reasoning (MR) is
described as recalling rote-learned facts: for example, proof, a definition or a fact such
as 1 L=1000 cm’. IR such as algorithmic reasoning (AR) concerns the application of
provided or memorized algorithms to solve a problem. Algorithmic reasoning is often
efficient to reach a correct answer, given that the algorithm is correctly implemented.

Creative Reasoning. Creative mathematical reasoning (CMR) is characterized by
novelty, plausible argumentation and mathematical foundation. That is, instead of
recalling a procedure that will solve the task, the students create solution methods that,
at least to some extent, are new to them. The solution strategies are supported by
plausible argumentation, which is anchored in intrinsic mathematical properties
(Lithner, 2008). In other words, if the student, instead of applying a memorized
procedure, creates an original solution method (provided it is not done through pure
guesswork), it would be necessary for her to construct arguments, anchored in math-
ematics, for why the method may solve the task. Anchoring refers to the argument’s
grounding in relevant mathematical properties of the mathematical objects, transfor-
mations or concepts that the reasoning concerns. A mathematical property may be
superficial or intrinsic. Lithner (2008) illustrates this point in the following example:
“In deciding if 9/15 or 2/3 is larger, the size of the numbers (9, 15, 2 and 3) is a surface
property that is insufficient to consider while the quotient captures the intrinsic
property” (Lithner, 2008, p. 261). Furthermore, argumentation may be considered
predictive—that is to say, a mathematically anchored justification for why the strategy
will work—or verificative—that is to say, a mathematically based explanation for why
the solution worked or did not work. Predictive arguments will largely be observed in
Schoenfeld’s problem-solving phases: analysing, exploring and planning. Verificative
argumentation, conversely, will primarily be observed in the phases of implementation
and verification (Lithner, 2008).
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In the present study, students’ reasoning during their problem-solving phases will be
categorized as being either imitative or creative. Students’ reasoning during the imple-
mentation and verification phases will furthermore depend on their utilization of the
feedback from GeoGebra, that is, on the response given by the program when the
students, for example, have submitted a formula and when GeoGebra draws the
corresponding graph. To examine how students utilize the feedback from GeoGebra,
Shute’s (2008) concepts of verification and elaboration are used.

Verificative and Elaborative Use of Feedback

According to Shute (2008), information that is intended to be feedback (for example, a
response to some action on the learner’s part) can be delivered in different ways: for
example, verification of response accuracy, an explanation of a correct answer, hints or
worked examples. The provided feedback may thereafter be used in different ways: for
example, for verification or elaboration. Verification is merely the confirmation of whether
an assumption or hypothesis is correct or incorrect. Elaboration, on the other hand, can be
implemented in different ways: for example, to address the response, discuss particular
errors or worked examples, and so forth. One type of elaboration, response-specific use of
feedback, is considered particularly efficient for learning. Response-specific use of feedback
focuses on the question of why an answer is (is not) correct. Feedback can furthermore be
given on various occasions during or after the learning process. In a review, Shute (2008)
found that a specific form of feedback, feedback on task level, is particularly effective in
supporting learning. Compared with general summary feedback, feedback on task level is
more specific and often provides the student with real-time information about a particular
response to a problem or task. In this study, elaboration on feedback will be characterized as
being situations when the students discuss the feedback in terms of why the result was (was
not) as predicted or whether the feedback is elaborated on in some other way. Furthermore,
the students’ use of feedback is considered verificative if they merely use information to
determine whether or not they are right.

Feedback, however, is not necessarily given by a teacher or a peer. Brousseau (1997)
argues that feedback could be viewed as being the result of the student’s interaction
with any learning milieu. That is, if the student’s action changes the learning milieu,
this very change may cause the student to reconsider her behaviour (Brousseau, 1997).

In the current study, GeoGebra is considered a learning milieu that will provide feedback
at the task level to the student. More specifically, GeoGebra will generate information by, for
example, drawing graphs according to the student’s submitted formulas.

Feedback from dynamic software like GeoGebra differs from feedback provided by,
for example, a teacher. Teacher feedback can generally be described as being informa-
tion that is explicitly about a certain action—for example, when a teacher considers a
student’s attempt to solve a task and formulates feedback for the purpose of helping the
student to proceed. Feedback from GeoGebra could rather be described as being
implicit, an automatically generated response on students’ actions (formulating and
submitting input) with no explicit purpose of providing information on how to proceed.
That is, the GeoGebra generated feedback is, from a student perspective, the expected
or unexpected result of an activity that needs to be interpreted and that could be utilized
both for verification and for elaboration.
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In this study, it is assumed that the students’ reason for interacting with the software
is to gain information that might help them to solve the task and that they may have a
more or less articulated purpose for finding out something in particular. It is also
assumed that the students will use the feedback in various ways: for example, to
discover whether they are right or wrong or to find clues for how to proceed.

Background

Originally, the components of the framework used in this study (Lithner, 2008;
Schoenfeld, 1985; Shute, 2008) do not explicitly consider the use of ICT. However,
systematic use of digital technology in mathematics education may contribute to
particular paths through problem-solving, reasoning and using feedback (Sacristan,
Calder, Rojano, Santos-Trigo, Friedlander, Meissner & Perrusquia, 2010). The use of
interactive software is based on the user’s existing knowledge, which will influence the
medium, and the medium will influence the user. Therefore, it is important to allow
students to express, present, test, refine and adjust their thinking during their task-
solving process (Hoyles, Noss, & Kent, 2004; Lesh & Yoon, 2004). During such
activities, the learner often needs to analyse properties of mathematical objects, and a
support for that is visual mathematics representations such as geometric figures, graphs
and algebraic expressions (Sedig & Sumner, 2006). The interactive contribution from
dynamic software (for example, Cabri, Geometric Sketchpad, GeoGebra) is that these
representations may be constructed and manipulated in direct relation to task solving.

