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Abstract Neuronal adaptation is the intrinsic capacity of
the brain to change, by various mechanisms, its dynamical
responses as a function of the context. Such a phenom-
ena, widely observed in vivo and in vitro, is known to be
crucial in homeostatic regulation of the activity and gain
control. The effects of adaptation have already been studied
at the single-cell level, resulting from either voltage or cal-
cium gated channels both activated by the spiking activity
and modulating the dynamical responses of the neurons. In
this study, by disentangling those effects into a linear (sub-
threshold) and a non-linear (supra-threshold) part, we focus
on the the functional role of those two distinct components
of adaptation onto the neuronal activity at various scales,
starting from single-cell responses up to recurrent networks
dynamics, and under stationary or non-stationary stimula-
tions. The effects of slow currents on collective dynamics,
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like modulation of population oscillation and reliability of
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1 Introduction

Most neurons in primary sensory areas tend to change the
strength of their dynamical responses over time for sus-
tained and constant inputs, in a so-called adaptation process.
The detailed mechanisms of this adaptation are still not
clearly understood, and can result from various phenom-
ena that might be combined: homeostasis or intracellular
mechanisms (Turrigiano and Nelson 2004; Benda and Herz
2003), short term plasticity (Tsodyks et al. 2000), or even
network-wide effect originating from lateral connections
(Haider et al. 2010). In this paper, we propose to investi-
gate computationally some effects of neuronal adaptation,
from both a single-cell and a network point of view. By
using a phenomenological model for neurons based on an
integrate-and-fire model with intrinsic adaptation and its
macroscopic counterparts, we studied the effects of slow
adaptation currents on neuronal dynamics at the network
level.

Detailed models of intrinsic plasticity as a source of
homeostasis and neuronal adaptation have already been
investigated. Such biological models are used to explore
the biomechanistic effects of slow ionic channels on the
microscopic cortical activity of single cells (Benda and Herz
2003; Gigante et al. 2007). On a more phenomenological
level, they can be used to study the firing rates dynam-
ics (Treves 1993) or constrain their distribution (Benucci
et al. 2013) in macroscopic models of cortical networks.
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All those models, however, are mostly based on two types
of current involved in slow adaptation and related to the
flow of potassium and calcium ions through the membrane.
The interaction of the adaptation currents with the neuronal
dynamics is complex, impacting both the firing threshold
and the behaviour of the cell (Benda et al. 2010). On one
hand, voltage-gated potassium currents, like Kv1, are acti-
vated by a mild depolarization of the membrane potential
and control the propagation of spikes by modulating the
spike threshold (Higgs and Spain 2011), a phenomena also
referred to as accommodation. On the other hand, calcium-
gated potassium currents are activated only at high levels of
depolarization and result in after-hyper-polarization (AHP),
a drop of the membrane potential and long lasting decrease
of excitability after a spike is emitted (Andrade 2011). The
time scale of these adaptation mechanisms can expand over
a wide range up to minutes (Pozzorini et al. 2013) and are
very heterogeneously distributed among cells but especially
pronounced in pyramidal cells (Nowak et al. 2003).

Combined all together, those two distinct adaptation
mechanisms can prevent the saturation in the spike gener-
ation process of a neuron or modulate its synchronization
properties, both acting in a different manner as shown
in previous experimental (Deemyad et al. 2012) or theo-
retical works (Ermentrout 1998; Ermentrout et al. 2001;
Prescott and Sejnowski 2008; La Camera et al. 2004). The
voltage-gated sub threshold current shifts the input thresh-
old for triggering spike depending on the basal activity:
it can thus be seen as a good mechanism to explain that
some response properties of a neuron are independent of
the background inputs. It has also been shown to play a
role in the homeostasis after sensory deprivation (Nataraj
et al. 2010). Conversely, the calcium-gated current trig-
gered by a spike does not only affect the threshold but
also increase the dynamic range of the neuronal response
and thus avoids saturation. Based on those observations, we
will refer to those two different mechanisms of adaptation
as a linear or sub-threshold one (voltage-gated channels)
versus a non-linear or supra-threshold one (calcium-gated
channels). The role of adaptation in enhancing reliabil-
ity of spike-timing of neurons stimulated with periodic
inputs was also studied in Schreiber et al. (2004). Adapta-
tion could also act functionally as a decorrelation machine
(Wang 1998).

