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Abstract

Contextual Android Education

James Reed

With advances in mobile phone hardware, the demand for mobile applica-
tions has risen drastically. This has resulted in mobile phones becoming a pop-
ular new medium for application development. However, the body of knowledge
for contextual examples and tutorials leaves much to be desired. As of January
2010, California Polytechnic State University has offered a mobile development
class that teaches students how to write applications for phones running Google’s
Android platform. This class aims at taking advantage of students’ current in-
terest in mobile applications to teach them about difficult computer science
topics. As a corollary, the class hopes to foster and encourage a sense of inde-
pendence and entrepreneurship through having students design, implement, and
publish their own applications to the Android Application Marketplace. The
main contribution of this thesis project comes in the form of a series of detailed
educational laboratory exercises and a system for grading student submissions
in an automated fashion. These labs are designed to supplement the Android
documentation by providing contextual examples, activities, and tutorials. It is
therefore the goal of this thesis project to aid in transforming the class of mobile
development students into a group of successful, practicing, mobile developers.
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1 Introduction

With advances in mobile phone technology, like increased computing power,

improved touch screen user interfaces, and faster wireless internet connections,

the demand for both free and paid mobile applications has risen dramatically.

This has resulted in mobile phones becoming a popular new medium for appli-

cation development. There are many high powered platforms to choose from,

such as Blackberry, iPhone, and Android. Most of these platforms offer an

open marketplace for the sale and distribution of independently developed mo-

bile applications. This makes it incredibly easy for independent developers to

get their products into the hands of users. Awareness of this new market has

not escaped the interest of computer science students who are often consumers

of the applications themselves. With the demand of mobile applications, low

barrier to entry into the market, and general interest from the computer sci-

ence student population, mobile application development is an excellent skill for

computer science students to learn. Most of these platforms offer a wide array

of documentation for learning how to develop for their platforms; however, the

body of knowledge for contextual examples and tutorials is drastically smaller

in comparison. This can be troublesome for some college students attempting

to break onto the mobile development scene on their own.

Since January 2010, California Polytechnic State University has offered a

mobile development class that teaches students how to write applications for

phones running on the Android platform. Computer Science (CS) students on

the whole represent a younger demographic, which in turn represents a large

customer base for mobile applications. While in some cases it can be difficult

to capture the interest of CS students, this class aims to take advantage of

students’ current interest in mobile applications to teach them about difficult

topics. In addition to providing the students with an in depth knowledge in
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mobile development practices and the skills necessary to be successful Android

application developers, the class will incorporate aspects of Test Driven Devel-

opment, Agile Processes, application profiling, and engineering for performance

into the curriculum. With these skills, students will be able to independently

create exceptional mobile applications. As a corollary, the class hopes to foster

and encourage a sense of independence and entrepreneurship through having the

students design, implement, and publish their own applications to the Android

Application Marketplace.

The Android platform was chosen as the medium for the class, at least

in part, because of its degree of openness. In short, the Android platform is

an open source mobile device software stack coupled with a robust software

development kit (SDK) based on the Java programming language that provides

the tools and application programming interfaces (APIs) necessary to develop

applications for the platform [28]. Additionally, this openness extends to the

Android Application Marketplace as well. Submitted applications need only

meet a handful of reasonable, clearly stated functional requirements and include

a developer account, which can be obtained for a nominal fee. This level of

openness makes it that much easier for students to become practicing mobile

developers.

It is therefore the goal of this thesis project to aid in transforming the class

of mobile development students into a group of successful, practicing, mobile

developers. The main contribution of this thesis project comes in the form of

a series of detailed educational laboratory exercises. These labs are designed

to supplement the Android documentation by providing contextual examples,

activities, and tutorials. They will be designed and used in coordination with

in-class lectures as well, where the topics that will be covered in the labs shall

be introduced and discussed. Each lab will have a number of learning objectives
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associated with it. The end goal of each lab is for every student to possess and

be able to use the skills associated with each learning objective on their own. To

be able to determine the success of these labs, we will incorporate a subjective

survey that each student will complete at the end of the lab. These surveys will

be designed with the intent of evaluating the effectiveness of the labs’ ability to

improve each student’s understanding and application of the skills associated

with it.
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2 Background

As the work done for this thesis deals heavily with mobile application devel-

opment and Google’s Android platform, it’s important to clearly define those

terms. To start, we present the genre and current state of mobile application

development from the perspective of entrepreneurial software developers. We

then present the Android platform with respect to how it meets the needs of

entrepreneurial mobile developers. By doing this, we hope to clearly summarize

the scope and context of the problem this thesis is solving for and the tools used

to solve it.

2.1 What is Mobile Development?

Mobile application development is the creation of software applications tar-

geted specifically for mobile devices that may or may not rely on a cellular

infrastructure[2]. Developers of mobile applications tend to target niche mar-

kets, in particular, those devices which tend to be most popular. Currently, the

most popular of the mobile devices are cell phones. While it is true that there

are many similarities between developing a mobile application and developing

any other application, there are just as many differences, if not more. In the

section that follows, I intend to highlight those differences in a way that helps

describe what exactly developing a mobile application means.

2.1.1 Mobile Development and the Entrepreneur

There are a number of reasons why one might develop applications for mobile

devices. However, most applications can be put into one of two categories. The

first category consists of applications that are developed for the intent of per-

sonal consumption. One reason for developing such applications might be to

achieve some sort of personal utilitarian goal; examples of such goals include
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education, hypothesis testing, and monetary gain. The second category consists

of applications that are developed for the purposes of being distributed to and

consumed by the masses. Reasons for developing applications for mass con-

sumption include those for developing for personal consumption. The difference

between the two categories lies in the intent for the application to be used by

either one person or many people.

This paper focuses on developing applications intended for consumption by

many, as this is generally the concern of entrepreneurial mobile application

developers. While it is true that entrepreneurial activity can be undertaken

with the intent of creating a mobile application for the personal consumption of

the entrepreneur, this is not the focus of this paper. Therefore, for the purposes

of this paper, we shall define the goal of the entrepreneurial mobile application

developers to be that of getting their mobile applications into the hands of as

many users as possible. In particular, it is the intent of this section to enumerate

the obstacles that entrepreneurial mobile developers face in pursuit of their goal,

as well as to show whether or not the Android platform helps entrepreneurs

overcome these obstacles.

2.2 Fragmentation of the Mobile Market

One of the biggest problems with developing a mobile application is identifying

the environment in which the application will run. In general, the environment

is composed of a development platform on which the application is written,

the operating system on which the platform was written, the cellular mobile

device on which the operating system runs, and the cellular communications

network on which the mobile phone operates [32]. The problem stems from the

technical dependencies that exist between each environmental component that
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typically cause a mobile application to be tied to a relatively small combination

of networks, devices, operating systems, and platforms[44].

Let us perform a depth first traversal of environmental component dependen-

cies to understand the complexity. At the top level, we have a mobile application

that strongly depends on the application programming interfaces (APIs) pro-

vided by its target platform. The platform then depends on the services offered

by the operating system (OS) for which it was written. The OS heavily depends

on the hardware and drivers provided by the mobile device on which the OS

runs. Lastly, due to the incompatibility of networks, the hardware for a mobile

device has to be developed for a specific network(s). In addition to this hier-

archical structure of dependencies, it is often the case that dependencies reach

across the hierarchical boundary. For example, a platform may provide an API

for direct access to network or device specific functionality, such as camera or

GPS service. This effectively ties the platform to the network and the device.

Alternatively, the network or device might provide it’s own API for these fea-

tures. If an application uses these API it is then tied to the specific network

GPS standard and device hardware[44]. It is because of these dependencies

that consumers of mobile applications are divided into fragmented groups of

environmental combinations which can only run a subset of all available mobile

applications. Thus, the market for mobile applications is fragmented.

Now consider the problem that this causes for the mobile development en-

trepreneur. Any attempt to achieve widespread consumption of a mobile ap-

plication then requires some combination of the following two strategies. The

first strategy involves developing multiple versions of the application to run on

different combinations of environmental components. This allows your applica-

tion to run on multiple and distinct sections of the market. The second strategy

involves developing for a particular combination that provides the greatest po-
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tential for user consumption. From the perspective of the entrepreneur, the

optimum combination of environmental choices would be the one that targets

the largest group of consumers. In any case, a single application cannot be

developed that can be consumed by the entire mobile market. Instead, an ap-

plication has only the potential to be consumed by the fragment of the market,

or niche, for which it was developed. Furthermore, targeting development for

a particular niche of the market affects decisions relating to production and

distribution.

2.2.1 Effects on Production Decisions

In most cases, the target niche in the mobile market for a mobile application

also dictates the technology stack on which the application will be written. Or

at the very least, greatly reduces the possible combinations of environmental

components. Furthermore, the choice of niche is often dictated by the users.

That is to say, “operating systems, development tools and mobile networks may

create a good environment for mobile application development, but only the

user and the use create the business around applications”[32].

Take for example an application whose target audience is a demographic

that is primarily using the iPhone. As of the date of writing this, the iPhone

operates on a single network, runs a single operating system, and supports a sin-

gle platform. In this example, targeting this niche of the mobile market dictates

a single combination of environmental components for which the application

must be developed. Furthermore, this particular example also dictates the tools

that must be used to develop this application. iPhone development can only be

performed using the Xcode integrated development environment (IDE), which

comes with the iPhone software development kit (SDK), which can only be used

with Intel-based Mac computers.[6]
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While the previous example is the most extreme case, it illustrates the preva-

lent fact that targeting a mobile market niche limits the available technology

choices related to development. In less extreme cases, such as targeting a Black-

Berry audience, one still has the choice over development tools and the added

benefit of BlackBerry devices being supported on multiple networks.[36] How-

ever, even in this case all decisions must align with the targeted mobile market

niche. Ultimately, it is the targeted end users of an application and their com-

bination of networks, devices, platforms, and operating systems that carry the

most weight when it comes to technology choice.

2.2.2 Effects on Distribution Decisions

After development of a mobile application is complete, the application needs to

be distributed to end users. For the purposes of this paper we define distribu-

tion within the mobile development context to be the systems and processes in

place that allow developers to deploy and sell their applications to end users,

as well as the means by which end users purchase, download, and install appli-

cations. There is a growing trend whereby the distribution of mobile applica-

tions are often controlled by some combination of mobile device manufacturer,

platform developer, and/or mobile network operator. Distribution systems are

therefore dependent on the targeted mobile market niche. Switching between

target niches, or technology combinations, often means switching distribution

systems as well. Examples of such distributions systems include Qualcomm’s

Brew platform, which operates in cooperation with network providers[30]. The

Google Android platform, which operates its own distribution system called the

Android Market[22]. The RIM BlackBerry platform, which operates its own

distribution system called the App World storefront [33].

Controlling the distribution of mobile applications offers benefits to network

operators, device manufactures, and platform providers. By controlling the
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dissemination of applications that operate on a particular network, device, or

platform, the controlling party has the ability to inspect each application before

it is consumed by the end user. This allows the controlling party to act as a

gatekeeper, ensuring the security of their network, device, and/or platform. It

also allows the the controlling party to mitigate problems with interoperability

of applications across devices, networks, and platforms. Lastly, it allows the

controlling party the ability to guarantee a certain level of quality in the appli-

cations that are released to end users[44]. Control of distribution is generally

exercised through an application certification process in conjunction with the

required use of a controlled distribution channel, such as a marketplace.

The certification process, as a mechanism to control distribution of appli-

cations, varies between the certifying parties. However, the processes generally

incorporate one or more of the following steps as outlined by Tarnacha et. al[43]:

Developer Registration Requires the developer to register with the certifica-

tion program and sign contracts specifying the legal and technical scope of

the certification program. As is the case with BlackBerry[35] and iPhone[5]

applications. Registration may or may not require a monetary fee.

Application Submission Requires the developer to submit the application to

an online repository.

Authorized Certification Testing Requires the developer to choose an au-

thorized testing lab or is assigned one to perform certification testing on

their submitted application.

Application Testing Requires the submitted application to undergo testing.

Testing is based on the certifying parties test plan and general guidelines.

Application Signing Requires that the submitted application be digitally

signed with a unique application certificate. May be performed by de-
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veloper, or may be required to be performed by a certificate/signing au-

thority. As is the case with BlackBerry applications that desire to use

certain restricted platform API[34]. Compare this with all Android appli-

cations, which all need to be signed, however Android applications may

be self-signed[24].

This certification process is usually considered by developers as both an in-

vestment and a barrier to entry. This is due to the high costs associated with

performance and functionality testing on various combinations of platforms de-

vices and networks, compared to the typical revenue the application is expected

to yield[44]. Therefore developers need to fully understand the certification

process of a targeted niche. Failure to develop with the certification process in

mind could lead to thousands of dollars or more on a product that never gets

deployed. Perhaps the most stringent of certification processes is Apple’s for its

iPhone. Stories abound of the iPhone application certification process rejecting

applications for apparently subjective and arbitrary reasons. As was the case for

a Pulitzer prize winner’s app, which merely displayed his Pulitzer-prize-winning

cartoon editorials on the iPhone[41].

The certification process acts as a gatekeeper to the network operator, device

manufacturer, and/or platform developers’ distribution channel. An application

that fails to meet certification guidelines can then be denied entrance to the

distribution channel. In some cases, as with iPhone applications, there may

be only one distribution channel. This ultimately blocks an application from

being deployed at all. This has serious implications on attempting to develop

two versions of a mobile application to target two niche markets. One can see

that attempting to develop two applications might incur more than double the

development time as an additional investment in certification may be required.
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2.3 The Potential of Platforms

If you recall, the reason for the fragmented mobile market is due to the in-

ability for an application written for one combination of network, device, OS,

and platform to operate on another combination. However, the purpose of an

application development platform is to remove the interdependency between ap-

plications and the OS, device, and network network specific API[43]. A platform

is supposed to accomplish this by packaging up API from the different network,

device, and OS layers into a single standard set of API. The platform then takes

the form of an Adapter pattern, as described in Design Patterns by Gamma et.

al[3], for the underlying hardware and software configuration. With a widely

adopted standard application platform, a single application could be compatible

with any hardware and software configuration that supports the platform, much

like Java and Flash. So then why have we not achieved interoperability and why

is the market still fragmented? There are four main factors that contribute to

the inability for mobile application platforms to have a defragmenting effect on

the market, which will be explained in the sections that follow. The first two

factors affect open platforms, or platforms which do not impose restrictions on

the types of devices and networks on which the platform can be used. The third

factor affects proprietary platforms, or platforms that strictly enforce the types

of networks and devices which are allowed to host the platform. The fourth and

final factor that will be discussed affects both open and proprietary platforms

alike.

2.3.1 Incomplete Adoption of Open Platforms

The first factor, and perhaps the most prevalent among open platforms, is in-

complete adoption by the device manufactures of the platform specification[44].

The unrestricted nature of open platforms makes them extremely susceptible to
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two problems. Any device manufacturer can decide to implement the necessary

portions of the open platform and host it on their hardware. It is because of

this lack of restriction that open platforms are unable to police the device man-

ufacturers and network operators that host the platform. This is not as big of

a problem for proprietary platforms because they have much more control over

the entities that choose to support them.

2.3.2 Multiple Versions of Open Platforms

The problem of incomplete adoption is exacerbated by the evolution of an open

platform as well[44]. As a platform comes out with new versions, the older ver-

sions are still available on devices. This is not as big of a problem if new versions

are written to be backward compatible with applications written for older ver-

sions. That is to say the new version of the platform can still run applications

written for older platforms. Even with backward compatibility though, some

devices will never be able to run applications written for the new versions of the

platform. This is because providers have no way of demanding that device man-

ufacturers provide implementations of these new versions on what has become

obsolete hardware. As is the case with the problem of incomplete adoption,

issues concerning multiple platform versions are not as prevalent on proprietary

platforms because they have much more control over the entities that choose to

support them.