Interacting with Dynamic Software

Interaction with dynamic software has at least two implications: the user acting upon
software and software responding in some way for the user to interpret (Sedig &
Sumner, 2006). The relationship between action and response depends on whether the
action is direct on an existing object or on creating an object. For example, by moving
one edge of a triangle that is prepared in such a way to show the size and sum of its
internal angles, the user can continuously observe the changing of the angle sizes while
also observing that the sum does not change. If an object is instead created by a student
submitting a command and the software in response transforms it into one or more
corresponding representations, then action and response are separated and the connec-
tions between them are in some sense not transparent: that is to say, the student needs to
interpret the properties of and relations between different representations. For example,
if a user submits a formula for a linear function and the software transforms it into a
corresponding graph, the user has to interpret the way the algebraic expression and the
graph correspond. Interacting with software through commands can be described as
being discrete, and the suggestion is that it is more cognitively demanding since an
input object has to be formulated and submitted before the user receives any feedback
(Holst, 1996). It has been found that students who explicitly express predictions for
what the response could be are more successful learners (Hollebrands, 2007). Direct
manipulation of objects, when the object that is manipulated changes continuously,
allows users to control the flow and communication of information; however, this, on
the other hand, may lead to a superficial interpretation of intrinsic properties of the
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mathematical object. In the previous example—that of manipulating a triangle (see
above)—a student may accept that the sum of internal angles is 180° as a fact and not
reflect on properties and justifications.

Dynamic Software Supporting Problem-Solving and Reasoning

Tools like rulers, compasses and computers have always been important for students as
they gain skills in mathematics. It is hard to imagine whether there would be such
symbols as triangles and squares if the ruler and compass did not exist. These tools are
also usable in education to reproduce such knowledge. In addition, mediating tools such
as blackboards, pens and paper and textbooks are important in mathematics education.
Historically, when introduced, all of them led to a slightly different perception of, and
relationship to, mathematical content (Villarreal & Borba, 2010). The introduction of
dynamic software is no exception. Research has often put forward the fact that dynamic
software allows students to create their own dynamic mathematical objects as references
to the task at hand (Moreno-Armella, Hegedus & Kaput, 2008). That is, instead of
referring to static objects created by pen and paper or presented by teachers or textbooks,
students can create and manipulate mathematical objects tailored to provide exactly the
information they think they need to have in order for them to proceed with solving the
task at hand (Mariotti, 2000; Moreno-Armella et al., 2008). Furthermore, the creation of
mathematical objects in an environment of dynamic software such as GeoGebra and
Cabri can be carried out stepwise. That means that every step is associated with an
activity resulting in a response from the software, which in turn may guide the next step
in task solving. Working with dynamic software means both guiding the software and
being guided by the software (Moreno-Armella et al., 2008).

Several researchers advocate for how working with dynamic software promotes
reasoning. Hohenwarter and Fuchs (2004) suggest that the interactive character of
GeoGebra allows students to be active and solve non-routine tasks in groups or
individually, and that teachers may focus on mathematical reasoning in whole-class
follow-up discussions. Others emphasize students’ reasoning as being connected to the
work in software—for example, that tools in dynamic software can be used not only for
exploration but also in support of the reasoning associated with solving the problem
(Falcade, Laborde & Mariotti, 2007). Another example is that working in dynamic
software supports less strict reasoning that with the support of a teacher could be
developed into deductive mathematical reasoning (Jones, 2000; Healy & Hoyles,
2001). However, reasoning is often mentioned in general terms: that is to say, not in
specific terms as to the ways in which students’ reasoning contributes to activities in
software (for example, in predictions and expressing purposes while formulating
inputs) or as to the contributions software makes to students’ reasoning (for example,
in interpretations of output and justifications for solutions).

Interpreting the results of activities in dynamic software may be considered as being
the use of feedback from computers. In literature, feedback from the computer is often
called immediate, task associated, accurate, etc. (Sangwin, Cazes, Lee & Wong, 2010).
It is also suggested that feedback helps students to control the progress of the solution
and to support explanations and justifications (Sacristan et al., 2010). Therefore, the use
of feedback from dynamic software is associated with the purposes students have when
it comes to creating certain activities and is related to reasoning.
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Method

The present study adopts a sociocultural perspective that considers knowledge to be skills
that students develop through interactions within a social context. The method was designed
to answer the research questions concerning the relation between reasoning, feedback and
success in terms of solving the task. Reasoning is, in the present study, defined as being a
student’s train of thought: that is to say, the thinking process during which the learner
successfully or unsuccessfully solves the task (Lithner, 2008). Students’ reasoning can be
articulated, and thereby possible to observe, as being interactions with one another, with the
software, etc. Stahl (2002) proposes that these kinds of data, dialogues, computer manipu-
lations and gestures can be merged into meaningful sequences that are possible to analyse.
The reasoning of students was recorded through their conversations, computer activities and
gestures and were thereafter merged into reasoning sequences that were used for analysis.
The method will be presented in detail in the following section.