The dynamics of cortical networks are considerably
enriched with adaptation currents, inducing bursting activ-
ity, slow oscillations, and homeostasis (Tabak et al. 2000;
Giugliano et al. 2004; Gigante et al. 2007). Rhythmic
activity of central pattern generators involved in locomo-
tor behaviour (Grillner 1997), or multi-stable dynamics of
cortical networks when ambiguous stimulus is presented
(Wilson 2003) were related to slow potassium currents.
More recently it has been shown that such currents should
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be included to explain the rich repertoire of ongoing activ-
ity observed in vivo (Mattia and Sanchez-Vives 2012) and
which could be the microscopic substrate of the resting state
activity recorded in fMRI (Gusnard and Raichle 2001). It
is therefore crucial to have a better understanding of the
effect of this adaptation at a single-cell or at a population
level.

In this study, we investigated those physiological obser-
vations on adaptation in a model of cortical dynamics simple
enough, so that large scale simulations can be performed.
To do so, we used an adaptive exponential integrate-and-fire
neuron model suited for large-scale simulations of corti-
cal networks (Brette and Gerstner 2005) and known to
be complex enough to reproduce all the dynamical reper-
toire recorded in vitro in various cell types (Izhikevich
2001; Brette and Gerstner 2005). Indeed, the dynamics
of networks of such units have been recently investigated
in Ladenbauer et al. (2014) and Farkhooi et al. (2011)
and this model have been successful in capturing more
diverse dynamics by generating a slow inhibitory feed-
back, reflecting the fact that neurons tends to adapt when
stimulated with a constant inputs. While a classical model
would provide a sustained response, models with adaptation
will have response closer to what is observed in biologi-
cal recordings. By studying the sub-threshold (linear) and
the supra-threshold (non-linear) effects of the adaptation on
single-cell response or in a neuronal network, we were able
to disentangle the functional role of those two components
on aspects of the neuronal dynamics, like oscillations or the
reliability of spike patterns.

2 Materials and methods

Neuron model Simulations of the spiking neurons were
performed using a custom version of the NEST simula-
tor (Gewaltig and Diesmann 2007) and the PyNN interface
(Davison et al. 2008), with a fixed time step of 0.1ms. In
all simulations, we use a planar integrate and fire neuron
with exponential non-linearity as introduced in Brette and
Gerstner (2005). The dynamics of the membrane poten-
tial is composed of a capacitive current Cm% and a
leak current —gp (Vin(¢t) — E), with leak conductance gj,
and leak reversal potential Ey. The ratio 7, = Cp/gL
gives the relaxation time constant for the membrane volt-
age. Spikes are generated quasi-instantaneously by active

conductances rendered by an exponential non-linearity for
Vm()—Vr
the current v (Vin(t)) = Are 21 . Thus, a spike is ini-

tiated when the membrane potential V;, goes over V (with
Vr > E). The spike is cut when the voltage reaches Vipike,
the membrane potential is then reset to Vieget.

An additional slow variable u, with timescale 1,
accounts for the effects of adaptation currents resulting



J Comput Neurosci (2015) 39:255-270

257

from channels with slow dynamics. The coupling param-
eter a between Vi, and u is a linear approximation of
hyper-polarizing (¢ > 0) ionic conductances such as those
associated with voltage gated potassium channels. Finally,
u is increased by an amount b after each spike, which mod-
els the effects of highly non-linear conductances such as
those associated with calcium gated potassium channels.
This results in the following system for (Viy, u):

d V(1)

Cm Fra —8L(Vm () — EL) ey
+8LY (Vi (1)) +Isyn —u

du v E 5

nir = alVa() = EL) — u %)

with the spike condition:

Vin(2) > Vipike — Vm(t+) = Vieset
u(@t™) =u(t) +b

The details of all numerical values for cell properties can
be found in Table 1. These values were chosen according to
those found in the literature for cortical neurons (Pospischil
et al. 2011; Rossant et al. 2011; Hertédg et al. 2014). Param-
eters are identical for excitatory and inhibitory neurons
except when specified, for example adaptation parameters
are set to O for inhibitory cells. For every simulation, ini-
tial values of Vi, are drawn from a distribution uniform in
[Vrest, VT]-