2.3.3 Limited Reach of Proprietary Platforms

A third factor involves limited reach of proprietary platforms[44]. The problem

is clear with device manufacturers who make use of their own proprietary plat-

forms such as RIM’s BlackBerry platform and Apple’s iPhone platform. Since

these platforms are only supported by their respective mobile devices, the dif-

fusion of these platforms is directly equal to the market share of the devices.
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However, these are not the only types of proprietary platforms. There are other

proprietary platforms providers like BREW[29] and Flash[31] which allow other

device manufacturers to support their platform. While the problem of limited

reach is still a concern for these types of proprietary platforms, the cause is

different and actually affects open platforms as well.

2.3.4 Competition Among Platforms

The fourth factor contributing to the inability of standard application develop-

ment platforms to have a defragmenting affect on the market is the emergence

of multiple standards[43]. As a single standard platform has yet to emerge from

the pack, both proprietary and open platforms are experiencing limited reach

in the market. Due to the incompatibility of applications written for different

platforms, the market remains fragmented.

2.4 Android and the Entrepreneurial Developer

The intent of this section is to determine whether Google’s Android platform is

beneficial for the entrepreneurial developer. To determine this we need to eval-

uate all that comprises the Android platform. Evaluation is done by identifying

the effects that the Android platform components have on the problems caused

by market fragmentation and its potential as a standard mobile application

development platform. For the Android platform to be considered beneficial,

it should have a net positive affect on the problems facing the entrepreneurial

developer as a whole.

2.4.1 What is Android?

Google describes the Android Mobile Development Platform as, “the first truly

open and comprehensive platform for mobile devices, all of the software to run a
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mobile phone, but without the proprietary obstacles that have hindered mobile

innovation”[42]. The Android platform, often referred to as just Android, is

what some might think of as the first step towards a standard specification for

mobile phones. Android provides[28]:

• A loose description of what the hardware (or phone) should be capable of

in order to support the software stack.

• A Linux kernel providing the hardware interface, memory management,

process control, etc.

• Open source libraries for application development.

• A run time to host and execute Android applications, which is the Dalvik

Virtual Machine, like a JVM.

• An application framework for exposing system services to applications.

• A user interface.

• Some pre-installed applications (phone, messaging, maps, etc...).

• A software development kit.

In the years following its release by Google Inc., Android has quickly acquired

widespread market adoption from major United States network operators like

TMobile and Verizon, as well as device manufacturers such as HTC, LG, Sam-

sung, Sony Ericsson, and Motorola. Each device manufacturer is responsible for

compiling and creating the hardware drivers needed by the Linux kernel which

their device will run. The kernel then makes use of the standard run-time host.

Developers then write applications in Java using the open source libraries and

application framework for getting system services. However, Android does not

make use of the Java Virtual Machine(JVM) to run these applications. Instead,
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Android uses an optimized version of the JVM called the Dalvik Virtual Ma-

chine (DVM) that uses its own bytecode. The Java then gets compiled down

into Dalvik bytecode[28]. In the end what you get is a standard set of APIs that

a developer can use to write mobile applications, which will run on any mobile

device and network that supports the Android platform.

Open Handset Alliance

Android was developed in cooperation with the Open Handset Alliance, which

is a group of 71 technology and mobile companies. The goal of the Open Hand-

set alliance is to“accelerate innovation in mobile and offer consumers a richer,

less expensive, and better mobile experience”[1]. The group of companies are

committed to deploying mobile devices and handsets that support and use the

Android platform.

2.4.2 Effects on Production Related Decisions

Linux Operating System

The Android platform includes with it a version of the Linux Operating System.

The consequences of this are that it prevents mobile developers from choosing

their own operating system to develop for. While this removes some of the

freedom from the developer, the affect is rather quite minimal. This is due to the

fact that the purpose of a standard mobile application development platform is

to remove dependencies between an application and the technologies on which it

is built[43]. From the developers point of view, the application should never have

to interact with the operating system. If an application really needs to make

use of an operating system component that is not supported by the platform,

then an API for that component should be added to the platform. Therefore,
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as long as the Android platform API provide broad enough coverage, then the

developer will not even notice the operating system.

IDE’s and Toolchain

Developing Android applications requires the use of specific tools that are needed

to compile and sign the application files. However, the complete toolchain uses

free and open source software. While at first this may seem to be a hin-

drance to require the use of certain applications, the applications are freely

downloadable[26]. Additionally, the Android development platform provides the

Android Development Toolkit, which is a plugin for Eclipse. The plugin allows

you to download and integrate the complete toolchain necessary for developing

Android based mobile applications into the Eclipse IDE[17]. Furthermore, the

Android platform makes no requirements that you use Eclipse to develop[18].

Thus individual developers are free to use whatever IDE they choose. Therefore

the net affect on IDE and Toolchain related decisions caused by the Android

platform is a positive one, as Android provides a free and open solution to

toolchain usage and allows for alternative IDEs to be used.

Technology Choices

Development of applications for the Android platform is more stringent on some

core technology choices. In particular Android requires that developers code in

Java. The Android platform then provides core library implementations that

match most of the standard Java libraries[28]. This is more of a benefit for

developers than it is a restriction since it doesn’t require developers to learn a

language which is only used by the development platform. For developers who

are familiar with Java, this is a convenience. For developers who are not familiar
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with Java it is neither an inconvenience nor a convenience. This is because if

the language had been an Android specific language then developers unfamiliar

with Java would have had to use an unfamiliar language anyways.

The Android platform makes additional requirements on other technology

choices like databases and graphics libraries. Android makes use of SQLite and

OpenGL libraries. These libraries are then wrapped up in API that is exposed

to developers through the platform[28]. This is a downside for developers in

that they no longer have the choice to use the database or graphics library of

their choice. However, this downside is offset by the standardizing affect that

this has on applications. An application written for the Android platform is

guaranteed to be interoperable with any device supporting the Android plat-

form. Developers no longer have to worry about whether the host environment

has support for a particular database or graphics library.

Application Priority

Something special about the Android platform is that all applications are con-

sidered equal. “Android does not differentiate between the phone’s core applica-

tions and third-party applications”[1]. This benefit is almost entirely unique to

Android; the idea that any application written for the platform can be replaced

by another. This opens the market for developers to produce applications for

mobile devices which were once exclusively developed by the platform or device

manufacturers.

2.4.3 Effects on Distribution Related Decisions

Certification

The Android security policy is such that all applications must be digitally signed

with a certificate[2]. This policy has less to do with controlling which appli-
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cations are allowed to be installed and use certain APIs, as is the case with

BlackBerry applications[40]. Instead, this serves as a form of author identifica-

tion and is used to establish trust relationships between applications[25]. The

important thing to note here is that the applications need not be signed by a

certificate authority, and in fact it is commonplace to self sign. What this means

for developers is that there is practically no investment to be made on certifi-

cation efforts, as the tools needed to sign an application are freely distributed

without so much as even requiring developer registration.

Distribution Channels

The main distribution channel for the Android platform is the Android Market.

The Android Market acts as a content aggregator for Android applications. It

allows developers to post and sell their applications as well as let users browse,

download and purchase applications. There is a small up front investment in

order to use the Android Market. Developers must register with the service using

a Google account, agree to the market’s terms of service, and pay a nominal fee

of $20 USD[22]. An added benefit of the Android Market is that it guarantees

compatibility of downloaded applications. Android Market does this by not

displaying applications to users whose devices are not capable of running a

particular application[39].

In addition to the Android Market, the Android platform makes no restric-

tion on the source of applications. As such, a developer may use the services of

an alternative content aggregator. The Android platform even allows users to

self install applications, effectively bypassing mainstream distribution channels

altogether. Such openness with respect to distribution enables the developer

absolute freedom in their choice of distribution channels.
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2.4.4 Android as a Defragmenting Force

Addressing Issue of Incomplete Adoption

The Open Handset Alliance formally states that it and its 71 members are com-

mitted to “making the initial version of the platform a commercial success”[1].

These members include all of the device manufacturers choosing to support the

Android platform. As Dan Morrill, Google’s Open Source and Compatibility

Program Manager puts it, “OEMs are generally pretty motivated to ship com-

patible devices”[39]. Thus, the Android Developers Guide publicly claims that

all versions of the Android platform have “the same API no matter what kind

of device it is installed on.”[7].

What happens when a particular device has no hardware that maps to a

particular set of APIs. For example, if a device does not have GPS hardware

how can it possible support the API? This particular problem is addressed by

means of application filtering built into the architecture of the platform. In

a manner similar to the way that the Android market prevents applications

from being presented to mobile devices for which they are incompatible, the

platform itself prevents mobile devices from being able to see the incompatible

applications[7].

Addressing the Issue of Many Versions

If you recall, the issue of having multiple versions of a single platform dis-

tributed throughout the market is concerned with the incompatibility of new

versions with applications written for older versions, or backwards compatibil-

ity. Dan Morrill claims that backwards compatibility is guaranteed, as “apps

written properly for older versions also run on the newest versions”[39]. How-

ever, the Android Developers Guide still concedes that this might be a problem,
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and enumerates instances in which it has been. However, this problem is ad-

dressed again by the architectural filtering mechanisms outlined in the previous

section regarding incomplete adoption[7]. In the best case scenario, allowing the

word of Google’s Open Source and Compatibility Program Manager to pass as

law, backwards compatibility is guaranteed. In the worst case scenario, there

exist mechanisms for preventing applications from being deployed and used on

incompatible devices.

Addressing the Issue of Potential Market Reach

The Android platform seems to have done everything possible to overcome the

potential of limited market reach. It has garnered the support of more than 10

different mobile operators and 18 mobile device manufacturers[1]. With more

than 60 different mobile devices, selling 100,000 units a day, the Android plat-

form definitely seems to be making a play for achieving widespread adoption[39].

Supporting this argument is data from NPD that has Android platform en-

abled devices with the second highest market share among smartphone sales

in the U.S. for the first quarter of 2010, ahead of the iPhone and behind the

BlackBerry[4]. At the very least, one can say that Android is trying its hardest

to do everything possible to address the issue of potential market reach.

2.5 Wrapping Up

To summarize, the Android platform attempts to solve many problems intro-

duced by mobile application development. While it imposes restrictions on

technology choices like database support, graphics libraries, and operating sys-

tem, these restrictions are negated by the standardizing affect the APIs that

wrap these technologies have on applications. Ultimately, this boils down to

sacrificing choice for interoperability and compatibility among mobile devices.
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The platform excels in the realm of providing complete free and open source

toolchains, while at the same time providing developers with the freedom to

choose their own IDE. The excellence of the platform continues with its equal-

ity model for applications, as third party applications operate with the same

priority as applications provided by the platform. The certification process

is very developer-friendly, yet uncompromising when it comes to security. By

choosing the Android platform, developers are provided with perhaps the most

freedom among choices for distribution. Lastly, the Android platform addresses

the problems of multiple versions and incomplete adoptions with an elegant

mix of corporate cooperation, commitment to vision, and architectural plat-

form safety measures. All of these features of the Android platform enable it to

achieve widespread market adoption.
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3 Related Work

3.1 Integrating Mobile Devices Into the

Computer Science Curriculum

In this paper, Mahmoud presents his experience with and strategies for inte-

grating mobile devices into the computer science curriculum[37]. He makes the

case that mobile application development should be included as a core topic

in undergraduate education. This case is argued not for the purposes of cre-

ating mobile development specialists, but rather for introducing students to

mobile development from a software engineering perspective. One supporting

argument is the fact that mobile devices and their application development pro-

vide a multidisciplinary educational breadth. Such education covers topics like

programming, design, software engineering, human computer interaction, and

many other computer science topics. Mahmoud then outlines his strategy.

Mahmoud recommends integrating mobile devices across the entire com-

puter science curriculum. His claim is that development for mobile devices

should be introduced as early as possible, to new and beginning students. This

introduction should then extend into intermediate and advanced courses, such

as databases, operating systems, and data structures. Where possible, this ed-

ucation should be included in the laboratory components of courses as well.

Lastly, Mahmoud feels that mobile development should be incorporated into

project-based courses like senior capstone projects.

Mobile devices are integrated into five of Mahmoud’s computer science courses.

Two of the courses are for first year students and introduce them to the mo-

bile development paradigm. These courses use labs to reinforce the theory that

students learn in class and require them to implement a few applications for

BlackBerry devices. The next three courses include a project-based Distributed
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Systems course and a two semester long Senior Capstone project. These project-

based courses allow the students to design and develop mobile applications for

BlackBerry devices as a means of fulfilling the course requirements.

Mahmoud is using this experience to design and develop an academic kit to

help other universities integrate mobile devices into their computer science cur-

riculum. Along the way, Mahmoud uses a series of surveys, questionnaires, and

exit reviews to evaluate their work. The kit will be composed of modules which

include teaching materials, lecture notes, labs, assignments, and tool guidelines.

This work is being done for the Centre for Mobile Education Research, which

is funded in part by RIM.
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3.2 Smartphone Software Development Course Design Based

on Android

Hu, Chen, and Lou present their design for a software development course for

smartphones based on the Android platform[37]. They use their experience de-

signing embedded systems and multicore programming classes to develop a class

that teaches both the theory and practice of smartphone software development

for Android. While designing the course, they used three principles to guide

their decisions. First, the course should teach students a framework for smart-

phone development to help them develop on their own. Second, the content of

the course should put an emphasis on practice over theory. Third, the learning

objectives of the course should align with the needs of industry.

To honor their first design principle, Hu, Chen, and Lou, construct a syl-

labus that aims at taking a framework approach to learning objectives. They

begin with an overview of smartphones and smartphone operating system be-

fore diving into the details of Android. By taking this approach students learn

about smartphones in general before they learn about Android specifics, which

will help them transition to learning to develop for other smartphones. The

syllabus then covers detailed Android topics like architecture, kernel, run-time

environment, application framework, and software development.

Hu, Chen, and Lou’s careful design of laboratory exercises is consistent with

their second design principle which requires them to focus on practice over

theory. They create 64 credit hours worth of laboratory exercise that enable

the students to master how to program for Android devices. These exercises

are divided into lab assignments of three different types difficulty. There are

17 lab assignments for which the difficulty progressively increases from basic

hands on labs, developing programming practice, all the way to comprehensive

development requiring students to complete novel applications.
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Lastly, Hu, Chen, and Lou innovate by incorporating new and exciting fea-

tures into their course. They begin by bringing in engineers from industry to

help teach the course, which allows them to align the learning objectives of the

course with the needs of industry. Then they require students to participate in

both online Android communities and physical technology communities. This

teaches students how to positively contribute to a community. Lastly the course

offers an application development contest which encourages students to organize

themselves into teams for the purposes of creating a novel application.
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4 Design Approach

This section identifies all of the major factors that influenced the design of

the labs. The labs are being used for a course on mobile development and as

such it is important that they incorporate elements that reinforce all that it

stands for. Secondly, the labs are being used to teach students everything they

need to know to be productive Android application developers. This covers

a lot of information in a short amount of time and thus it is crucial for all

that is essential to be covered. Lastly, the automated testing features provided

in the Android application platform provides an excellent opportunity to both

introduce students to the importance of testing and to develop an automated

system for grading. The subsections that follow address all of these factors in

more depth.