The Didactic Situation

The didactic situation builds on three propositions: challenge, responsibility and
collaboration. Schoenfeld (1985) argues that students must work with mathematical
problems that to some extent are new to them so that they can develop problem-solving
skills; further, the task must constitute an intellectual challenge to the students.
Brousseau (1997) proposes that if a task is to remain a challenge, students must be
responsible for creating solutions of their own, and the teacher should not interfere by
guiding the students towards the right answers. Brousseau furthermore notes that if a
task has an appropriate design, the students will attain the target knowledge by solving
the task, and they will do so only if the teacher does not provide them with the solution.

Moreover, working in small groups has been reported to be beneficial for learning when
the task focuses on relationships and concepts rather than procedures. The former promotes
collaboration and the latter cooperation (Lou, Abrami & d’Apollonia, 2001; Mullins,
Rummel & Spada, 2011). Collaboration is understood to be a coordinated activity that is
the result of a continued attempt to construct and maintain a shared conception of a problem
(Roschelle & Teasley, 1995). In contrast, cooperation means that the cooperators split the
task into parts, and each cooperator works with different parts.

The didactical design in this study is built on these ideas. The students collaborated by
working in pairs while sharing one computer using GeoGebra. The task was designed to
constitute a challenge to the students. Finally, the students were given the responsibility to
create their own solution methods. The author was present to answer technical questions but
did not guide the students on how to solve the task. The task was presented to the students as
follows:

—  Create a linear function on the formula of y=mx+c

— Create another linear function in a way that the corresponding graphs are
perpendicular

—  Formulate a rule for when two linear functions have perpendicular corresponding graphs

—  Test your rule on different functions with different slopes. Explain why it works

The task was pilot-tested and found suitable for 16- to 17-year-old students.
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Participants and Data Collection

Sixteen students from the science program at a Swedish upper-secondary school
volunteered. They were 16—17 years old—eight girls and eight boys. They had earlier
experiences of linear functions from lower-secondary school, but they had no recent
teaching on the issue. They were informed according to the ethical directives of the
Swedish Research Council (2001).

The students solved the task in pairs in a room beside the regular classroom. They
had no experience of working with GeoGebra and used a prepared GeoGebra file
where all tools were disabled except for the pointer, the “layer-mover” and the angle-
tool, since experiences from earlier studies (Granberg & Olsson, 2015) and pilot-tests
have indicated that some students become disoriented in the solving process while
exploring different tools. They had a short introduction to GeoGebra as well as to how
to submit formulas, how to change an algebraic expression and how to use the visible
tools. In situations in which students became stuck, the author encouraged them to
explain their ideas and strategies to help them move on in their work. Finally, when the
students had solved the task (or had given up), they were invited to explain why they
thought that their strategies had or had not been successful. The data were screen
recordings, with integrated voice and video recording.

Analysis Method

Research Question 1 concerns the contribution of the students’ reasoning for utilizing
the feedback generated by GeoGebra. Students’ reasoning was categorized using
Lithner’s (2008) framework of creative and imitative reasoning. How students used
the feedback from GeoGebra was examined using the concepts of verificative and
elaborative feedback (Shute, 2008). Thereafter, the relationships between students’
verificative and elaborative use of feedback and their engagement in creative and
imitative reasoning were examined. Research Question 2 concerns how the results
from RQI relate to students’ problem-solving success. This was analysed by consid-
ering whether important decisions in the solving process were consequences of certain
reasoning and use of feedback from GeoGebra. The analysis methods indicated here
will be elaborated in the following text.

Structuring Data. The data, consisting of dialogue, computer interactions and ges-
tures, were transcribed into written text. To discuss students’ reasoning and their use of
feedback from GeoGebra in the context of their problem-solving success, the eight
pairs were divided into two groups: those who reached a reasonable solution, that is to
say those who constructed a rule, and those who did not. As the next step, the
transcripts were divided into episodes according to Schoenfeld’s six phases of prob-
lem-solving: that is to say, reading, analysing, planning, implementing, exploring and
verifying. To map the students’ path through their problem-solving, possible decision
points were identified—that is to say, junctions between episodes, occasions on which
new information arose from computer activities or students’ discussions, and sequences
accompanied by difficulties. Actual decisions, when what students said or did indicated
how to proceed, were noted. These parts were used to consider how the decisions
contributed to solving parts of the task and if information gained from solving parts of
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the task was used to answer the main question of the task. Thereafter, the students’
reasoning in these phases and transitions was analysed.

Students’ Reasoning. Lithner’s (2008) framework was used to classify the students’
reasoning into IR or CMR. The students’ dialogues, interactions with GeoGebra and
gestures in each phase were examined, and units of argumentation were identified. The
characteristics of the argumentation—that is to say, the implicit or explicit justifications
of the strategy choices and the strategy implementations—were used to determine
whether the reasoning met with the understanding of what is characterized as imitative
or creative reasoning. The students’ reasoning was considered CMR if there were signs
of creating (for the students) a new solution method (that may contain some elements of
IR, though not only) and if their argumentation was anchored in intrinsic mathematical
properties. The reasoning was categorized as imitative reasoning if the (sub-) task
solutions were based essentially on familiar facts and/or procedures only.

