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Abstract: A 3-fold symmetric photonic-crystal grating is simulated using improved FDTD-model. 
Transmission gratings are optimized. Then, the best cases are simulated in GaN-LED models. The 
maximum extraction efficiency improvement is 40x greater compared to conventional LEDs. 
©2010 Optical Society of America  
OCIS codes: (140.3325) Laser coupling; (050.5298) Photonic crystals 

1. Introduction 
Light emitting diodes (LED) have found many applications such as residential and commercial lighting, 
fiber optics, machine vision, and colored displays. These applications demand low power, high efficiency, 
high luminosity, and low heat generation. To fulfill these necessary conditions, a grating structure is the 
solution by creating more angles of escape and also diffraction mechanisms. Grating structures can be 
patterned with many shapes including: pyramidal, spherical, conical, cylindrical, and so on, but only a few 
can be fabricated with great success. For example, with the modified laser lift off (M-LLO) technique, 
holes can be patterned at a 4 micron period instead of etching a random structure. In the experiment at 
Peking University (PKU), grating depths varied from 75nm to 120nm [1]. 

Using a 3-D finite difference time domain (FDTD) method, a 3PC grating structure is first optimized 
and characterized to observe trends for optimizations for certain grating cell-to-cell radii, widths, and 
heights. Then the optimized grating parameters from a transmission grating are entered into an entire GaN 
device model. The current literature does not provide optimizations for full 3-D GaN models, only grating 
simulations. Comparisons between the best case grating parameters are analyzed to verify optimal 
parameters and discover modeling trends. 

2. Simulation Model 
The simulations use a 3-D FDTD method [2-3] for a GaN LED model to calculate final output power. In all 
simulations, a time monitor is placed in 5 locations: top, front, back, left side, and right side. This allows 
for a complete picture of the total power output radiating from all facets. After the simulation time has 
elapsed, the final average output power is taken from each monitor and summed into a total output power 
measured in arbitrary units (au). Note that a bottom monitor is unnecessary since either the reflections are 
unimportant, as in the case of a grating-only simulation, or the Ag reflector plate is expected to reflect the 
vast majority waves back towards the one of the other monitors, as in the full LED model. For thin metal 
reflectors, only a negligible amount of radiation is transmitted as evanescent waves.  

There are two models in this simulation set. The first simulation, a simple semiconductor-air model, 
aids in discovering the optimized grating parameters. A smaller model is necessary to sweep the parameters 
since a 3-D FDTD simulation's simulation time and memory requirements expand with simulation domain 
size as N4 and N3, respectively. Therefore, the device size is limited to the amount of RAM and reasonable 
time we have per simulation. The first simulation has a duration of 500fs to observe the transmission 
properties of each grating configuration. A transmission grating carved out of the semiconductor surface 
that can be varied by three variables: grating cell-to-cell radius (A), grating cell width (w), and grating 
height (d). We step through the possible combinations that are physically allowed (ie. w ≤ A). For example, 
the first case would be A = 1 μm, w = 1 μm, d = 800 nm, then A = 1 μm, w = 1 μm, d = 1000 nm, and so 
on. Light waves are generated from random spatial and directional current sources to better represent 
incoherent light. 32 current sources are placed at random intervals throughout the source layer to provide a 
pseudorandom distribution. The simulation results in a good representation of a photonic crystal's response 
to light from all incident angles (ie. 0 to 90 degrees). This is a new way to setup light sources, which gives 
grating huge efficiency improvement results compared to other simulation models [2-3], and is a more 
comprehensive model for the 3PC simulation. 
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For the second simulation, a full GaN LED model aids in understanding a diffraction grating's response 
to a multi-layered thin film LED with a Ag reflector plate. The optimal grating parameters from the first 
simulation are used in this simulation as the grating parameters for the transmission grating. The grating is 
carved from the undoped GaN layer. Only the top 5 cases from the grating optimization simulations are 
taken into account for comparison. In this second simulation, the simulation time is increased to 2500fs 
since we need to account for multiple reflections from the Ag reflector plate in this case. 

3. Results 
The grating optimization simulations revealed that a transmission grating is optimized when A=w, n other 
words, when unit cells acquire the most area on the LED surface. In recent literature, this is known as a 
filling factor and can be described as the ratio of the total area covered by the unit cells and the total top 
surface area. Fig. 1 shows the results of the 3-D FDTD, limited to the interface between GaN to air. A 
grating with the parameters A, w, and d, was varied in steps. It is clear that as the grating height increases, 
the total output power also increases. The improvement, in all cases of A=1, 3, and 6 μm, at d=800 nm 
indicates that the relationship between d and output power may have a sinusoidal-like relationship. 

(a) (b) (c) 
Fig.1 Total output power for a GaN-to-Air grating structure: (a) A=1μm., (b) A=3μm., and (c) A=6μm. 

Next, a 3-D FDTD full GaN LED model was simulated with the best cases of the grating-only 
simulations. These best cases and their results for the full GaN model are shown in Table 1. The grating 
with the characteristics of A=3 μm, w=3 μm, d=1800 nm produces the best transmission grating. Even 
though the A=6 μm, w=6 μm, d=1800 nm grating had the best results in the grating-only simulations, the 
results in the full GaN LED model indicate that it performed the worst out of all 5 gratings simulated. 
Grating-only simulations are not sufficient indicators of optimized grating structures when considering full 
GaN LED models. Internal modes must be considered as well as multiple reflections from any reflectors. 

Table 1 – Full GaN Model 3-D FDTD Simulations for Best Case Gratings 

A (um) w (um) d (nm) 
P (|E|2, au) of the 
Grating-Only 

P (|E|2, au) of the Full 
GaN Model 

Improvement factor for Full 
GaN Model 

3 
1 
3 
6 
6 

3 
1 
3 
6 
6 

1800 
1800 
1500 
1500 
1800 

2.010 
1.658 
1.651 
1.703 
2.508 

43.292 
42.381 
41.165 
40.807 
40.359 

43.77 
42.83 
41.57 
41.20 
40.74 

No Grating 0.00712 0.96688 0 
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