4.1 Mobile Development

Developing applications for mobile devices introduces a large number of chal-

lenges which developers of other applications most likely will not encounter. It

is important that the labs introduce students to these challenges and offer them

either solutions or strategies for dealing with them. In particular, the hardware

for mobile devices is quite limited when compared to today’s powerful desktops

and laptops. Mobile devices offer significantly lower processing power, limited

RAM, limited storage capacity, limited battery life, smaller and varying screens,

and less reliable network connections [38]. While a lot of these used to be prob-

lems for developers in the past, they are most certainly new to young developers

who have never had to develop a program for a processor whose clock speed is

measured in megahertz. The labs should foster an environment for students to

think critically about how their solutions are affected by these limitations.
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Efficiency

The labs should teach students how to develop efficient applications for resource

limited devices by making them aware of the performance and power costs asso-

ciated with various programming practices. This includes informing students of

things like the performance costs associated with instantiating objects and the

various techniques for mitigating those costs. As an example the labs should

introduce students to the idea of caching and reusing objects instead of instan-

tiating new ones[15]. Additionally, the performance of an application has a

direct link to power consumption of the device. Students should be taught that

conservation of power has a direct relation to writing efficient code[19].

Responsiveness

Users expect their applications to be responsive, meaning that their applications

do not hang or freeze[16]. While this is true of other applications as well, mo-

bile applications have the added difficulty of accomplishing this feat with limited

hardware resources. Thus, the labs should help the students to identify poten-

tially slow operations and teach them how to make use of background threads

to perform the necessary work. Additionally, the use of progress dialogues to

show users that an application is still working properly can be beneficial as well.

Adaptive User Interfaces

The labs should introduce the students to the problems associated with design-

ing user interfaces for mobile devices with varying screen sizes and limited space.

There are many strategies for accommodating multiple screen sizes, especially

those with limited space. Students should be introduced to as many of these

as possible. Among these strategies are decomposing a UI into several screens
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to prevent overloading a screen and developing different UIs for different screen

sizes[19].

Seamless Performance

Mobile devices are often used in a multitasking nature[38]. Meaning that a user

might switch back and forth between a number of running applications at a time.

It is important that this switch be performed as seamlessly as possible. The

transition should be fast, not cause data to be lost, and the application should

not tie up unused resources while it is not in use[19]. The labs need to teach

the students how to efficiently save and restore the state of their applications.

Additionally, students need to fully understand the lifecycle of their applications

to perform these operations at the correct time.
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4.2 Android Essentials

The Android application platform provides developers with a vast number of

resources to use for developing their applications. Teaching every single piece

of the platform is impossible, given that the course is only ten weeks long.

Thus, only the most important aspects of the platform can be taught to the

students. The goal is to provide them with enough depth of study of the core

components along with some breadth of useful additional features that they

can work successfully on their own. We identified a list of the application

components, platform components, hardware, and libraries which we find to be

the most important topics to teach the students in the allotted time.

Application Components

The Android application platform allows an application to share elements of

itself with other applications. This requires the system be able to start or

stop an application when its elements are needed by other applications. Thus,

Android applications are composed of components that can be instantiated and

run individually[9]. This feature is central to the Android platform and thus it

is the most important topic that the labs need to teach. There are four different

types of components and the labs need to represent each of them as completely

as possible.

• Activities: Present a UI for a single cohesive task. Examples of this

include choosing a contact from a list of contacts or composing an email to

send to someone. Applications can be composed of many linked Activities

or just one, but there is usually only one Activity that is displayed when

the application starts up. It is important for students to understand the
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lifecycle of Activities so that they can seamlessly save and restore their

state as the user switches between them and other applications.

• Services: These do not have a UI, but rather run in the background

to perform some type of work. Examples of this include playing music

while the user interacts with another application or fetching data from a

network connection. Services are often used to create and start worker

threads to perform the work that needs to be done. These are very useful

for improving the responsiveness of applications and as such they should

be included in the labs as well.

• ContentProviders: These are used to share an application’s data with

other applications. For example an email application might wish to query

the phone application’s list of contacts for an email address. The email

application would interact with the phone application’s ContentProvider

to ask for this data. ContentProviders provide a layer of abstraction be-

tween the data and the manner in which it is stored. Storage can be

implemented by an application by using a database, files, or however it

sees fit.

• BroadcastReceivers: These listen and respond to systemwide messages.

Applications have the ability to broadcast messages to the entire system

via objects called Intents. Any application that listens for these messages

must implement and register a BroadcastReceiver for the type of message

they want to listen for. The BroadcastReceiver can then execute some

code to respond to the messages. For example, the system might send out

a message when an internet connection has been established. An email

application could then have a BroadcastReceiver listening for this message

which pushes any emails waiting to be sent and pulls any unreceived emails

from a server.
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Additional Platform Components

Aside from the main components that make up an application, the Android

platform offers a number of other features that most, if not all, applications will

make use of.

• View Library: Android’s UI library is composed of a hierarchy of View

and ViewGroup objects. The View class serves as the base of the hierarchy

and is extended by all other classes. The ViewGroup class directly extends

the View class and is used to group other View objects and control their

layouts[27]. For example, a UI might use a TableLayout ViewGroup to

display a grid of Button View objects. Understanding how to make use

of and extend the View library to serve the needs of an application is

imperative to implementing any type of UI for an application.

• Resources: Externalizing application resources like strings, values, UI

layouts, and images is an important practice that is strongly encouraged

by the Android application platform. The platform provides a system

for including these resources into an application and accessing them at

runtime. This allows developers to maintain these resources independently

from their application code. Additionally, it enables applications to be

reconfigured on the fly[10]. For example, lets say an application is pulling

the text it displays from English String resources. If the user changes

the language on their device from English to Spanish, the application can

change the text it displays to use its Spanish String resources.

• Intents: Messages used to pass information between application com-

ponents and to start other application components. Intents are data

structures that contain a description of an operation to be performed

or an event that has happened[20]. They can be broadcast by applica-

31



tion components to tell other application components that something has

happened, or they can be used to ask the system to perform some type

of operation. For example, one Activity can explicitly start another Ac-

tivity by broadcasting an Intent to do so. Alternatively, a Service can

notify anyone that cares that it has finished downloading new emails by

broadcasting an intent with that information.

Additional Hardware & Libraries

The following list of platform libraries and hardware features are commonly

used among developers to implement their applications.

• SQLite Databases: The Android platform allows applications to create

and maintain private SQLite databases[14]. These databases provide a

robust, fast, and efficient solution for persisting application data locally

on a mobile devices.

• Internal & External Storage: Android applications have permission

to create and edit files on both the internal and external storage space

of a mobile device[14]. The Android platform provides standard libraries

for creating and editing these files, which rely heavily on the the java.io

library.

• Network Connections: Making network connections to send and re-

trieve data is extremely important. As such, the Android platform pro-

vides a full implementation of the java.net library. Additionally, it pro-

vides its own android.net library to help with network access beyond the

APIs provided in java.net[14].

• Google Maps: The Android platform supplies the Google Maps Library

to allow developers to add mapping capabilities to their applications. This

32



library allows developers to create compelling map based functionality

for their applications. In addition to being able to download, render,

control, and display maps, the library allows developers to add their own

information to maps by creating custom overlays[21].

• Location Services: Android applications have the ability to incorporate

location based functionality by querying the device’s LocationManager.

If a device has a service that can provide the device’s location it will do

so. This service may make use of GPS hardware, network information, or

some other means of obtaining location information. [21]

• Camera: If a mobile device has Camera hardware then an application

may access it through the android.hardware library provided by the An-

droid platform. Using this library, an application can adjust image capture

settings, view camera previews, take pictures, and record video. [12]
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4.3 Automated Grading

Each laboratory assignment, or lab for short, developed in this thesis requires

that every participating student produce their own functional application, unique

to that lab. Given a class of 30 students and seven different labs, the result is

roughly 210 independent applications that each need to be graded. Complicat-

ing matters further, the seven different labs all have different acceptance criteria.

Checking each of these 210 applications for seven different sets of acceptance

criteria is a burdensome task that requires the allocation of time and resources

which could be better spent elsewhere. This investment has to be repeated

every time the class is offered.

4.3.1 Opportunity

Grading all of these applications is a tedious and repetitive task that is prone to

human error. However, the same things that make grading a burden also make

it a prime candidate for computer automation. Additionally, grading Android

applications in particular lends itself to even further automation. This is due

to the fact that the Android SDK provides a tightly integrated framework for

testing. This testing framework is an extension of the popular JUnit Java testing

framework. By using the testing framework to automate the grading process we

develop a reliable and reusable alternative to manual grading. Investing time

and resources to automate the grading process just once greatly saves in future

grading investments every subsequent time the course is offered.

4.3.2 Grading Needs

The process of grading takes a student’s implementation of a solution to a

problem given by a lab and outputs a grade for that student. To determine the

output, the grader needs to analyze the solution for correctness with respect
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to the specification outlined in the lab. While the output of a grade is the

immediate need of a grader, there are requirements surrounding that need as

well as additional objectives achieved through grading. Thus any automated

solution to grading must have the following qualities:

• Usable: The solution should be easy to use and require little to no human

interaction or oversight.

• Reusable: The solution should be reusable for future classes.

• Accurate: The solution should grade every submission as correctly as

possible, at least providing better accuracy than manual grading.

• Traceable: The criteria used for determining grades should be able to be

traced to specific requirements outlined in the labs.

• Visible: The grading results should be presented in an easily readable

format.

• Transparent: The grading results should provide a detailed explanation

of how a grade was calculated.

• Insightful: The grading results should provide insight into the quality of

the assignments and the grading criteria.
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5 Implementation

This section provides detailed implementation information for each component

of the thesis. In particular, a general structure was used to develop all six labs.

The details of the this structure are covered first and provide insight into the

components that make up every lab. Next, each lab is addressed individually

in the order in which they were developed and are assigned during the course.

These individual lab sections provide insights into the educational contents of

each lab. Lastly, the automated grading system developed for the course is

laid out in detail. This includes a description of how the system functions, its

architecture, and implementation details of all of its components.

5.1 Lab Structure

A common structure was used to govern the development of all six labs used

for the class. In particular, each lab contains a detailed manual that instructs

the students how to complete the lab, a completed application to reference

as the solution to the lab, an application project skeleton the students use

as a code base for their implementations, a means of distributing the lab, a

means of collecting the lab, a procedure for grading the lab, and a survey to be

completed by the students at the end of the lab. This section on the structure

used for developing the labs briefly describes the process used to create each

of these components and then provides more details on each of the individual

components.

5.1.1 Development Process

The first step for developing a lab is to create a list of educational goals the

lab will have the students achieve. This list of educational goals will then be

used to develop an application whose implementation process serves as a vehicle
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for students to attain all of the educational goals. This completed application

is then used as a solution to the lab. Next we make a copy of the application

solution’s source code and remove any implementation details relating to edu-

cation goals. This leaves only method stubs, member variable declarations, and

implementation details unrelated to the education goals. This copy of the appli-

cation solution, referred to as a project skeleton, is distributed to the students

and used as the code base for their implementations of the labs.

Using both the project skeleton and the application solution we then develop

a detailed laboratory manual for the students to follow. This manual instructs

students on how to complete the lab by filling in the missing implementation

details in the project skeleton. The intent of the manual is to coach the students

to implement an application that mimics the application solution for the lab.

The hope is that by having the students implement functionality relating to the

educational goals, they then achieve those goals.

The lab manual is then referenced as an application specification to develop

a set of tests to use for grading. These tests identify pieces of functionality

specified in the manual that relate to educational goals. The tests can then

be used to determine whether a student has met an educational goal from the

result of a test. Lastly, a grading rubric is developed for the lab, which assigns

point values to all the tests and is used to translate test results into a grade.

5.1.2 Application Solutions

The application solutions provide the foundation for each lab. They are designed

to incorporate all of the Android application platform components the students

are supposed to learn. The knowledge that students with little to no experi-

ence programming for Android will also have to produce a similar application

is taken into consideration while implementing and designing the application

solutions. Also taken into consideration is the fact that implementation in-
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structions will have to be written based off of the application solutions as well.

This means that the source code should be written as modularly as possible to

make instructions for filling in implementation details describable by referring

to a particular method stub. Additionally, each application solution is used as

the basis for grading. The tests used to grade the student submissions are writ-

ten for the application solution. It is important that the application solutions

be easily reproduced by the students and be as correct as possible.

5.1.3 Project Skeletons

A project skeleton is developed for each lab and distributed to every student.

They are used as a code base by the students to complete the lab assignment.

The project skeletons are copies of the application solution’s Android project

files with the most, if not all, of the implementation details removed. Method

signatures with empty bodies, member variable declarations, and comments

are left in the source code for the students to use. It is imperative that the

project skeletons remain consistent with their respective application solutions.

Meaning that if an application solution is refactored, its project skeleton should

be refactored as well. This includes things such as resource file changes, variable

or method renaming, and variable or method signature changes.

Students are required to use the project skeletons as the basis for their

implementations instead of implementing their own solutions for a number of

reasons. To begin with, project skeletons help teach more topics in a shorter

amount of time because they allow unnecessary implementation details to be

provided for the students. This includes things like setting up the projects

themselves, designing the architecture of the application, and implementing

supporting classes. While these are all important things for students to know

how to do, they are not the learning objectives of the labs. Furthermore, since

it is an upper division class, students are expected already have experience with
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these things. The students will get the experience with all of these things from

the course project, which they must implement from scratch on their own.

The goal of the lab assignments is to provide tutorial style contextual exam-

ples of how to use the Android application platform components. Using project

skeletons highly facilitates both the writing of the lab manuals and the students

ability to follow along. They do this by defining a standardized set of meth-

ods and member variables to use for implementing the labs. These methods

and variables can the be referenced by the lab manuals and easily identified by

the students as they follow along. The lab manuals can tell the students to

implement something using a particular Android application platform compo-

nent, in a particular way, and specify the method and member variables their

implementation should use.

Lastly, the use of skeleton projects are crucial to allowing student submis-

sions to be graded in an automated fashion. Automated tests can be written

for the application solutions and be used to accurately test student submissions

since they are required to use the same classes, methods, and member variables

in their implementations. Such tests could not be written if every student wrote

their own application from scratch.

5.1.4 Laboratory Manuals

The lab manual is the most important component of every lab. Each lab man-

ual serves as the specification that provides a detailed description of what the

students are expected to learn, what they are expected to implement, and how

they are expected to implement it. Each lab manual begins with an overview

of the application that the students will be implementing. This is followed by a

list of the educational goals that the lab hopes students attain via completion

of the lab. The remainder of the lab manual is devoted to a detailed application

specification which describes how to implement the lab assignment.
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The application specification portion of the lab groups implementation de-

tails into sections, subsections, and subsubsections. These groupings attempt to

organize the content in a manner that makes the most sense from both imple-

mentation and educational viewpoints. Implementation details corresponding

to common educational goals are grouped into the same or neighboring sectional

units. Additionally, the natural order of implementation details is respected by

ordering sectional units in a similar manner.

Each sectional grouping of implementation details also includes a brief overview

of the contents of that sectional unit. Screen shots of the application are dis-

played to provide the students with a visual description of what they are imple-

menting and to aid in visualizing use case scenarios. Information is given on how

these implementation details tie into the application as a whole, their relevance

to educational goals, and what features of the Android application platform

the students will be using. Information on features of the Android application

platform are generally accompanied with a brief overview of their purpose, links

to additional educational articles, and documentation on the Android developer

website.

When implementation details are given in the application specification sec-

tions, clarity is the ultimate concern. The active voice is used to make clear and

direct specifications of requirements. In some cases, examples, tips, and hints

are provided as well. These come in the form of sample code, links to additional

relevant documentation or educational articles, and mistakes or problems to

watch out for.