Students’ Use of Feedback. Finally, how students used the feedback from GeoGebra
was examined using the concepts of verificative and elaborative use of feedback (Shute,
2008). Dialogues and gestures during phases before and after each computer activity
were noted. A computer activity in this study includes the students’ input and the
outcomes displayed by GeoGebra. Before this point, the students plan (planning phase)
what to submit to the program, and afterwards, the students may interpret the outcome
and discuss how to proceed (verificative and analytic phase). What they said in a
planning phase when they predicted the outcome of a computer activity was interpreted
as being preparation for using the information from GeoGebra as verifying feedback.
After a computer activity, in the verificative phase, students could use the feedback
from GeoGebra verifiably, which was identified as what they said in terms of success or
failure in reaching the expected (sub-) goal. If they used the verification information to
explain, extend pre-knowledge, plan for how to proceed with the task solving, etc., then
they were considered to be using the information from the program elaborately and to
be entering the analytic phase. Finally, the situations of preparing activities and using
feedback from GeoGebra were considered in the context of whether the reasoning was
characterized as being CMR or IR.

To answer RQ1, the use of feedback (verifiably and/or elaborately) was associated
with the characteristics of IR or CMR during the planning of the activity and with
reasoning when using feedback.

To answer RQ2, the reasons for students’ success or failure in solving the task were
related to decisions in the solving process that the students made or could have made.
Whether the success or failure was related to the characteristics of reasoning and use of
feedback was then considered.

Analysis
All eight pairs were engaged in the problem-solving process; however, not all of them
solved the task. Four pairs found a reasonable solution for the main task. They used

possible decision points to solve sub-problems and used new information to solve the
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following sub-problems and the main task. Two pairs did not find a reasonable solution
for the main task. They solved some sub-problems but made less use of their experi-
ences from solving these sub-tasks. The remaining two pairs started in the same manner
as the less successful pairs but changed strategies and completed the task in the same
way as the more successful pairs. In the following discussion, sequences from one pair
of each category will be analysed with respect to their reasoning and utilization of
feedback. Because none of the chosen pairs had a clear understanding of the formula
y=mx+c, they all needed to clarify the properties of the formula. The following
examples are from such sequences.

Alma and Ester

Alma and Ester had an exploratory approach and they successfully solved the task.
Before the first algebraic submission into GeoGebra, they had a discussion as to where
they wanted the first graph to be situated. After two attempts to create a perpendicular
graph to y="7x — 1, they came to the conclusion that they needed to understand the
formula y = mx + c. By manipulating existing formulas and observing the graph, they
found out that m affects the slope of the graph and ¢ affects its intersection with the y-
axis. When that was sorted out, they used these findings to create a number of
perpendicular graphs. Finally, they observed that the product of the x-coefficients in
all their examples were —1 and proposed m; x m, =—1 as the rule.

Episodes and Decision Points. During their task solving, Alma and Ester went
through episodes of reading, exploring, planning/implementing, analysing and verify-
ing. They had possible decision points at the junctions of episodes and when the
computer activity generated new information. Two of those decision points in partic-
ularly helped them with their problem-solving. The first of these decision points
emerged when they realized that they did not fully understand the formula y =mx +
¢, and they decided to analyse the properties of the formula. The second decision point
arose when they had difficulties in finding a function with perpendicular graphic
representations to the graph of y=7x— 1, and they decided to change the function to
y=2x — 1 because 2 is easier to divide than 7. It was also clear that they used
information from these episodes of analysis later in the task-solving process. In the
next paragraph, their first episodes of exploring will be analysed.

Reasoning. After reading the instructions, they initiated an exploring episode as
follows:

1. Ester: Well let’s just submit something...

2. Alma: y is equal to seven...

3. Ester: That means it’s going to be very much like this (a moving gesture almost
vertically, in front of the screen)

Their suggestion to choose seven as the x-coefficient is followed by a prediction of
the graphical appearance on the screen. They created the strategy themselves and what
Ester says along with her gesture can be interpreted as being predictive argumentation.
This strategy of suggesting something followed by a prediction of the result supported
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by argumentation reappeared several times during their work. Some predictions were
followed up by verificative argumentation: for example, “m =7 means the line must
increase by 7 every step to the right” or “this one must have m less than 1 because you
go more steps horizontally than vertically”. The reasoning of these students is classified
as CMR since their reasoning is novel (i.e. is not a familiar algorithm) and is based on
predictive argumentation as to where the graph would be situated and verificative
argumentation as to why the graph appeared as it did.

Feedback. The following excerpt, considered an episode of analysis, exemplifies how
Alma and Ester used the information after submitting the function y = —3x— 1, which
they predicted to have “negative but less slope than y=7x—1":

1. Alma: This is not 90°....
2. Ester: No, it’s not... but let’s measure it to see how far off we are [uses GeoGebra’s
angle tool to measure the angle]...

After a discussion resulted in the conclusion that the constant term does not affect
the slope of the function and that the slope depends only on m, the x-coefficient:

3.  Alma: We must concentrate on m....

After an analysis of different examples of submitted functions, Alma summarized
using y=2x—1 and y="7x — 1 as references:

4. Alma: Well, if we start at minus one.... This one has m=2.... Then, you go one
step to the right and then two upwards [counting squares with the mouse].... And
this has m=7... if you go one step to the right, you go seven upwards [counting
squares with the mouse]....

First, they used feedback from GeoGebra for verification, concluding that they did
not have a perpendicular line. They then initiated an attempt to elaborate on the result.
This led them to an episode of analysis in which they elaborated on the feedback and
investigated how m and c affect the graphical representation. During their work, these
students frequently discussed and elaborated on the received feedback, and based on
this, they adjusted their strategies. This indicates that they were using the feedback from
the software both as verificative and elaborative feedback.

Relationships Between Reasoning, Feedback and Success in Problem-
Solving. Alma and Ester frequently used CMR to predict the outcome of the computer
activities, and they used the feedback from GeoGebra for both verification and
elaboration. Furthermore, these students always related their elaborations to their
predictions. This indicates a relationship between CMR and elaboration on feedback
from GeoGebra. It seems that predictions of computer activities that are founded in
CMR provide a basis for using the received feedback elaborately.

Alma’s and Ester’s decisions to examine the formula y = mx + ¢ and to replace the x-
coefficient of 7 with 2 are considered important for solving the task. Both decisions
were made in episodes of analysis and were preceded by elaboration on feedback based
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on CMR. Information from analysis was then used to answer the main question of the
task. The use of CMR by these students and their elaborative use of feedback in the
episodes of analysis seem important for their success in solving the task.

Bertil and Isak

Bertil and Isak had an exploratory approach. They solved some subtasks, but they did not
solve the main task. Their efforts to find a path to a solution initially meant that they tried
several different linear equations. Their first example of a perpendicular graph corresponding
to the x-coefficients 1 and —1 was found rather quickly. They did not try to understand why
the example resulted in perpendicular graphs. Instead they continued submitting different
linear equations, none of them resulting in perpendicular graphs. They had one more
articulated approach; they tried to predict where the intersections to both the y-axis and
the x-axis would be from the values of the x-coefficient and the constant term. When it was
not verified by the information from GeoGebra, they abandoned the idea without trying to
understand why it did not work. After 50 min, they gave up.

Episodes and Decisions. During their task solving, Bertil and Isak went through
episodes of reading, exploring and planning/implementing. Possible decision points
were junctions of episodes and when the computer activity generated new information.
Their first decision was to submit y = 6x — 3, followed by them saying that the function
ought to have less slope. After some manipulation, they agreed on and submitted y =x
— 3. Then, they submitted y=—x— 3, which they stated was perpendicular to y=x—3.
The decision to change y=6x—3 to y=x—3 made the sub-task easier. This decision
allowed them to create y = —x — 3 rather easily, only changing the m-value from positive
to negative. The decision allowed them to find a solution to the sub-problem of creating
two perpendicular lines. However, no trace was found of using gained knowledge to
solve other sub-problems or to answer the main question.

Reasoning. After reading the task instruction, Bertil and Isak went on to implement an
example of a linear function. The following excerpt is the beginning of their conver-
sation after the first implementing episode:

1. Bertil: If we have.... sort of.... y equal to.... six....

2. Isak: [types y=6].... x.... isn’t it.... plus....

3. Bertil: Minus.... because we want to have it down here [points with the mouse
cursor at (0, =3)]....

4. Isak: Ok.... [completes y = 6x — 3 and pushes the enter button].... like this.... sort
of...

5. Bertil: Then we must have one going in this direction [pointing with the mouse
cursor negative diagonally on the screen]...

The strategy of submitting a function to have a reference from which to proceed was
created by them. Line 3 predicts the intersection to the y-axis, but there is no articulated
argumentation as to how the submitted function will contribute to the solution. As soon
as the enter button is pushed, they begin looking for a perpendicular line without

@ Springer



Reasoning to the Utilization of Feedback from Software 727

discussing the result of the computer activity (y = 6x — 3). This approach is characteristic
of their reasoning throughout the entire procedure of solving the task. Although they
occasionally create solution strategies and occasionally predict outcomes of computer
activities, the lack of argumentation and superficial basis (or lack thereof) in mathemat-
ics means that their reasoning cannot be classified as CMR. It is not clear what the
purpose of choosing the function y = 6x — 3 was. Pointing at (0, —3) seems to predict an
intersection with the y-axis (line 3), which may build on that students remember that ¢
determines the intersection point with the y-axis, but the reason behind the choice of 6 as
x-coefficient is not clear from the data. Strategies for recalling memorized facts and
procedures imply less of a necessity for argumentation, which is characteristic of IR.

Feedback. In the example above on line 3, there is a prediction as to the intersection
with the y-axis, which is consistent with the result of the activity. However, they do not
comment on this result—that is to say that the graph intersected in actual fact at (0, —3).
This approach is an example of using feedback verifiably. The following excerpt is an
example from the same episode. The intersection with the x-axis (0.5, 0) for the
function y = 6x — 3 is not what they expected:

1. Bertil: Wait... there it is minus three [points at (0, —3)]... why is this situated here,
then [points at (0.5, 0)]... ?

2. Isak: Should we... should we have ten instead... ?

Bertil: Yes, ... type that....

4. TIsak: Yes [submits y=10x—3]... this is even steeper.... but let’s have.... one....
[submits y=1x—3]...

W

It seems that the intersection with the y-axis is what they expected, but they question
the intersection with the x-axis at (0.5, 0). Instead of trying to understand why the
intersection is at (0.5, 0), they repeatedly change the x-coefficient (line 4) until they
have the 45° graph associated with y = x — 3. There are no attempts to explain why an x-
coefficient yields a certain slope. This is considered to be using feedback only
verifiably, not elaborately. Using feedback only verifiably and replacing functions
without discussion is characteristic of this entire task-solving session.