5.1.5 Dispersal & Collection

The labs are designed to be distributed and collected entirely via the internet.

Lab manuals are implemented as web pages on a publicly accessible website to

enhance the learning experience. The skeleton projects are also distributed on
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this same site. Submissions are handed in via a website. By using web pages

to disperse and collect the the labs the experience is much more graphical,

interactive, reliable, and accessible.

In the lab manuals high resolution screen shots can be grouped together and

displayed as use case scenarios. Additional links to external articles and doc-

umentation can be referenced in the lab manuals, allowing students to quickly

access more detailed content. Updates and corrections to both the lab manuals

and the project skeletons can be made from anywhere and the students will

automatically see the updates on the site. Lastly, the students also have the

ability to access the content and submit their implementations from anywhere.

This helps enables the class to be taught online over the summer.

5.1.6 Grading

When students complete the lab assignments they are required to submit an

archive file containing their entire Android application project to an online

repository. This ensures that all source code and resource files are submit-

ted. All submissions are then individually recompiled, tested, and assigned a

grade. Each lab has its own suite of tests and a grading rubric used to translate

a student’s test results into a grade. A copy of the test results and grading

rubric are then handed back to each student.

A test suite for a lab contains a set of acceptance tests that each determine

whether a student’s application has properly implemented some piece of func-

tionality. Each acceptance test is derived from specific implementation details

outlined in the lab manuals. When possible, these tests are written in an auto-

mated fashion. Automated tests make use of the Android Testing Framework

and are quite similar to executing JUnit tests. More information about auto-

mated tests can be see in the Implementation section on Automated Grading.

However, sometimes due to the highly interactive nature of some of the applica-
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tions, it is not possible to write automated tests. In these cases, acceptance tests

are implemented as a series of use case scenarios written in plain English that

describe the expected behavior of the applications in a highly detailed manner.

Grading rubrics are developed independently for each lab as excel sheets.

They assign point values to every test in their respective test suites. These

point values are determined by taking into consideration both the difficulty

of the implementation detail relative to the rest of the application and the

significance the implementation detail has with respect to the educational goals.

The rubrics are then copied and the test results are manually filled in for each

student submission. After filling in a rubric for a student submission, the grade

value is calculated automatically.

5.1.7 Student Surveys

Surveys are distributed to every student at the end of each lab manual. The

student surveys for all labs are implemented as identical SurveyMonkey surveys

and a link to each one is included at the bottom of each lab manual. The

purpose of the surveys is to gather feedback from the students to determine

whether the labs are meeting their performance goals, to identify any problems,

and to identify any successes. This data is then used in conjunction with the

grades from the labs to attempt to evaluate their performance. The data is used

to evaluate each lab individually and all the labs as a whole.
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Figure 1: “Hello World!” Application Screen Shots

5.2 Lab 1

The goal of the first lab is to teach students the fundamentals of developing

Android applications, from project creation to installation on a physical device.

More specifically it is intended that students learn how to use the basic devel-

opment tools to support the application development process, as well as the

major components of an Android application itself. The lab accomplishes this

by having the students set up their own development environment from scratch,

develop a basic “Hello World!” application, run the application on the Android

Emulator, and deploy it to a physical device.

5.2.1 Setting Up the Development Environment

Before one can develop for Android devices one has to have an environment to

develop in. At a minimum this includes the Android Software Development Kit

(SDK) and at least one SDK platform component. Additionally, Android also

offers an IDE for developing in Eclipse. It is important that the students learn

how to install and configure such an environment as you cannot develop without

it.

• Downloading & Installing the Android SDK The students begin by

downloading and installing the Android SDK distribution. The SDK has

three different distributions; one for Windows, one for Mac, and one for
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Linux. We do not place a requirement on the students to use a particu-

lar operating system. The SDK comes complete with a set of command

line tools for building and deploying applications as well as a few useful

activities.

• Downloading & Installing the Eclipse Plugin After installing the

SDK students have to download a copy of the Eclipse IDE and install

the Android Development Toolkit (ADT) which is a plugin for Eclipse.

Students are encouraged to develop with the ADT plugin and are required

to use it for at least the first lab. The ADT simplifies the development

process with features like wizards for project creation, custom editors for

android-specific files, and a basic user interface (UI) builder just to name

a few.

• Downloading & Installing Platform Components Lastly, the stu-

dent students must download the appropriate version of the application

libraries that they will use. Just as there are different versions of the

Android platform, there are different version of its SDK. Each version of

the platform has a corresponding SDK component. Applications must be

developed on the earliest SDK component corresponding to the earliest

Android platform version it is designed to run on. The SDK, however,

does not come with any of these components pre-installed as they are

large files. Instead the SDK provides you with a management tool for

choosing which components to download and update.

5.2.2 Creating an Android Project

The first step to creating an Android application is creating the project for it.

Creating the project is a simple enough task by using either the SDK command

line tools or the ADT project creation wizard. We have the students use the
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ADT project creation wizard as we expected most, if not all, of the students to

be developing in Eclipse using the ADT plugin. The students are provided with

all of the details need to to properly complete the wizard so that the resulting

project is consistent across the class. As an added benefit, the resulting project

from the project creation wizard is a fully functional application that displays

“Hello World!” on the screen and can be installed and run on an Android device

or emulator.

5.2.3 Understanding Components of an Android Project

The application project the students create is very similar to other Java appli-

cations, however, there are some important differences. In particular, there is

a directory structure for certain file types as well as important configuration

and definition files that the build process uses. The good part about using the

project creation wizard and the command line tools for creating a project is

that these components are set up for you automatically.

However, changes to any of these components without fully understanding

them could result in a failed build or problems with an application. Thus, the

students are required to read through a brief overview of each of component in

a tour like fashion. The students are asked to locate a particular component in

their project, and then are given a description of the purpose of the component

and the implications it has for the rest of the project.

5.2.4 Using the Android Emulator

Learning how to use the emulator is very important as the Android devices that

the students are given has to be returned at the end of the class. In order for

students to continue developing on there own after the end of the class they

would have to either purchase their own device or make use of the emulator.
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Aside from operating as a fully functional supplement to a physical device,

the Android emulator is immensely useful for debugging purposes as well. Some

debugging tools provided by the Android SDK do not work on the physical

devices as they are not always granted root access to the device. These tools do

work with the emulator. Thus the students have to start up an emulator and

run their “Hello World!” application created by the project creation wizard on

it.

5.2.5 Deploying an Application to an Android Device

It is always beneficial to test an application on a physical Android device if

possible. In particular, the emulator tends to be much slower and can consume

a lot of time when attempting to debug or execute test suites for an application.

Additionally, it is possible that some bugs exist which only manifest themselves

on certain Android devices. For these and other reasons the students are tasked

with running their “Hello World!” application on a physical device with de-

bugging enabled. Performing this involves making a simple modification to the

application, enabling an option on the device, and installing some drivers on

the computer used for development. Getting practice doing this is important as

the driver installation can cause issues for some Linux users.

5.2.6 Creating a Simple User Interface

The purpose of this goal is to introduce students to the basic Android application

components. This gets them to write some code and serves as an entry point

for making future applications. The students are introduced to the most basic

UI and application framework components. In particular the students extend

their existing application by creating an additional screen that will be displayed

on application startup. This screen then prompts the user to enter their name
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into a text box and hit a button. Then the original “Hello World!” screen is

displayed along with the name the user entered on the previous screen.

• Creating a Layout The students start by defining the layout of their

UI in an XML file in much the same way that one would make a basic

HTML page. The students learn how to add XML resource files to their

project and in which directory layout files should go. Then the students

are introduced to basic UI elements as they add a text box and button to

the layout file. They also assign each of these elements an ID so they can

learn how to dynamically retrieve references to them later on in the lab.

• Creating an Activity With their layouts defined, the students are in-

troduced to the Activity class, which serves as the Android application

frameworks equivalent of a screen component. An Activity usually de-

fines some sort of cohesive user interaction like selecting a contact phone

number from a directory, or dialing a phone number. The students first

display the layout that they created and then retrieve references to their

button and text box UI elements using the IDs they assigned them. Then

they add an event listener to the button so that when it is clicked the

name that was entered into the text box is retrieved and forwarded to the

original “Hello World” Activity. At this point, the students now know

how to start other Activity classes and pass the data.

• Editing the Manifest The main application configuration file is named

AndroidManifest.xml. This provides forward declarations to an Android

device before the application ever runs all of the main application frame-

work components, security declarations, and other application informa-

tion. This serves as a contract between the application and the device so

that a device will not run an application component or grant a security

permission that isn’t declared. The students learn about this file and some
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of its main purposes by adding a declaration to it for the Activity they

created.

• Calling Another Activity Lastly, the students edit the original “Hello

World!” Activity class by adding code to retrieve the name that was

forwarded to it. Then they update the “Hello World!” greeting that gets

displayed by replacing “World” with the name they just retrieved. At

this point the students now know how to communicate data between two

independent Activity components.
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Figure 2: “Joke List” Application Screen Shots

5.3 Lab 2

In the second lab students learn how to work with Android’s user interface

(UI) library by creating a “Joke List” application. The “Joke List” application

allows a user to view and edit a list of jokes. The students learn about the View,

ViewGroup, Layout, and Widget classes that are commonly used to build UIs.

Then they use these classes to dynamically build their own UI. Additionally, the

students are taught how to execute tests from Eclipse and learn in more depth

about referencing data from resource files in their code and handling events

generated by their UIs.

5.3.1 Executing Tests

In addition to using tests for automated grading, some tests are distributed with

the labs. The purpose of this is to help ensure that students are implementing

the labs correctly before handing them in. These tests also provided students

with a source of instant feedback and will hopefully foster a sense of appreciation

for testing in general. This lab has the students execute a single test class

from Eclipse to ensure that they properly implement a class used by the “Joke

List”application. The students are then told how to make use of the test results

and track any test failures or errors.
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5.3.2 Referencing Resource Data

Externalizing resources such as images, strings, and UI layouts is an important

feature of Android as it allows one to manage these resources independently

from one’s application. It is therefore important to teach students how to use

Android’s system for externalizing resources. This lab accomplishes this by

demonstrating how the resource system works and then has the students make

use of a set of string resources. Declaring and using layout resource files is a

topic that is covered extensively in the third lab.

5.3.3 Declaring Dynamic Layouts

Declaring UI layouts statically in externalized XML resource files is the preferred

method of defining UIs in Android. However, it is still necessary to be able

to dynamically manipulate a UI at runtime. Furthermore, it allows students

to practice working with different View classes and learn their interfaces in

a programmatic paradigm they are familiar with. The students can then be

taught how to declare and reference UIs as layout resources as a lesson separate

from the one introducing them in the View classes. This separation hopefully

makes the two topics easier to digest. For these reasons we have the students

implement the “Joke List” application UI in their application code instead of

in an externalized resource file.

5.3.4 Handling UI Events

Intercepting and processing events from the View objects that a user interacts

with is imperative to creating a UI. Students learn about event driven program-

ming by implementing event listeners and registering them with their associated

View objects. They create and register listeners for touch and key events that

allow users to add new jokes to the “Joke List” application.
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Figure 3: “Advanced Joke List” Application Screen Shots

5.4 Lab 3

This lab is a continuation of Lab 2. It build on the students’ knowledge of

the Android UI library and introduces new topics as well. First the students

learn how to turn UIs into externalized resources by declaring them statically in

XML layout resource files. Then the students learn how to extend the Android

UI library by implementing their own custom View class that is used to display

individual jokes. Next the students incorporate their custom joke View class into

the “Joke List” application by making use more advanced UI classes. Lastly

the students learn how to create context menus, options menus, and HTTP

connections.

For this lab the students accomplish all of this by extending the “Joke List”

application they created in the previous Lab. This version of the app provides

a more polished interface and additional functionality. It allows the user to give

ratings to jokes, delete jokes, filter the list of jokes, upload jokes to a server, and

download jokes from a server.
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5.4.1 Declaring Static Layouts

Declaring UI layouts statically in externalized XML resource files is the preferred

method of defining UIs in Android. This allows UI layouts to be managed

independently from an application, making it easier to supply different layouts

for different devices, screen densities, and screen orientations. Students learn

how to declare and inflate static layout resource files by converting the “Joke

List” application’s dynamically defined layout from Lab 2 into an XML layout

resource file. Then they implement the layout for a custom View component

used to display individual jokes in an XML layout resource file. Examples of

both can be see in figure 3.

5.4.2 Building Custom UI Components

Figure 4: The custom JokeView UI component

Sometimes the standard Android UI library does not supply the functionality

that is needed. In situations such as these it is common practice to define

custom UI components. Students learn how to create custom UI components by

extending and combining existing UI classes. This is accomplished by having the

students create a custom JokeView class that encapsulates the logic to display

and assign a rating to a Joke object. An example of the JokeView class can

be seen in figure 4. The JokeView class has two states, an expanded and a

collapsed state. The collapsed state displays the first two lines of the Joke,
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while the expanded state shows the full text and a group of radio buttons which

can be used to apply a rating to the joke.

5.4.3 Using Adapters & AdapterViews

AdapterViews are View objects whose child Views are determined by an Adapter

that binds to data of some data source [11]. The Adapter class follows the

standard Adapter pattern by providing a View object when given a data object

[3]. In the context of the “Joke List” application, the AdapterView is the

scrollable list which contains a number of JokeView objects. These are provided

to it by a custom JokeAdapter class designed to create JokeView objects for the

array of Joke objects to which it is bound. This is a common patter for Android

applications that need to display large amounts of similar data. Students learn

about this pattern by making the “Joke List” application display JokeViews

through the use of a ListView AdapterView and the custom JokeAdapter class

that they implement as well.

5.4.4 Using Menus

Figure 5: “Joke List” Options Menu, Context Menu, and Filter Submenu
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The Android application framework offers an easy-to-use programming in-

terface for the creation of menus. There are three main types of menus [13]:

• Options Menu: This appears when the “Menu” button is pressed and

generally offers options related to the Activity that generated it.

• Context Menu: This appears as a floating menu when a view is long-

pressed and usually offers options pertaining to the view that was clicked

• Submenu: This floating list of options that appears as a result of clicking

an item from another Options Menu or Context Menu.

The students learn how to create all three types of menus by adding func-

tionality to the “Joke List” application that is initiated through these menus.

First they create a Context Menu that appears when a JokeView is long-pressed,

which allows users to delete or upload the selected joke to a remote server. Then

the students add an Options Menu that allows users to download a list of jokes

from a remote server or filter the Jokes that are displayed by their rating. The

students also implement a Submenu for the joke rating filter options that is dis-

played when the filter Options Menu item is selected. Examples of each menu

can be seen in figure 5.

5.4.5 Establishing HTTP Connections

HTTP connections are immensely useful for transferring data between a mo-

bile device and a server. Such connections can be used by mobile devices for

retrieving information as well as sending data back to a server. The students

learn how to send and receive data via HTTP connections by implementing the

functionality needed to share their jokes with the rest of the class. By making

HTTP requests students connect with a server to upload their own jokes and

download other students’ jokes.
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Figure 6: “Advanced Joke List” With State Persistence

5.5 Lab 4

This lab builds on Lab 3 by adding state persistence to the Advanced “Joke List”

application. Students are given a solution to Lab 3 so they may work on Lab 4

even if they did not complete all of Lab 3. There are two kinds of persistent state

that mainly exist, which include application data and internal state[23]. When

the “Joke List” application is closed, all joke data and internal state is lost in

the prior implementations of the application. For this implementation, students

learn to persist joke data by using an SQLite database and preserve internal

state by using a combination of Android application platform mechanisms.