Relationships of Reasoning, Feedback and Success in Problem-Solving. The rela-
tionship between reasoning and feedback is illustrated by Bertil and Isak, who had no
argumentation in their preparations of computer activities and who used feedback
solely verifiably. The lack of argumentation disqualifies the reasoning as CMR. A
consequence of the lack of predictive argumentation is that they have no clear percep-
tion of what feedback they can expect, which makes it difficult for them to elaborate on
the feedback when it appears on the screen. This in turn is one reason for their failure to
solve the task.

Olga and Leila

Olga and Leila’s initial strategy could be described as imitative—trying to remember facts
and procedures. In the first half of the task-solving process, they solved some sub-problems,
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but they did not reach an answer to the main question. After 40 min, they changed strategy.
They started to create solution methods and to analyse the received feedback. Eventually,
they presented m, =—1/m; as an answer to the main question, which was elaborated into m;
x my =—1. The following analysis is separated into two parts, before and after the strategy
change. The second half will be described as a summary, focusing on the main causes for
their success in solving the task.

Episodes and Decisions in the First Half. In the first half of the task-solving session,
Olga and Leila went through episodes of reading, exploring and planning/implementing.
Possible decision points were junctions between episodes, when the computer activity
generated new information and sequences with difficulties. Their first decision was to
implement y = 2x — 2, the graph of which was supposed to intersect the y-axis at —2 and
the x-axis at 2. They did not try to analyse why it did not appear as they expected.
Instead, they attempted to create a perpendicular line by submitting y = —x — 1, which led
to a decision to change y = 2x — 2 into y = x — 1. The decisions made them solve the part
of the task that involved creating two perpendicular lines. However, no trace was found
of their gained knowledge to solve other sub-problems or to answer the main question.

Reasoning in the First Half. The excerpt is from their first conversation after reading
the instructions. It is considered an exploration of the conditions for the task:

Olga: ¢ was where it intersected the y-axis...
Leila: Yes...

Olga: Yes, it was... But, what is m...?
Leila: m was that the value in between...?
Olga: Yes... the difference when you go...
Leila: Yes...

Olga: Eh... What should I write then...?

NNk WD

What they say on lines 1 and 3 and their attempts to explain on lines 4 and 5 indicate
that these students are trying to remember how c affects the intersection with the y-axis
and how to calculate the x-coefficient. The articulated facts are not coherent, and there
is no argumentation for why these facts may help to solve the task. This is characteristic
of imitative reasoning. Only the utterance that “‘c was where it intersected the y-axis” is
used in their first implementation, as exemplified in the next excerpt:

8. Leila: Should we make it easy and take y =—2 and x = 2 [pointing with the mouse
at (0, 2) and (2, 0)]...?

9. Olga: Yes, ... go ahead...

10. Leila: [writes y =2x + 2].... No... minus [change and submit y = 2x —2]... hmm...

11. Olga: Yes... and a graph perpendicular to this must go ...

Line 8 indicates a prediction that the graph would intersect the y-axis at —2
and the x-axis at 2. Their argumentation does not have a basis in mathematics.
Their idea is merely to make the implementation easier. There is no argumen-
tation for why the graph did not appear as expected. A few lines down, similar
behaviour is observed:
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12. Olga: No.... that is not perpendicular.... It is too large.... But, write y=—x—1....
13. Leila: [submits y =—x — 1] this is not 90°....
14. Olga: No... but we can change y=2x—2 into y=x—1...

Instead of analysing why the graphs did not intersect perpendicularly, they changed
their first function y=2x—2 into y=x—1. This seems to be a decision based on
intuition; there is no argument for why it solved the sub-task. The approach of trying
to remember how the constant term and x-coefficients affect the graph and the lack of
predictive and verificative argumentation classify the reasoning as IR.

Feedback in the First Half. The first computer activity on line 10, y=2x— 2, did not
result in the intersection with the x-axis that they predicted. Feedback was not explicitly
used verifiably or elaborately. It may have been used implicitly as a reference to plan
for a perpendicular line. Feedback from the next activity (line 12), y=—x— 1, was used
verificatively, stating that the graph was not perpendicular to y =2x — 2. They changed
y=2x—2to y=x—1 (line 14) without presenting any arguments as to why. It seems
that the visual feedback made them guess y=x— 1 should be perpendicular to y = —x —
1. The use of feedback, to suggest y=x—1 is perpendicular to y=—x—1, is not
considered elaborative when there is no articulated attempt to understand why the lines
were initially not perpendicular. This example of using feedback merely verifiably is
characteristic of the first half of Olga and Leila’s task solving.

Relationships of Reasoning, Feedback and Success in Problem-Solving in the First
Half. The few predictions they articulate (for example, that the c-value indicates
intersection with the y-axis and, wrongly, that the x-coefficient indicates the intersection
with the x-axis) are not supported by predictive argumentation, and the feedback from
GeoGebra (for example, the graph associated with y=2x—2) is not elaborated on. It
seems that the lack of articulated predictive argumentation may have caused difficulties
for the students in elaborating on feedback and using verificative argumentation.

The reason behind Olga and Leila’s failure to solve the task in the first half of the
session is that they did not try to understand why the feedback from GeoGebra did not
verify their predictions. There is some argumentation, but it is superficial and does not
have a basis in mathematics (for example, the choice of y =2x—2 because it would
“make it easy”). The lack of predictive argumentation also means that they do not have
a basis for analysis of unexpected results of computer activities.