5.5.1 Maintaining Internal State

Learning how to persist internal application state is important to creating a

consistent user experience. It would frustrate users if all of an application’s

preferences and UI state were lost every time they changed screens. However,

all internal state for an Activity, including things like application settings and

preferences, is lost whenever it is destroyed, unless it is intentionally saved.
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The Android application platform offers two mechanism for saving this state,

Instance State and Shared Preferences.

• Instance State This is used to store Activity state for a single instance of

an Activity. State is only made available to a particular Activity instance

when it is recreated. When the Activity is explicitly closed by the user

hitting the back button, this data is lost.

• Shared Preferences This is used to store application state globally for

all components of an application. State is made available to all Activities

of an application. State is persisted even when an application is explicitly

closed by the user hitting the back button.

What makes this tricky is that there are many scenarios in which an Activity

can be destroyed. The students must understand the lifecycle for an Activity in

order to save and restore application state at the correct times. For example,

anytime in which an Activity is not visible it is vulnerable to being destroyed.

This includes explicitly closing an Activity, switching to another Activity, and

changing orientation.

Students learn to how to correctly save and restore internal application state

by using both Instance State and Shared Preferences. The students use Instance

State to manually save and restore the text in the text field used for adding jokes

by. By doing this, the text is only preserved for a single run of the application.

Even in the event of an orientation change the text will remain in the text

field; however, hitting the back button and re-opening the application causes

the text field to be reset. The students also use Shared Preferences to allow

the application to remember which filtering option the user chose. The filtering

option is restored even when the application is explicitly closed and re-opened.

It also makes this data available to other Activities.
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5.5.2 Persisting Application Data

Learning how to persist application data is perhaps even more important to cre-

ating a consistent user experience than internal state. It would really frustrate

users if all of an application’s data were lost every time they changed screens.

The Android application platform offers each application the ability to create

its own private SQLite database. By using a database application data can be

edited, saved, and restored across application component instances.

Students are first provided with a functioning database adapter implemen-

tation that they can use with their application. This comes in the form of a

library jar file with hidden source code that the students can link their ap-

plications to. The database adapter provides public APIs that wrap all the

functionality needed to set up a database of jokes, open and close the database,

insert jokes, read jokes, update jokes, and delete jokes. Students first learn how

to use an SQLite database for persisting data by updating their “Joke List”

application to use these APIs. Students learn how to use the Android database

in related classes like Cursors and CursorAdapters.

Once the students understand how to use the database adapter and its APIs

they learn how to implement their own. Students are tasked with implementing

their own version of the database adapter using the exact same APIs. They

are provided with a skeleton version of the database adapter source code they

have been using, but with the implementation removed. This leaves only the

method stubs and member variable declarations. The students then fill in the

implementation details themselves and link against their own version of the

database adapter. By doing this, the students learn how to use a database to

persist data, as well as how to implement one themselves.
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Figure 7: “WalkAbout” Application Screen Shots

5.6 Lab 5

For this lab, students develop a new GPS recording application called Walk-

About. The purpose of the application is to allow users to record their GPS

location information as they travel. While the application records the user’s

GPS data, it displays it back to the user in the form of a path drawn on top

of a Google Map. While recording data, the user can launch a camera Activity

that will capture and store pictures on an SD-card. When finished recording,

the application gives the user the option of storing the current GPS data as a

private application file to be loaded and displayed at a later time.
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5.6.1 Using Google Maps & Overlays

The Android platform comes with a Google Maps library for integrating Google

Maps into applications. This library allows developers to include and manipu-

late Google Maps into their applications. Students learn how to display maps

by using the MapView and MapActivity classes in the “Walk About” applica-

tion. These classes encapsulate all the viewing and gesture logic necessary for

handling panning, zooming, and touching objects on a map.

The Google Maps library also provides an Overlay class which allows devel-

opers to overlay additional content and interactions on a map. The MyLoca-

tionOverlay class provided by the Google Maps library is one such example; it

can draw a beacon and a compass on the map to display the device’s current

position and heading respectively. Students learn how to use overlays by first

adding a MyLocationOverlay to the “Walk About” application and then imple-

ment their own overlay to display a path. The path overlay the students create

draws a red path on a map for a given list of latitude and longitude points.

5.6.2 Using GPS

The Android platform provides services and APIs for determining the current

location of the device. Using this information, developers can enrich their ap-

plications by providing them with location awareness. Students learn how to

interact with location-based services by adding functionality to enable and mon-

itor the GPS LocationProvider in the “Walk About” application. The students

then record changes in location as the user’s path. This path information is then

used draw the user’s path onto the “Walk About” MapActivity’s MapView ob-

ject.

59



Figure 8: “WalkAbout” Camera Activity

5.6.3 Using a Camera

The Android platform allows applications direct access to the camera hard-

ware. Integrating a camera into an application allows developers to create novel

applications. Students learn how to make use of the camera related APIs by im-

plementing a camera Activity that allows users to take pictures from the “Walk

About” application. The camera activity was borrowed from the Google API

Demos application [8] and displays a full screen preview of what the camera is

looking at. The students extend this Activity class by capturing a picture when

the user touches the screen and saving it to the SD-card. Screen shots of this

use case are shown in figure 8.

5.6.4 Working With Files

The Android platform makes use of the java.io library for file manipulation,

allowing developers to create, write, read and delete local files. File manipula-

tion provides developers with an alternative to database storage for their data.

Android allows files to be stored in two locations [14]:

• Internal Storage These files become private to the application that cre-

ated them by default. These files reside in the internal memory of the
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device and are removed when the application is uninstalled. Developers

have the option to override this privacy mechanism, allowing them to be

shared with other applications.

• External Storage These files are world-readable and may be edited by

the user. External can come in the form of removable media, such as an

SD-card, or additional internal memory.

Students learn how to create and edit both internal storage and external

storage files. They learn how to use internal storage by adding functionality to

the “Walk About” application to save and load a users path as an internal file.

Then they learn how to use external storage by saving a the picture taken from

the camera Activity as an external file on an SD-Card.
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Figure 9: “App Rater” Application Screen Shots

5.7 Lab 6

For this lab, students develop a new application named AppRater that suggests

other applications for users to download and try. The purpose of the application

is to share fun and interesting applications with other users. The users can then

rate the applications. It’s a simple application whose base implementation is

extended and used to run an application development contest put on by this

course at the end of each quarter.

The application makes use of additional Android application platform com-

ponents such as ContentProviders, Services, and BroadastReceivers. A Con-

tentProvider serves as the interface for data persistence. A Service is used to
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download new applications in a background thread. A BroadastReceiver is used

to pass messages between the Service and Activity components.

5.7.1 Using ContentProviders

The Android platform has a component called ContentProvider which serves

as a means of providing content to other components. The ContentProvider

provides an interface for manipulating its content while abstracting away the

manner in which the content is stored. Interacting with a ContentProvider is

very similar to interacting with a database adapter. One can execute queries

which return Cursors, delete data, update data, and insert data. The “App

Rater” application uses a ContentProvider to maintain its list of applications

to rate.

Using ContentProviders offers two main benefits that database adapters do

not. Take for example the “Joke List” application from Lab 4 that persisted data

in a joke database through the use of a database adapter. This joke database

is only visible to the JokeList application. However, if a ContentProvider is

used to wrap the database, other applications could potentially interact with it

as well. Additionally, ContentProviders abstract away the underlying manner

in which the data they serve is persisted. This allows for different persistence

implementations to be swapped out while maintaining the same interface.

Students are first provided with a functioning ContentProvider that serves

their “App Rater” Activity with suggested applications to display and rate.

This comes in the form of a library jar file that the students can link their

applications to with the source code hidden. The Students first learn how to

use a ContentProvider to retrieve and persist data by implementing their “App

Rater” application to use this ContentProvider.

Once the students understand how to use a ContentProvider, they learn

how to implement their own. Students are tasked with implementing their own
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version of the ContentProvider. They are provided with a skeleton version of the

ContentProvider source code they have been using, but with the implementation

removed. This leaves only the method stubs and member variable declarations.

The students then fill in the implementation details themselves and link against

their own version of the ContentProvider. By doing this the students learn

how to use a ContentProvider to persist data, as well as how to implement one

themselves.

5.7.2 Using Services

The Android platform has a component called Services, which run in the back-

ground and do not have UIs. Any time there is code which needs to be run

regularly but does not need a user interface it can probably be implemented as

a Service. Services can be started from an application’s currently visible Ac-

tivities or can be awoken by System Notifications even when an application’s

Activities are all closed. The “App Rater” application uses a Service to down-

load new applications to rate and add them through its ContentProvider.

Students are first provided with a functioning Service that refreshes the

“App Rater” application with new applications to rate. This comes in the form

of a library jar file that the students can link their applications to with the

source code hidden. The students first learn how to start and stop a Service to

perform work for them by implementing their “App Rater” application to use

this Service.

Once the students understand how to use a Service they learn how to im-

plement their own. Students are tasked with implementing their own version

of the Service. They are provided with a skeleton version of the Service source

code they have been using, but with the implementation removed. This leaves

only the method stubs and member variable declarations. The students then

fill in the implementation details themselves and link against their own version
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of the Service. By doing this, the students learn how to use a Service to persist

data, as well as how to implement one themselves.

5.7.3 Broadcasting Intents

Intents are used by the Android application platform as a system-level message

passing system. They can be used to start application components, or they can

be used to send messages between components. In order to listen for a message,

one has to implement a BroadcastReceiver. The “App Rater” application’s

download Service broadcasts an Intent after it successfully downloads and saves

a new app through the ContentProvider. When the “App Rater” Activity is

running it uses a BroadcastReceiver to listen for the Intent broadcasted by the

Service, so that it can notify the user that a new app was downloaded.

Students learn how to listen for Intent broadcasts as well as how to broadcast

Intents themselves. They begin by implementing a BroadcastReceiver to listen

for the Intents broadcasted by the “App Rater” download Service provided

to them. Once implemented, they make their “App Rater” Activity use this

BroadcastReceiver. Then while implementing their own download Service, they

make it broadcast the correct Intent.

65



5.8 Automated Grading

The solution for automated grading makes heavy use of the Android testing

framework to minimize the amount of human involvement. The Android testing

framework is an extension to the Junit testing framework. It provides additional

testing classes that set up an interface with Android application framework

components so they can be tested. Using this framework we programmatically

determine whether every submitted application has been correctly implemented

according to the specification outlined in its lab. This is done by implementing

three separate components.

The first is composed of a set of test suites that each define the acceptance

criteria for a particular lab, known as the lab tests. The second component is a

standalone application, known as the Grader, that runs a single test suite for a

lab against each student application submitted for that lab. The Grader then

outputs the test results from each student application while grading. The third

component, which comes in the form of a set of grading rubrics, is then used to

manually transform the test results into a grade.

5.8.1 Lab Tests

For each lab, a suite of tests is created. These tests make up the acceptance

criteria used to determine whether a submitted application meets the specifica-

tion set forth by its laboratory assignment. Test suites are created for labs after

their application solutions and application skeleton projects are created. This

is done to ensure that names and signatures for classes, methods, member vari-

ables, and other resources have been solidified. The test suites are comprised of

both unit and acceptance tests.

The acceptance tests serve as course grained tests to ensure a piece of func-

tionality is implemented correctly from the user interaction level. These tests
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interact with and test the UI. They cause buttons to be clicked and carry out

an intended use case or user story. These take the place of application demon-

strations that would be otherwise performed manually by a human grader.

Unit tests serve as fine grained tests to ensure that a piece of functionality is

implemented as it is intended. These tests make sure the methods and classes

used for a piece of functionality are doing what the lab specification said they

should be doing. Most importantly, they ensure that the applications are using

the features of the Android application framework they are supposed to use and

that they are being used correctly. This helps catch applications that are faking

functionality which not be caught by the acceptance tests alone. The unit tests

take the place of code reading that would be otherwise performed manually by

a human grader.

During the creation of the lab tests, unforeseen problems arise which generate

creative solutions. These problems include testing applications when tests are

inherently implementation dependent, gaining access to private and protected

member variables and methods for testing, ensuring that tests work for partial

implementations, and keeping track of lab specification requirements and the

tests that check for them. The sections that follow summarize these problems

and their solutions.

Lab Implementation Dependencies

In order to test a method for a particular class, one at the very least needs

to know the name of the class and the signature of the method. The same

follows for member variables as well. It follows then that testing in general is an

implementation dependent activity. In fact, without the source code tests it will

not even compile. This begs the question: “How do you write tests for student

implementations that have yet to be implemented?” In short, the answer is: By
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providing the students with application project skeletons and requiring the use

of predetermined names and signatures of classes, methods, member variables,

and other resources.

As outlined earlier in the the Lab Structure Implementation section, project

skeletons are created and distributed to the students for each lab. The skeleton

projects are essentially copies of the application solutions with the implemen-

tation details removed. The project skeletons define the classes to be used, the

signatures of their methods and member variables, as well as the names of re-

sources and the IDs. The lab specifications each contain explicit instructions

that names and signatures of classes, methods, variables, and resources are not

to be changed and should be used as specified.

By forcing all application submissions to make use of the skeleton projects

based on the solution applications, we are able to resolve most implementa-

tion dependencies. Tests can then be written for the solution application with

the reasonable expectations that they should work for the student application

submissions as well. However, the assumption that students will follow the re-

quirement not to change names or signatures and will use specific resource IDs

does not mean that it is the reality. Tests are therefore written to ensure that

these requirements are in fact honored.

Java Friend Functionality

While writing tests for the lab it is often the case that a private or protected

member variable or method will need to be referenced. For whatever reason, this

method or variable is necessary to either cause some sort of action or check that

an action occurs correctly. In these situations, we are left with a few options.

The first options is to make the needed member variables and methods pub-

licly accessible. This can be done by adding unnecessary accessor and mutator
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methods for the needed member variables or by making the needed methods

public. This option seems to be a poor one in that it is in contrast with the

spirit of encapsulation. Had those variables and methods needed to be publicly

accessible for the sake of the application, they would have been. However, the

architecture for the application deems that this is not necessary. Making vari-

ables and methods publicly accessible solely for the sake of being able to test

the application seems like a poor compromise.

The second option involves multiple inheritance through extension. By hav-

ing the test classes extend the application class under test and making the

desired member variables and methods protected we can grant the tests access

to them. While making variables and methods protected solely for the sake

of testing is not optimal, it is still better than making them public. The only

problem with this solution is that all test classes have to extend an Android

testing framework class and Java only provides support for multiple inheritance

through interfaces and not through extension. Thus, the test classes cannot ex-

tend another class. A workaround for this would involve creating a separate test

class that extends the class under test and provides public wrapper methods for

accessing the desired methods and variables. However, in addition to writing

the tests and the application, this requires writing more unnecessary code just

to provide access to needed variables and methods. Thus, we search again for

another simpler solution.

The third and most elegant of options involves the friend class feature of the

C++ language. With this feature, a class can be declared as a friend of another

class thereby granting the friend class access to all private and protected meth-

ods and member variables. This option will not break encapsulation, but rather

create an exception for our classes that are performing testing. Additionally,

this option will require adding only a single line of code to each class we would
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like to test. The only problem with this option is that it is not a feature of the

Java language.

The last option, and the one that we end up taking, makes use of a feature

in Java called reflection to gain access to private and protected variables and

methods. Using Java’s reflection mechanism, one can query about and retrieve

references to an objects public, private, and protected member data, methods,

and constructors. For testing purposes, we rely heavily on this feature to retrieve

otherwise hidden methods and variables.