Second Half Change in Approach. In the first half, Olga and Leila did not manage to
create perpendicular lines with x-coefficients other than 1 and —1. The episodes were
labelled as either implementing or exploring. They increasingly used their own solution
methods, but there was no or only superficially anchored argumentation and no
elaborative use of feedback. The turning point occurred in the second half, after
about 40 min. They managed by trial and error to create perpendicular lines by
submitting the functions y=2x—4 and y=-0.5x—4. They hypothesized that
one x-coefficient must be a fourth of the other “but negative” to create
perpendicular lines. They tried this on several examples with other x-coeffi-
cients without success for approximately 10 min. This is what Schoenfeld
(1985) describes as a possible decision point based on information indicating
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that something is wrong. For the first time, Olga and Leila performed what can
be considered as an analysis:

1. Olga: I think we started out the wrong way round.... We are looking for a pattern
that does not exist..... this one affects the slope [pointing at the x-coefficient]... and
this one the intersection with the y-axis [pointing at the constant term]

2. Leila: And m affects the angle...

Olga: But why are these angles equal [pointing at the examples on the screen]?

4. Leila: But we said that ¢ doesn’t matter, we can move them here... and there...
(pointing with her finger at different areas on the screen)

5. Olga: So it is the slope that matters... and the relation between two different slopes. ..

W

The sequence above is crucial for solving the task because they initiated an analysis
of how m and c affect the graphical representation of the function (line 1), and they
decided to focus on the relationship between the two x-coefficients of two perpendic-
ular functions (line 5). The next excerpt exemplifies their changed approach to
reasoning:

1. Olga: What do the two examples have in common (y=x—1landy=—x—1, y=2x
—4 and y=—0.5x—4)...7

2. Leila: They are like opposites. ..

3. Olga: One divided in two is zero point five....

4. Olga: Yes... and one divided in one is one... but minus...

5. Leila: That’s it... one divided in one but minus...

6. Olga: Then something times something must be one... but minus.... say a
number...
Leila: Six...

8. Olga: Then the other one must be.... one divided by six.... but minus [submit y =
6x and y=—1/6x]...
9. Both: Yeah...

Their strategy to find the relationship between the x-coefficient of two perpendicular
functions generated a hypothesis (line 6). To examine their idea, they created a
computer activity (line 8) using predictive argumentation based in mathematics. The
reasoning in this sequence is classified as CMR. The next excerpt exemplifies that their
creative and predictive reasoning before the computer activity prepared them to
elaborate on feedback:

10. Olga: Alright... what do we have... six and a sixth...

11. Leila: And one of them is minus...

12.  Olga: Then the m’s times each other must be minus one...
13. Leila: Let’s try m is equal to five...

On lines 10-11, they used feedback verifiably, stating that their prediction was
correct. On line 12, they elaborated on feedback based on their predicative argumen-
tation (lines 4-6) and suggested an answer to the main question of the task. On line 13,
they initiated an activity to verify their idea and, therefore, the answer to the main
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question. After this excerpt, they verified their idea using several examples and
concluded that the task was solved.

Relationships Among Reasoning, Feedback and Success in Problem-Solving After
Changing Approach. The relationship between reasoning and feedback in the second half
of the session is that the planning of computer activities includes the creation of strategies
supported by predictive argumentation anchored in mathematics—that is to say, CMR.
These strategies are then implemented, and the feedback generated by the computer
activities is elaborated in the sense that students use CMR to explain why the feedback
does or does not verify predictions. The example above shows that Olga and Leila’s
predictive argumentation is the basis for the elaboration on feedback. This indicates that
the argumentation behind the prediction prepared them for using the feedback: that is to say,
the activities (y = 6x and y =—1/6x) verify the prediction of creating perpendicular lines.

The reason behind Olga and Leila’s success in solving the task is that, after a long
period of fruitless trials, they performed an analysis of their examples, y=x—1 and y =
—x—1, y=2x—4 and y=—0.5x—4. This analysis initiated a change in reasoning to
CMR: that is to say, they started to give arguments for their strategies and predictions.
When the analysis turned into implementation, they started to elaborate on feedback;
for example, they discussed how to choose x-coefficients to provide perpendicular
lines. There is a clear distinction between their reasoning before and after the sequence
in which they tried several examples with different x-coefficients on the assumption
that one x-coefficient should be the negative fourth of the other. As long as they did not
support this prediction by argumentation, they did not come closer to a solution. After
analysis of the examples, they justified the relationship that one x-coefficient must be
minus one divided by the other. Through elaboration on feedback, they continued
towards a solution to the task; the product of the x-coefficients must be —1.

Conclusions

The conclusions are presented in line with the research questions addressing interpretation of
feedback, predictive and verificative argumentation, and success in solving the task.

Contributions of Students’ Reasoning to the Utilization of Feedback from
GeoGebra. The results from the study show that differences in utilizing feedback gener-
ated by activities in GeoGebra can be referred to different characteristics of reasoning. For
example, Alma and Ester, and Bertil and Isak all started by submitting similar formulas
(v=6x—3 and y=7x—1) and consequently received similar feedback from GeoGebra, but
while Bertil and Isak immediately and without reflection erased the function and submitted
another one, Alma and Ester elaborated and uncovered implicit meanings of the feedback by
examining the features of the x-coefficient and constant term. The differences between the
two pairs were that Alma and Ester’s reasoning frequently included predictions of the
outcome from activities and justifications supporting elaboration on feedback, while the
reasoning of Bertil and Isak essentially did not include any of these components.

Upon a further look into the characteristics of the solutions, it becomes apparent that
students who elaborate on feedback and present verificative argumentation supporting
claims in solutions are those who explicitly predict outcomes from computer activities
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before submitting input to GeoGebra. Olga and Leila exemplify both an approach
without predictive argumentation (first half of their solution) and (in the second half) a
solving strategy where every action was preceded by predictions of the outcome.
Contrary to the first half, the second half included elaboration of feedback partially
supported by predictive argumentation. Bertil and Isak, on the other hand, even though
they seemed to have expectations as to the outcomes, never articulated any predictions
or verificative argumentation.

Students’ Path of Reasoning and Utilization of Feedback from GeoGebra Related
to Success in Problem-Solving. In this study, the reoccurring fact is that students who
solve the tasks are those who manage to elaborate on the feedback from GeoGebra.
None of the students knew the relation between two linear functions with perpendicular
corresponding graphs. That meant they had to formulate activities that would result in
information that could be used to support the construction of a rule. However, this
information from GeoGebra is often not in the form of direct answers to the questions
that the students have in mind but must be interpreted, elaborated and transformed.
What the successful students in this study all have in common is that their reasoning is
essentially characterized as being CMR: that is to say, their reasoning includes predic-
tive and verificative argumentation, something that was characteristic for those who
utilized feedback elaborately. Both Alma’s and Ester’s and Olga’s and Leila’s (second
half) path of reasoning can be described as follows: formulating input including
prediction of the outcome, submitting into GeoGebra, and interpreting and elaborating
on the outcome based on the prediction.

Discussion and Conclusions

The results of this study clearly indicate that interpretation of feedback from GeoGebra
is crucial for success in solving the task and that prediction as to the outcome of
activities in GeoGebra is important for utilizing feedback from the software efficiently.
This may be explained by what Sedig and Sumner (2006) call discrete interaction with
software: that is to say, there are parts in the transformation processed by software that
are not transparent. For example, if the student submits a linear equation into the
software, GeoGebra will create the corresponding graph but not point out the particular
relationships of interest between the equation and the graph. To notice these relation-
ships, the student needs to interpret the provided feedback generated by her action.
Interacting with software through commands means the user has to formulate an input
object (Holst, 1996), and formulating input may be more or less associated with a clear
and specific purpose to receive useful information from the activity. As seen in this
study, articulated predictions and hypotheses of the outcome provide the basis both for
submitting suitable input and for interpreting feedback from GeoGebra efficiently.

How Reasoning Contributes to the Utilization of Feedback

The study shows that GeoGebra has the potential to help in the solving of non-routine
tasks through quickly and exactly transforming and displaying representations of
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mathematical objects simultaneously. For example, a submitted algebraic linear func-
tion is transformed into a graph, and both the algebraic and graphical representations
will be displayed side by side. Utilizing the potential for task solving means creating
mathematical objects that support the solution. Since the management of procedures is
taken care of by the software (in the case of this study, the transformation of a linear
equation into its graphical representations), GeoGebra is a tool to help students express,
adjust and refine their thinking (see Hoyles et al., 2004). Falcade et al. (2007) point out
that working with dynamic software can be used not only to explore mathematical
objects but also to support reasoning leading to the solving of mathematical problems.
From the point of view of reasoning, successful interaction with GeoGebra resonates
well with the concept of CMR (constructions of new solutions supported by argu-
ments). That is, the student needs to create the solution method, and the more thorough
the input is prepared (including predictions, hypotheses and predictive argumentations),
the better prepared she is to interpret and utilize the feedback generated (including
conclusions supported by verificative argumentations).

Implications for Mathematics Education

In this study what is recurrent is that students who solve the task are those who manage
to elaborate on the feedback from GeoGebra. While there were no signs that any of the
students knew the rule in advance or knew how to create perpendicular graphs, they all
had to (1) figure out how to create at least two examples of linear functions with
corresponding perpendicular graphs, (2) draw conclusions in terms of the relationship
between x-coefficients when two functions have perpendicular graphical representa-
tions, and (3) formulate a rule. That means that students have to organize and extend
their current knowledge about linear function and its representations. In Swedish
schools, the relationship between linear functions that have corresponding perpendic-
ular graphs is usually taught in years 10-11 as part of the science and technology
programs. The most common way is for the teacher and/or textbook to present and
justify the rule m; x m, =—1 followed by a couple of tasks where the rule is applied.
Some textbooks present exploratory tasks including stepwise instructions that, if
followed correctly, will create (either by pen and paper or some technological means)
representations of linear functions usable as references to formulate the rule. This study
shows that students themselves, with the support of GeoGebra, are capable of
creating the necessary representations and of drawing conclusions to the rule
without stepwise instructions. On the other hand, there were students who failed
to solve the task. In regular teaching situations, these students would probably have
interacted with the teacher, and they would probably have had textbooks to help
them. If the teacher and/or textbook provides the students with a solution method,
they would probably solve the task successfully, but most likely their reasoning
would turn into being imitative, that is, they would have adapted and applied the
solution method without justification based in mathematics. If a purpose is to
engage students in CMR, the support to students who meet obstacles must be
carefully prepared. According to the results of this study, students should be
encouraged to predict the outcome of activities in GeoGebra. Furthermore, instead
of explaining how to solve the task, the teacher should ask the students to justify
their solution methods and solutions.
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