We end up creating a static utility class named FriendClass that provides

our test classes with two methods. The first is for retrieving references to

hidden member variables from an object called retrieveHiddenMember. This

method takes, as arguments, the name and type of the hidden member variable,

as well as the object from which to retrieve it. The method returns a reference

to the desired member variable allowing the test class to read or write to it.

The second method used for invoking an object’s hidden methods is called

invokeHiddenMethods. The methods takes, as arguments, the name, return

type, and list of arguments for the hidden method, as well as the object on

which to invoke the method. The method returns whatever the invoked method

returns or null if the method is void. The test can then read or write to the

value returned.

Both methods throw various exceptions if the variable or method requested

does not exist. The tests explicitly check for these exceptions and rely on them

to ensure that the names and types of member variables have not been changed

by the students. An example of both of these methods can be seen in Listing

1. In this manner, we are able to mimic the benefits of the friend class feature

of C++.
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// Class under t e s t

Class A {

pr i va t e Var iab le mVar ;

p r i va t e S t r ing method ( St r ing s t r i n g ) {

// do something to s t r i n g

r e turn s t r i n g ;

}

}

// Test ing c l a s s

Class TestA {

pub l i c void t e s t {

A a = new A( ) ;

Var iab le var = nu l l ;

S t r ing s t r = nu l l ;

t ry {

var = Fr iendClass . retrieveHiddenMember (”mVar” , var , a ) ;

} catch ( Fr iendClassExcepto in exc ) {

f a i l (”Could not r e t r i e v e mVar from A:” + exc . getMessage ( ) ) ;

}

a s s e r tEqua l s (” f a i l u r e message ” , 2 , mVar . getValue ( ) ) ;

. . .

t ry {

r e t = Fr iendClass . invokeHiddenMethod (”method” , a , s t r , ” t ” ) ;

} catch ( Fr iendClassExcepto in exc ) {

f a i l (”Could not invoke method on A:” + exc . getMessage ( ) ) ;

}

a s s e r tEqua l s (” f a i l u r e message ” , ”new s t r i n g ” , s t r ) ;

. . .

}

}

Listing 1: FreindClass Sample Code
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Forward Compatible Tests

The labs have a tendency to guide students to grow their implementations as

opposed to implementing the whole thing all at once. For example, in the

beginning sections of a lab it is not uncommon to have students implement

Functionality X in a simplistic or incomplete fashion. The lab might then have

the students go back and reimplement Functionality X more completely or by

using more advanced features. This is done for any number of reasons, rang-

ing from showing the students multiple ways to do something to getting their

application into an executable state so they can test it. The problem with this

comes when you need to write a test for Functionality X.

Writing tests for things like Functionality X, that might be in one of more

possible implemented states, involves considering the ultimate motive for the

tests, which is grading. To get full credit for Functionality X the student needs

to have the functionality present and have implemented it in the manner the

specification expects. While there are multiple possible implementations, the

fact remains that they are a series of intermediate implementations that end up

in a final implementation state that is expected at the end of the lab. The strat-

egy we chose is to give credit for both achieving the functionality via an accepted

implementation and having the implementation expected at the end of the lab.

We forgo giving credit to each intermediate implementation as the submitted

applications can only have one implementation and the final implementation is

generally the more important one.

With this in mind we are able to group tests into two separate test methods.

The test first method incorporates acceptance tests to perform implementation

independent checks for functionality and unit tests to ensure implementation is

performed in one of the specified ways. The second test method includes only the

unit tests designed to check for the final implementation, or the implementation
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expected at the end of the lab. By placing the code to check for the final

implementation in a separate method and calling it from the two test methods,

no code needs to be duplicated. By having these two separate methods we can

credit the students appropriately and ensure that the same tests will work for

an implementation in any stage of the lab.

There is a flaw in this strategy in that it cannot give credit or check for inter-

mediate and alternative implementations. In some situations the tests should

check for this, since the labs have students perform alternative implementations

to show them how to do things in different ways using different application plat-

form components. For these types of situations, this problem can be remedied

by using the Strategy pattern to decompose intermediate and alternative im-

plementations into their own classes or methods. Then tests can be written and

credit given for each implementation instead of just the final implementation.

Requirements & Testing Traceability

Most labs have a reasonably large set of requirements defined in their specifica-

tions. This in turn generates a reasonably large set of tests to check that those

requirements had been met. One problem that we run into is being able to

trace from individual tests to requirements and back. For this we rely heavily

on mimicking the natural structure of the labs in the tests themselves. Each

lab specification is decomposed into sections, subsections, and subsubsections.

In general, the lowest level defines some atomic piece of cohesive functionality.

As you move up levels, functionality is combined together to define some larger

piece of functionality.

Each lab test suite is composed of independent Android testing framework

classes. Each test class is intended to test a single cohesive piece of functionality

defined at either a section, subsection, or subsubsection level. The test classes
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are in turn composed of a set of test methods. Each test method is designed

to test one or more requirements outlined in the section of the lab specification

targeted by its test class. By structuring the lab specifications and lab test suites

in this manner it is much easier trace requirements to tests and vice versa.

As an added measure, both naming conventions and comments are used to

make it clear which requirement a particular test is testing for. In general,

test classes are named after the lab section they target and test methods are

named after the requirements they test. Both test classes and methods include

comments identifying specific section numbers and requirement descriptions that

are being tested. Lastly, the grading rubric for each lab provides a course

grained traceability matrix that maps each lab specification section, subsection,

and subsubsection to the test classes that test them. The grading rubric will be

discussed in more depth after the the next section.

5.8.2 The Grader

The Grader is implemented as a standalone Java application designed to execute

a test suite on a set of submitted applications in a batch processing fashion. The

Grader is executed via the command line and is passed a number of required

and optional parameters. At the least, the Grader needs to know the location of

the root directory for the test suite project, the directory containing all of the

application project submissions, and the full qualified name of the root package

for the application. Optionally, the grader can be provided with parameters to

adjust granularity of logging output.

When the Grader is started, it first rebuilds the test suite to ensure that

it is signed with the local debug certificate. It then rebuilds each application

submission using the local debug certificate and executes the lab test suite on

it as well any test suite included by the student in their application submission.

The results of the build and tests for each application submission are output
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to a combined test results file. Additionally, the verbose output of the build

and tests run for each application submission are output to an individual test

results file. Lastly, every test error and failure generated by the build or test

suite execution on any application submission are output to a test errors and

failures file. Each output file is placed into a directory created by the Grader

so as to make the files easy to retrieve.

These features allow the grader to be easily started or scripted to run auto-

matically. Each output file serves a special purpose to help make the automated

grading more accurate, traceable, visible, transparent, and insightful. The pur-

pose and benefits of each file are explained in more depth in the subsections that

follow. When the Grader is finished, the directory containing all the output files

can then be retrieved and used to generate grades and refine the test suites.

Combined Test Results

For each application the results of its build and test suite execution are added to

a combined test results file. The combined test results file is a comma separated

values (CSV) file containing the results from one application per line. The data

recorded for each application includes:

• Student Name: The name pulled from the directory containing the

application submission.

• Build Result Code: The code identifying successful build or the cause

of failure which can be looked up in the grader source for code for an

explanation.

• Number of Student Tests: The total number of student supplied tests

run.
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• Number of Student Failures: The total number of student supplied

tests failed.

• Number of Student Errors: The total number of student supplied tests

that had errors.

• Student Test Result Code: The code identifying successful student

supplied test suite execution or the cause of failure, which can be looked

up in the grader source for code for an explanation.

• Number of Lab Tests: The total number of lab tests run.

• Number of Lab Failures: The total number of lab tests failed.

• Number of Lab Errors: The total number of lab tests that had errors.

• Lab Test Result Code: The code identifying successful lab test suite

execution or the cause of failure, which can be looked up in the grader

source for code for an explanation.

This file allows the person overseeing the grading to quickly identify any

application submissions that produced build or test execution errors which might

need to be fixed and rerun. Additionally, the file allows the same person to view

how the results of each application submission compare to each other. If every

submission is failing or passing most of the tests, one might be able to deduce

that there is a problem with the tests. Alternatively, there might be a problem

with the lab specification. This file helps improve course grained analysis of the

results of the grader by making key metrics much more visible. This allows for

problems to be quickly identified and remedied, which improves the accuracy of

the grading process and quality of the laboratory specifications.
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Individual Test Results

For each application, the verbose output of its build and test suite execution

are saved to an individual results file. Each file is titled using the name pulled

from the directory containing the application submission. This file provides

the person overseeing the grading with a way to investigate any build problems

associated with an application submission. Additionally, it provides the same

person the ability to see which tests failed or produced errors. This last bit

of information is combined with the grading rubrics to generate a grade for an

application submission.

The individual results file is also intended to be given back to the student

who submitted the application for which the file was generated. This allows a

students to see the detailed results of their build as well as the detailed results

of the tests run on their application. With this information, a student can

then attempt to correct any build problems, test failures, or test errors and

resubmit their application if permitted. This file makes the grading process more

transparent for students. It also makes fine grained analysis of the results from

a single application submission much more visible and insightful by enabling the

overseer the ability to review the grading and building process.

Test Errors & Failures

For every run of the Grader, a single file is created and filled with every test error

and failure that is generated during the grading of all application submissions.

This test errors and failures file is a CSV file containing the data about a single

error or failure on each line. The data recorded for each error or failure includes:

• Error/Failure and Method: This dentifies whether this is a test error

or failure and the test method that caused it.
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• Error/Failure Type and Message: This identifies the type of assertion

or exception that caused the failure or error and the message associated

with it.

• Location: This is the stack trace line identifying the source of the failure

or error. It includes the fully qualified class and method name as well as

file and line number.

• Student Name: This is the name pulled from the directory containing

the application submission.

The test errors and failures file is intended to provide the person overseeing

the grading process with information on which tests are causing the most failures

and errors and why. By sorting the failures and errors by the appropriate data

points, the overseer can see which test methods are causing the most problems

and investigate whether those tests need to be refactored. This file helps improve

course grained analysis of the results of the grader by making common failures

and errors more visible. This allows for problems to be quickly identified and

remedied, which improves the accuracy of the grading process and quality of

the laboratory specifications.

Project Rebuilding

In order to execute a test suite on an application, both the test suite and the

application need to be signed by the same certificate. One solution to this

problem is to require all the students to use the same certificate. However, this

option proved to be too burdensome to manage as it required the dispersal and

management of a single certificate, as well as having the students update their

development environment to make use of the certificate. Instead, we chose the
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more robust option of having the Grader rebuild each submitted application

and test suite using the same key.

The Grader makes use of the Android Toolkit distributed with the SDK,

Apache Ant, and the local debug.keystore certificate to rebuild the applications.

The Grader uses the “android update package” command to generate the build

file for each project and then executes its “ant debug” target. The build output

logs and results of each build are incorporated into both the combined test

results file and the individual test results files. This allows both the students

and whoever is overseeing the grading process to see if there are build errors for

any particular submission.

Grader Dependencies

The Grader makes use of both the Android Toolkit provided with the SDK

and Apache Ant. Thus the Grader requires that the directory containing these

dependencies be present in the path environment variable. The Grader requires

that all application submissions come in the form of a complete Android appli-

cation project. Additionally, the root directory of each application submission

must bear the submitting student’s name and all application submissions must

reside in the same directory.

5.8.3 Grading Rubrics

Grading rubrics for each lab are developed to translate the results of a lab test

suite into a grade. The rubrics exist as Excel sheets, which are copied and filled

out for each student. An example of the rubric used for the third lab can be

seen in figure 10. Rubrics are created by first listing each of the lowest levels of

sectioning, including sections, subsection, and subsubsections in their own row.

Then each of these section rows is assigned a number of points. The relative
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Figure 10: Example Grading Rubric

percentage of total points for each section row is displayed as well, to aid in this

task. Then the total number of tests are counted and entered for each section

row. Additionally, the number of points per test and a list of the test classes

for a section row are entered.

Translation from testing results to grades is performed manually by a person.

The person makes a copy of the rubric for the student they are grading and

opens their individual test results file as well. The person then counts the

number of tests that failed or produced errors from the list of test classes for a

particular section row. This number is then entered into that section row’s “Test

Failures/Errors” column. The remaining “Tests Passed” and “Points Earned”

columns are calculated automatically by the spreadsheet. If any tests failed or

caused errors for a section row its color is changed from green to orange. This

process is repeated for each of the section rows listed in the rubric.

While the test results are being entered, the spreadsheet automatically cal-

culates the total points earned, total points possible, and grade percentage.
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Additionally, the spreadsheet also sums the total number tests, tests passed,

and test failures or errors to help ensure that the test results are entered prop-

erly. In some cases, there exist tests in the test suites that are not being used

for the grading process. A count of the ignored tests are entered into the lab

rubric before it is copied and used for grade translation.

After grades have been completed for each student, copies of the rubrics

can be distributed to the students along with copies of their individual test

results file. All test failures and errors are highlighted in orange and list the

test classes which generated them. Students can then investigate the cause of

these failures using their individual test results file. In this manner the rubrics

provide students with a clear understanding of how their grade is calculated as

well as additional transparency to the grading process.
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6 Evaluation

The evaluation of this project is performed in three parts. The first part eval-

uates the labs as a whole by leveraging an aggregate analysis of the student

responses collected from surveys, student performance on the labs, and student

performance in other aspects of the related Mobile Development course. The

second part provides an in depth evaluation of each of the labs by using student

responses from their corresponding surveys. The final part of this evaluation

section analyzes the performance of the system for automated grading.

The data used to perform all three evaluations comes from two separate

instances of the course. The first instance of the course was taught in the

winter quarter of 2010, from January to March. This course was taught as a

traditional, in-person class composed of 33 students. All student lab submissions

for the winter quarter were graded less stringently via individual demonstrations.

The second instance of the course was taught in the summer quarter of 2010,

from June to August. This course was taught as an online class composed of

22 students where student instruction and work was performed remotely. The

first two student lab submissions for the summer quarter were graded using the

same method as the winter quarter. All subsequent lab submissions were graded

using the method for automated grading described in previous sections. In both

the winter and summer instances, the courses were offered to third and fourth

year undergraduate students and graduate level masters students as an elective

at California Polytechnic State University at San Luis Obispo. Students in

both instances of the courses were expected to have considerable programming

experience with Java and some experience with software engineering practices.
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Table 1: Student Ratings of the Labs on Difficulty, Interest, and Clarity

6.1 Aggregate Lab Analysis

In the section that follows we analyze the labs as a whole. We aggregate the

data from all of the individual labs in an attempt to evaluate their overall

performance. This includes an aggregate analysis of the lab survey results,

followed by an aggregate analysis of student performance on the labs.

6.1.1 Aggregate Survey Results

For this analysis we aggregate the lab survey results of all the labs from both

the winter and summer courses. We then take that data and attempt to answer

eight different questions about the quality of the labs.

Are the labs challenging?

On the whole, students thought the labs were reasonably challenging. As table

1 shows, most ratings are centered around “Somewhat Agree” with 71% of

responses agreeing to some degree that the labs were challenging.
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Table 2: Student Ratings of the Labs on Ability to Teach Learning Objectives

Are the labs interesting?

In general the labs were able to capture the interest of the students. Table

1 shows 85% agree to some degree with the statement about finding the labs

interesting.

Are the labs clearly written?

The students thought the labs were somewhat clearly written. Table 1 shows

69% agree to some degree with the statement about finding the labs clearly

written and the average rating is closer to “Somewhat Agree” than “undecided.”

Do the labs teach their learning objectives?

For the most part, the students are in agreement with the statement that the lab

had them engage in activities that are related to its stated learning objectives.

As table 2 shows 87% of students agree with the statement, with majority of

them strongly agreeing.
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Figure 11: Student Opinions of the Labs

Do the labs prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not all that high.

The majority of ratings in agreement with the statement are only somewhat in

agreement, which can be see in table 2.

What did students like most about the labs?

The leftmost pie chart in figure 11 has the majority of comments identifying

three things that students like most about the labs. The most repeated com-

ments consist of students stating that they enjoyed the content the labs covered.

The second most repeated comments make mention of the satisfaction that stu-

dents receive from implementing the applications. Lastly, students commented

frequently on the tutorial writing style of the instructions.

What did students like least about the labs?

The center pie chart in figure 11 has the students identifying a wide range of

things they do not like about the labs, however, three of the answers are repeated

the most. The most repeated comment is that the instructions are either not
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detailed or not clear enough. The second most repeated answer is that students

feel the labs are too long. Lastly, some of the students feel that there wasn’t

anything wrong with some of the labs.

What did students think needs improvement?

The right most pie chart in figure 11 has the majority of students identifying

three suggestions for improving the labs. The most repeated suggestion is to

add more detail to or edit the current details of the instructions to improve their

clarity. The second most suggested improvement is to change nothing. Lastly,

the students feel that the labs needed a clearer list of deliverables, possibly

coming in the form of checkpoints placed throughout the labs.

6.1.2 Student Performance

For this analysis we compare the grades students received for each of the labs

from both the winter and summer courses. We then take that data and at-

tempt to determine the difficulty of the labs and identify correlations between

average performance on labs and performance in other areas of the course. It

is important to note that when analyzing the difficulty of the labs we take

into consideration the differences in grading procedures between the winter and

summer courses. As described in prior sections, the labs for the winter stu-

dents were graded less stringently while the majority of the labs for the summer

students were graded much more rigorously using the method for automated

grading. Thus, the data from the winter and summer quarters is separated for

the following analysis.
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Figure 12: Distribution of Average Student Lab Grades

Were the labs adequately difficult?

We define a lab to be adequately difficult if 70% of the student submissions

receive a grade of 70% or better. This metric tells us that the lab has enough

difficulty such that a minority of students receive a grade worse than a C, while

the majority of students are able to obtain a C or better grade. Labs in which

more than 70% of the students get a grade of 70% or better indicate that the

lab in question could be too simple, while the inverse statement indicates that

the lab in question could be too difficult.

Figure 12 shows that 87% of students in the winter class and 63% of the

students in the summer class received an average lab grade of 70% or better.

It is our feeling that the grades from the winter class have a slight tendency to

be overinflated due to the less stringent grading techniques, while the grades

for the summer class better reflect actual performance. Taking into account the

difference in grading techniques, we feel that the labs as a whole have a tendency

to be slightly too difficult. We now attempt to explain some of the anomalies

in the data:
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• Lab 1 grades: The grades for the first lab for both the winter and summer

classes are sufficiently higher than the others. This can be explained by

the introductory nature of the lab and indicates that additional exercises

could be added to the end of this lab.

• Lab 1 & 2 summer grades: The grades for the first two labs of the

summer class are much higher than the rest of the labs. This is because

these two labs were graded using the same less stringent method that was

used for the winter class, which has a noted tendency to produce higher

grades.

• Lab 4 grades: The difference in performance between winter and summer

classes for the fourth lab have switched. The summer class outperformed

the winter class. This is attributed in part to two separate problems. The

first problem is the winter grading procedure’s poor ability to identify

partial credit because of its heavy reliance on demonstrations. This seems

to be isolated to lab four because of its considerable length and the “all or

nothing” nature of its implementation. Meaning that failing to complete

a significant portion of the lab would lead to an inoperable application.

Since the winter quarter grading procedure was unable to apply adequate

partial credit this yielded lower scores.

The second problem stems from a serious bug in the first release of the

lab manual and project skeleton for the winter quarter. This bug caused

a large number of students to get stuck. While a bug fix was released,

the damage had already been done in the form of confusion, loss of pro-

ductivity, and lowered confidence. Thus, we believe the summer quarter’s

higher grades in lab four can be accredited partly to the summer students

not having to encounter the aforementioned bug.
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• Lab 6 grades: The winter class drastically outperformed the summer

class on the sixth lab. This is attributed to a flaw in the winter grading

procedure and its poor ability to detect false positives, or faked results. It

would be expected that the winter course would have grades more similar

to the summer course due to the extreme difficulty students had with the

lab.

• Higher scores in winter: The winter class had higher average scores

than the summer class on five out of six of the labs. Aside from the

differences in grading we feel that there were two other factors that may

have played a role. The first contributing factor comes from the fact that

the winter class was the first instance of the course. These students can be

seen as early adopters of the course. It is the motivation for early adoption,

which might include a higher than average interest in the topic, that may

have contributed in part to higher scores. The second contributing factor

comes from the nature of offering a summer course where roughly half of

the participating students were engaged in extra curricular activities like

internships and full or part time jobs. These activities may have caused

some of the summer students to expend less effort on the labs.

Do lab grades correlate to final exam grades?

Although there is some slight correlation between final exam grades and average

lab grades, we cannot rely on lab grades as a predictor of final exam scores. As

figure 13 shows, the R2 is too low. However, it is interesting to note that the

more stringent grading process used to evaluate the labs in the summer class

significantly improved the R2 value of the correlation.
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Figure 13: Correlation Between Student Final Exam and Lab Grades

Figure 14: Correlation Between Student Final Project and Lab Grades
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Do lab grades correlate to project grades?

It turns out that we cannot rely on lab grades as a predictor of the quality of the

class projects. As figure 14 shows, the R2 is too low. The drastic difference be-

tween the correlations for the winter and summer classes is most easily explained

by observing the difference in the density of the data points between the two

classes along both axes. The winter class has a much more dense distribution

along both axes, which significantly contributes to its higher R2 value.

The higher density along the x-axis, or average lab grade, is attributed to the

differences in grading procedures. While the higher density long the y-axis, or

project grade, we attribute to the difference in class types. The winter class was

a standard “in person” class, while the summer class was an “online class”. We

believe that the “in person” nature of winter class fostered a more productive

and creative environment as it guaranteed the students time to work together

in close proximity to each other. It is these two contributing factors that caused

the drastic difference in R2 values.
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Table 3: Student Ratings of Lab 1 on Difficulty, Interest, and Clarity

6.2 Individual Lab Evaluations

In the section that follows we analyze each of the labs individually. We review

the survey results separately for each lab. From these results we to attempt to

gain insight from the students responses about the quality of the labs.

6.2.1 Lab 1 Analysis

Survey Results

• Is the lab challenging?

Overall, the students thought the lab was not challenging while at the

same time not too easy. As table 3 shows, most ratings are centered

around “Undecided” with only three students voting at the the extremes

of “Strongly Agree” and “Strongly Disagree”.

• Is the lab interesting?

In general, the lab was able to capture the interest of the students. Table

3 shows 94% agree to some degree with the statement about finding the
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Table 4: Student Ratings of Lab 1 on Ability to Teach Learning Objectives

labs interesting, while not a single person out of 37 disagree with the

statement.

• Is the lab clearly written?

The students as a whole felt the lab made it clear to them what they

were expected to do. Table 3 shows 91% agree to some degree with the

statement about finding the labs clearly written, while only a single person

out of 37 disagree with the statement.

• Does the lab teach its learning objectives?

In general, the students are in agreement with the statement that the

lab had them engage in activities that were related to its stated learning

objectives. As table 4 shows, 97% of students agree with the statement,

with majority of them strongly agreeing.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The majority of students only somewhat agree with this statement, which

can be see in table 4.
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Figure 15: Student Opinions of Lab 1

• What did students like most about the lab?

The leftmost pie chart in figure 15 has the majority of students identifying

three things they like most about the first lab. The most liked feature

of the lab is that it has students implement and deploy a functioning

application that they can use. The second most liked feature is the step-

by-step, tutorial, writing style of the instructions. Lastly, the students

like the introductory nature of the content covered by the lab.

• What did students like least about the lab?

The center pie chart in figure 15 has the students identifying a wide range

of things they do not like about the first lab, however, three of the answers

are repeated the most. The most disliked feature of the lab is that some

of the instructions are either not detailed or not clear enough. The second

most repeated answer is that students do not dislike anything about the

lab. Lastly, some of the students find that the instructions provide too

much detail and are too prescriptive.

• What did students think needs improvement?

The rightmost pie chart in figure 15 has the majority of students iden-

tifying three suggestions for improving the first lab. The most repeated

suggestion is to add more detail to or edit the current details of some
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instructions to improve their clarity. The second most suggested improve-

ment is to change nothing. Lastly, the students feel that the instructions

need to reduce the overall level of detail to improve on the brevity of

instructions.

Conclusions

To summarize, the students’ opinions of the lab are generally good. Students feel

that it was both interesting and clear to them what they were expected to do.

However, the lab is not very challenging and could therefore stand to be made

slightly more difficult. The lab succeeds in engaging the students in activities

related to its stated learning objectives. Moreover, the students in general feel

relatively confident in their ability to perform similar tasks independently. The

students enjoy that the lab had them implement a fully functional application.

However, they feel that the lab needs to improve on the level of detail of its

instructions by focusing on clarity and brevity.
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Table 5: Student Ratings of Lab 2 on Difficulty, Interest, and Clarity

6.2.2 Lab 2 Analysis

Survey Results

• Is the lab challenging?

Overall, the students thought the lab was somewhat challenging. As table

5 shows most ratings are centered around “Somewhat Agree” with only

four out of 37 disagreeing with the statement that the lab was challenging.

• Is the lab interesting?

In general, the lab was able to capture the interest of the students. Table 5

shows 91% agree to some degree with the statement about finding the labs

interesting, while only two people out of 37 disagree with the statement.

• Is the lab clearly written?

The students as a whole feel the lab made it reasonably clear to them what

they were expected to do. Table 5 shows 81% agree to some degree with

the statement about finding the labs clearly written, while four people out

of 37 disagree with the statement.
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Table 6: Student Ratings of Lab 2 on Ability to Teach Learning Objectives

Figure 16: Student Opinions of Lab 2

• Does the lab teach its learning objectives?

In general, the students are in agreement with the statement that the

lab had them engage in activities that were related to it’s stated learning

objectives. As table 6 shows the average rating is roughly centered between

somewhat and strongly agreeing, with majority of them strongly agreeing.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The majority of students only somewhat agree with this statement, which

can be see in table 6.
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• What did students like most about the lab?

The leftmost pie chart in figure 16 has the majority of students identifying

three things they like most about the lab. The most liked feature of the

lab is that it dealt with UI related topics. The second most liked feature is

that the lab had the students create an application of significant substance.

Lastly, the students like the step-by-step, tutorial, writing style of the

instructions.

• What did students like least about the lab?

The center pie chart in figure 16 has the students identifying a wide range

of things they do not like about the lab, however, three of the answers

are repeated the most. The majority of students state that there is not

anything in the lab they did not like. The second most repeated answer is

that some of the instructions are either not detailed or not clear enough.

Lastly, some of the students highlight UI related activities they did not

like.

• What did students think needs improvement?

The right most pie chart in figure 16 has the majority of students identify-

ing three suggestions for improving the lab. The most repeated suggestion

is to add more detail to or edit the current details of some instructions

to improve their clarity. The second most suggested improvement is to

change nothing. Lastly, a number of students point out errors in the lab

that need to be corrected.

Conclusions

To summarize, the students’ opinions of the lab are generally good. Students

feel that it was both interesting and relatively clear to them what they were ex-
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pected to do while at the same time reasonably challenging. The lab succeeded

in engaging the students in activities related to its stated learning objectives.

While the students in general feel somewhat confident in their ability to per-

form similar tasks independently, the lab can be reworked with an emphasis on

improving this score. The students enjoy that the lab has them implement a

more significant application. However, they feel that the lab needs to improve

on the level of detail of its instructions by focusing on clarity and brevity.
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Table 7: Student Ratings of Lab 3 on Difficulty, Interest, and Clarity

6.2.3 Lab 3 Analysis

Survey Results

• Is the lab challenging?

The students almost unanimously agree the lab is challenging. As table

7 shows, most students strongly agree that the lab is challenging while

only a single student out of 24 declined to agree and is instead undecided

in their opinion.

• Is the lab interesting?

In general, the lab was able to capture the interest of the students. Table 7

shows 91% agree to some degree with the statement about finding the labs

interesting, while only single person out of 24 disagrees with the statement.

• Is the lab clearly written?

The majority of students feel the lab made it reasonably clear to them what

they were expected to do. Table 7 shows 70% agree to some degree with the

statement about finding the labs clearly written, while the average student

rating is slightly less then “Somewhat” agreeable to this statement.
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Table 8: Student Ratings of Lab 3 on Ability to Teach Learning Objectives

Figure 17: Student Opinions of Lab 3

• Does the lab teach its learning objectives?

In general, the students are in agreement with the statement that the

lab had them engage in activities that are related to its stated learning

objectives. As table 8 shows, the average rating is greater than somewhat

agreeing, with majority of them strongly agreeing.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The majority of students only somewhat agree with this statement, which

can be see in table 8.

• What did students like most about the lab?

The leftmost pie chart in figure 17 shows the majority of students identi-
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fying three things they like most about the lab. The most liked feature of

the lab is the breadth of content it covered. The second most liked feature

is the satisfaction of creating a more advanced application. Lastly, the

students like the step-by-step, tutorial, writing style of the instructions.

• What did students like least about the lab?

The center pie chart in figure 17 has the students identifying a wide range

of things they do not like about the lab, however, three of the answers

are repeated the most. The most common complaint is that the lab is

far too long and more difficult in comparison to the previous labs. The

second most repeated complaints highlight specific activities related to

using certain UI components. Lastly, students found that some of the

instructions are either not detailed or not clear enough.

• What did students think needs improvement?

The rightmost pie chart in figure 17 has the majority of students identify-

ing four suggestions for improving the lab. The most repeated suggestion

is to add more detail to or edit the current details of some instructions

to improve their clarity. The second most suggested improvement is to

change nothing. Next, the students feel that the lab is long enough that

it should be broken into two separate labs. Lastly, the students feel that a

clear list of deliverables or a correctly implemented version of the applica-

tion should be provided to help the students understand how to implement

their applications correctly.

Conclusions

To summarize, the students’ opinions of the lab are mediocre. Students feel that

it is both interesting and challenging. However, the lack of clarity in this lab
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most assuredly needs improvement. The lab succeeds in engaging the students in

activities related to its stated learning objectives. While the students in general

feel somewhat confident in there ability to perform similar tasks independently,

the lab can be reworked with an emphasis on improving this score. The students

enjoy the satisfaction of implementing an application that makes use of more

advanced features. However, they feel that the lab needs to be reworked to

adjust the length and provide a clearer list of deliverables.
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Table 9: Student Ratings of Lab 4 on Difficulty, Interest, and Clarity

6.2.4 Lab 4 Analysis

Survey Results

• Is the lab challenging?

Overall the students think the lab is somewhat challenging. As table

9 shows, most ratings are centered around “Somewhat Agree” with only

five out of 32 disagreeing with the statement that the lab is challenging.

• Is the lab interesting?

The majority of students think the lab is somewhat interesting. Table 9

shows 71% agree to some degree with the statement about finding the labs

interesting.

• Is the lab clearly written?

While the majority of students feel the lab made it reasonably clear to

them what they were expected to do, there are almost as many people

who somewhat disagree with this statement. Table 9 shows only 53%

agree to some degree with the statement about finding the labs clearly

written, while the average student rating is centered around“Undecided”.
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Table 10: Student Ratings of Lab 4 on Ability to Teach Learning Objectives

Figure 18: Student Opinions of Lab 4

• Does the lab teach its learning objectives?

In general, the students are in agreement with the statement that the

lab had them engage in activities that are related to its stated learning

objectives of the lab. As table 10 shows, 87% of students agree with the

statement, with majority of them strongly agreeing.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The majority of students only somewhat agree with this statement, which

can be see in table 10.
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• What did students like most about the lab?

The leftmost pie chart in figure 18 has the majority of students identifying

four things they like most about the lab. The most liked feature of the lab

is the fact that it covers Data Persistence topics like SQLite Databases and

Shared Preferences. This response is repeated most often by students. A

handful of students voted for other favorite features like content relating

to the MVC pattern, the resulting application, and the reduced length of

lab four in comparison to lab three.

• What did students like least about the lab?

The center pie chart in figure 18 has the students identifying a wide range

of things they do not like about the lab, however, four of the answers are

repeated the most. By far, the students dislike the level of detail and

clarity the instructions had the most. The students also commented that

the labs are too verbose, contain errors that caused problems for them,

and that they had difficulty debugging their applications.

• What did students think needs improvement?

The rightmost pie chart in figure 18 has the majority of students identify-

ing three suggestions for improving the lab. The most repeated suggestion

is to add more detail to or edit the current details of some instructions

to improve their clarity. The second most suggested improvement is to

fix a few errors in the lab that caused problems for a number of students.

Lastly, the students feel that improving the quality and frequency of test-

ing checkpoints in the lab may help ensure that they are implementing

their applications correctly.
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Conclusions

To summarize, the students’ opinions of the lab are not that great. While

students have interest in the topic of Data Persistence, the clarity of the labs

instructions made it difficult for a large percentage of the students to correctly

implement their applications. The lab does succeed in engaging students in

activities related to its stated learning objectives. Moreover, the students in

general feel relatively confident in their ability to perform similar tasks indepen-

dently. The lab most assuredly needs to improve the quality of its instructions

with an emphasis on clarity and correct a few errors. Lastly, the students feel

that supplying more test cases for them to use as checkpoints in the lab may

help them feel more confident in the correctness of their application.
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Table 11: Student Ratings of Lab 5 on Difficulty, Interest, and Clarity

6.2.5 Lab 5 Analysis

Survey Results

• Is the lab challenging?

Overall the students think the lab was somewhat challenging. As table

11 shows, most ratings are centered around “Somewhat Agree” with only

five out of 30 disagreeing with the statement that the lab is challenging.

• Is the lab interesting?

The students as a whole feel the lab was interesting. Table 11 shows 93%

agree to some degree with the statement about finding the labs interesting,

while only two people out of 30 disagree with the statement.

• Is the lab clearly written?

While the majority of students feel the lab made it reasonably clear to

them what they were expected to do there are a good number of students

who were still at least somewhat confused. Table 11 shows only 66%

agree to some degree with the statement about finding the labs clearly
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Table 12: Student Ratings of Lab 5 on Ability to Teach Learning Objectives

written, while the average student rating is slightly less than “Somewhat”

agreeable.

• Does the lab teach its learning objectives?

In general, the students firmly agree with the statement that the lab had

them engage in activities that are related to it’s stated learning objectives

of the lab. As table 12 shows, 93% of students agree with the statement,

with majority of them strongly agreeing.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The majority of students only somewhat agree with this statement while

not a single person disagrees, which can be see in table 12.

• What did students like most about the lab?

The leftmost pie chart in figure 19 shows the majority of students identify-

ing three things they like most about the lab. Students most like that they

learned how to use the Google Maps APIs. The second most liked feature

is that the students got to interact with the GPS and camera hardware.
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Figure 19: Student Opinions of Lab 5

Lastly, the students are greatly pleased with the application the lab had

them implement.

• What did students like least about the lab?

The center pie chart in figure 19 has the students identifying a wide range

of things they do not like about the lab, however, four of the answers

are repeated the most. By far, the students dislike the effort required to

debug and test their applications’ interactions with the GPS hardware.

Next, the students are still unsatisfied with the level of detail and clarity

the instructions had. Lastly, students mentioned that the lab is too long

and it had them perform mundane tasks like file I/O.

• What did students think needs improvement?

The rightmost pie chart in figure 19 has the majority of students iden-

tifying three suggestions for improving the lab. The most suggested im-

provement is to add more detail to or edit the current details of some

instructions to improve their clarity. The second most repeated comment

is that the lab is fine the way it is. Lastly, the students feel that providing

tests to use as checkpoints at certain places in the lab would greatly help

their development efforts.
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Conclusions

To summarize, the students’ opinions of the lab are reasonably good. Students

feel that it is both interesting and challenging. However, the lack of clarity

in this lab most assuredly needs improvement. The lab succeeded in engaging

the students in activities related to its stated learning objectives. While the

students in general feel somewhat confident in their ability to perform similar

tasks independently, the lab can be reworked with an emphasis on improving

this score. The lab needs to improve the quality of its instructions with an

emphasis on clarity and brevity. Lastly, the students feel that supplying test

cases to use as checkpoints would help them implement the lab correctly.
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Table 13: Student Ratings of Lab 6 on Difficulty, Interest, and Clarity

6.2.6 Lab 6 Analysis

Survey Results

• Is the lab challenging?

Overall the students think the lab is challenging. As table 13 shows, most

ratings are centered between “Somewhat” and “Strongly” agree with not

a single person disagreeing with the statement that the lab is challenging.

• Is the lab interesting?

While there is some interest in the lab, the students do not find this lab

particularly interesting. Table 13 shows only 59% agree to some degree

with the statement about finding the labs interesting, while the average

rating is centered between “Undecided” and “Somewhat Agree.”

• Is the lab clearly written?

The majority of students do not feel the lab made it reasonably clear

to them what they were expected to do. There are a good number of

students who were at least somewhat confused. Table 13 shows only 36%

agree to some degree with the statement about finding the labs clearly
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Table 14: Student Ratings of Lab 6 on Ability to Teach Learning Objectives

written, while the average student rating is centered between “Somewhat

Disagree” and “Undecided.”

• Does the lab teach its learning objectives?

The students tend towards agreement with the statement that the lab had

them engage in activities that were related to its stated learning objectives

of the lab. Although table 14 shows the average rating slightly less than

“Somewhat Agree,” the majority of students agree with the statement to

some degree.

• Does the lab prepare students to work independently?

The majority of students agree that they feel capable of performing similar

tasks on their own. However, their confidence in this ability is not high.

The average rating is slightly less than “Somewhat Agree,” which can be

see in table 14.

• What did students like most about the lab?

The leftmost pie chart in figure 20 shows the majority of students identi-

fying three things they like most about the lab. Students most like that

they learned how to work with Services and ContentProviders. The sec-

ond most liked feature is that this lab does not hold the students’ hands
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Figure 20: Student Opinions of Lab 6

as much as the previous labs. Lastly, the students are greatly pleased with

the application the lab had them implement.

• What did students like least about the lab?

The center pie chart in figure 20 has the students identifying a wide range

of things they do not like about the lab, however, three of the answers

are repeated the most. By far, the students dislike the level of detail and

clarity the instructions have. Next, the students feel the implementation

of this lab is too complicated. Lastly, students mention a few errors in the

lab that caused problems for them.

• What did students think needs improvement?

The rightmost pie chart in figure 20 has the majority of students iden-

tifying two suggestions for improving the lab. The most suggested im-

provement is to add more detail to or edit the current details of some

instructions to improve their clarity. Aside from the previous improve-

ment, the rest of the students feel nothing needs to be improved.
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Conclusions

To summarize, the students’ opinions of the lab are mediocre. Students feel

that it is not that interesting, but it is still challenging. Additionally, the lack of

clarity in this lab’s instructions need some serious improvement. The confusion

students feel might have had some affect on the lower rating the lab received

for being able to have the students engage in activities related its learning

objectives. However, the students in general feel somewhat confident in there

ability to perform similar tasks independently. Although, the lab can still be

reworked with an emphasis on improving this score.
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6.3 Automated Grading Analysis

In the section that follows, we evaluate the system for automated grading with

respect to the needs outlined in its design section. We use both subjective

anecdotal evidence and objective statistical evidence to perform this evaluation.

Anecdotal evidence comes from experiences using the system for automated

grading. Statistical evidence comes from comparing the grades students received

for each of the labs from both the winter and summer courses. We can then

ascribe conclusions from this comparison, at least in part, to the differences in

grading techniques between the two classes. As described in prior sections, the

labs for the winter students were graded less stringently while the majority of

the labs for the summer students were graded much more rigorously using the

system for automated grading.

Usability:

With regards to the need for a solution that is easy to use and requires little

to no human interaction or oversight, our system of automated grading needs

work. The Grader application can be executed easily from the command line

on a directory of student submissions, however the submissions generally come

as an archived file. The user of the Grader application must then manually

unzip all of the student submissions. Additionally, manual oversight is needed

to translate an individuals test results into a formal grade using a rubric. This

interaction is a tedious process that could most definitely be automated as well.

While our system for automated grading removes the most tedious process of

evaluating a submission, there is still a lot of interaction that could be automated

as well.
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Reusability:

With regards to the need for a solution that is reusable in future offerings of

the course, our system is acceptable. Since the automated tests and rubrics are

tied directly to the lab manuals and skeleton projects, the entire system can be

reused wherever the lab materials are reused. What prevents our system from

being more successful is the degree to which it is tied directly to the lab manuals

and skeleton projects. Any sort of change to a lab manual or skeleton project

will at the very least require the related tests and rubric to be checked to ensure

the change is properly reflected their as well. In worst case scenarios, existing

tests and rubrics may have to be refactored and additional tests may have to

be written. The tightly coupled nature of the tests to their corresponding lab

materials thus requires our system for automated grading to be maintained

along with the labs materials themselves.

Accuracy:

With regards to the need for a solution that provides student grades that are

as accurate as possible, our system excels. The fine grained nature of the au-

tomated tests allows us to verify the correctness of a student submission that

is far more accurate than the previous system for grading. To start with, our

solution can identify partial credit in the event that a student has not completed

a lab. Without partial credit students would receive lower lab grades for par-

tial implementations. Additionally, our solution can identify false positives, or

situations in which the observed behavior of an application is correct, but the

underlying implementation is incorrect. The presence of false positives causes

a student to receive a grade higher than they deserve. The previous system for

grading would require a submission’s source code to be analyzed by a human
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Figure 21: Comparison of Average Lab Grade Distributions

grader to catch either grading problems, which is an error-prone process. While

it is possible that these two types of grading problems could cancel each other

out to have no effect on the lab grades, our intuition is that false positives are a

larger issue. Thus, we feel that the grades produced for labs using the previous

manual grading process tend to be overinflated.

Since using our system for automated grading we have seen marked improve-

ments in the average grade distribution for labs evaluated by our automated

grading system. As you can see from figure 21, the distribution of average lab

grades has become more normalized and has produced a lower mean average lab

grade. The distribution and mean produced by the automated grading system

is more consistent with what we would expect. Furthermore, the lowered mean

average lab grade reinforces our opinion that false negatives are a larger issue

than partial credit. We must also acknowledge here that the differences in the
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grade distributions may also have some correlation with the differences between

the two classes from which the grades were taken from. These differences are

outlined in the Student Performance section of the Aggregate Lab Analysis.

Traceability:

With regards to the need for a solution that clearly traces evaluation crite-

ria to the requirements set forth in the lab manuals, our solution excels at a

coarse grained level. The rubrics act as a sort of traceability matrix, mapping

lab manual sections to automated tests. The rubrics do not identify the in-

dividual requirements set forth in the lab manuals that are under test in the

corresponding automated test classes. However, the test classes are thoroughly

commented and clearly state what they are testing. The rubrics could be im-

proved to trace requirements under test at a fine grained level, but this would

create more maintenance work in the event that the labs need to be refactored.

Visibility:

With regards to the need for a solution that presents grades results in a format

that is easily readable, our solution is acceptable. Visibility is achieved through

three features of our solution, a combined test results file, an individual test

results file, and a grading rubric file.

• Combined Test Results: At first glance this file is difficult to read as

it is a plain comma separated values file containing mostly error output

from the Java console. However, it is not crucial for this file to be easily

readable as it is used rarely and only to help identify problems at a high

level. In most cases, the person overseeing the grading process may only

glance at this file to see the relative frequency of errors with respect to
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the entire class. With this in mind, an effort could be made to pre-sort

the data so that common errors are grouped and the most repeated errors

appear at the top.

• Individual Test Results: While this file may not look very appealing,

it does its job well by displaying pertinent information from the results

of executing a test suite on a student submission. Both students and the

person overseeing the grading process can clearly see which tests if any

failed or caused errors in a student submission. Efforts could be made to

improve the format of the output to be more visually appealing. However,

all the pertinent information is present and ordered in a logical manner.

• Grading Rubric: This file succeeds in presenting both students and the

person overseeing the grading process with all the necessary information

in a visually appealing manner. Viewers of the file can easily identify test

failures and grades. While improvements could be made through usability

testing, the current state of the grading rubrics are more than acceptable.

Transparency:

With regards to the need for a solution that provides students with a clear

explanation of how their grade was calculated, our solution excels. The grading

rubrics provide a obvious break down of how a grade is calculated. They clearly

display how much each section of the lab contributes to the overall grade. Then

they identify the automated test used to evaluate each of those sections of the

lab as well as the results of those tests. After viewing the grading rubric, a

student can view their individual test results file to see in detail the output of

any test failures. Armed with this information, a student can then investigate

the cause of these failures in their submission. In the event that the failure
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is caused by one of the tests and not by the submission, the student then has

recourse to refute a test failure.

Insightfulness:

With regards to the need for a solution that provides insight into the quality

of the labs themselves, our solution is acceptable. Through the combined test

results file we can identify commonly thrown errors and test failures from all the

student submissions for a particular lab. This creates a feedback loop where the

labs can fixed or modified, assigned to the students, graded, and then fixed or

modified again as indicated by the combined test results file. Additionally, since

our grading process is more standardized, consistent, and accurate for every

student submission the grades become a more reliable indicator for the quality

of the assignments and the students’ understanding of the subject matter.
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7 Conclusion

7.1 Labs

The labs created for this thesis teach students about a broad range of Android

topics with enough depth to enable them to develop Android applications on

their own. Based on the student responses taken from surveys, students think

the labs are interesting, clearly written, and challenging. Students also feel

that the labs accomplish their stated learning objectives and prepared them to

work independently. These findings are supported by student performance on

the labs. However, the labs need to be refactored with an emphasis on brevity

and clarity. In the end, the labs accomplished everything they intended to

accomplish.

7.2 Automated Grading

Using both subjective anecdotal evidence and objective statistical evidence, we

are unable to conclude whether or not the System for Automated Grading is a

successful endeavor. However, we feel that the it had a net benefit. The System

for Automated Grading provides a reusable and highly accurate solution which

clearly traces evaluation criteria to the their defining requirements set forth

in the lab specifications. The output generated by the System for Automated

Grading displays grades in a manner that is easy to read and understand, while

at the same time creates a feedback loop to further refine itself and the labs.

The two areas where the System for Automated Grading needs improvement is

in its reliance on a manually intensive process for translating test results into

student grades and the highly coupled relationship between lab manuals, auto-

mated tests, and grading rubrics. In situations where there are lots of student

submissions to grade that require an accurate and rigorous testing process then
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our solution is worth the time spent on maintenance and manual interaction. In

situations where there a few submissions to grade with a small set of acceptance

criteria then our system is not worth the overhead.
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