Synapses Changes in synaptic conductances triggered by
incoming spikes from excitatory and inhibitory neurons are
modeled such that the total synaptic current to a neuron can
be written as

Iy = Y (VO —E)Y &t—1) 3)
k

se{exc,inh}

The times #; (s € {exc, inh}) are the times of the incoming
spikes, respectively at excitatory and inhibitory synapses.
The dynamics gge(exc,inn)(¢) after a spike is described by an
alpha-function, from Rall synapse model (Bard Ermentrout
and Terman 2010), so that the synaptic inputs may be rewrit-
ten as the convolution of the spike trains with kernels K*
with K*(t) = [t]+e_f%/rx, [.]+ representing the Heaviside
function. If the maximal conductance for a synapse type s
is written g7, we have g,(r) = >, gV K* (1t — t;), with k
running over incoming spikes and s € {exc, inh}. Figure 1
is illustrating all those concepts, in a condensed form. In
all the paper, we took Texe = 2ms and tj,, = 3ms for the
synaptic time constants.

Diffusion approximation The spiking activity for a neuron
receiving only excitatory inputs at a rate vex is controlled
by the total effective conductance input i = gJ% Vexc Texc-
The minimum effective conductance input for spike to be

triggered, related to the rheobase current, is the one that
brings the membrane potential just above its threshold value
and it is defined in the following by g™M®° = %T_EL).
The deviation of the membrane potential from the diffusion
approximation is measured by the Kullback-Leibler diver-
gence between the simulated membrane potential Py, and
a theoretical Gaussian distribution P;; having mean and
variance as predicted from the diffusion approximation:

o]

D(PucllPrn) = / Ppe(v)in

—00

Ppc(v)
Prp(v)

dv.

Adaptation In all the manuscript, we consider the sub-
threshold or linear part of the adaptation as the one con-
trolled by the a parameter in the equation of the adaptive
exponential neuron, and the supra-threshold or non-linear
part of the adaptation as the one controlled by the b param-
eter. Therefore, a neuron with only linear adaptation is one
with b = 0, and one with only non-linear adaptation has
a = 0. Physiological interpretation of these parameters is
discussed in the neuron model description.

Cortical column A column is composed of two popula-
tions of excitatory and inhibitory neurons connected in a
random manner (Erdés-Renyi wiring) with excitatory and
inhibitory weights gexc and ginn, and receiving external
input vex; from spike source generated through Poisson pro-
cesses with weights gey. This is equivalent to a so-called
sparse balanced network (Brunel 2000). Neuron parameters
are the same as those described in Table 1. A schematic
drawing of the column can be found on Fig. 4a. More
precisely, the sizes of the populations are Nexe = 800,
Ninh = 200 and Ngxy = 200 (a classical 4:1 ratio between
excitatory and inhibitory cells). Connections among neu-
rons are drawn randomly with probabilities pap, A (and B)
being populations from which input (and output) neurons
are selected (E for excitatory, I for inhibitory, ext for exter-
nal input). In and out degrees of neurons are thus distributed
according to a Poisson law with parameter pap N4 Np. In
all the simulations, we use a value of ppr = pr; = 0.05,
prr = pre = 0.05 and p.,; = 0.01. Excitatory weights
are fixed to gexc = 6nS and inhibitory weights are modified
through the control parameter g defined by ginh = £-8exc-
For external connections, we have gext = gexc/6. Delays of
the connection are all equal to the simulation time step, i.e.
0.1ms.

Classification of dynamical regimes The column is con-
sidered to be in a Synchronous regime if the pairwise spike
correlations (CC(0)) are over a 0.026 threshold value. Pair-
wise spike correlations are computed as the mean Pearson
correlation coefficient averaged over N = 10000 pairs of
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Table 1 Parameters of the

adaptive exponential and fire Name Value Units Description

neuron used in all the

simulations Cn 0.28 nF Membrane capacitance
gL 30 nS Total leak conductance
Trefrac 5 ms Duration of refractory period
Vr -50 mV Spike initiation threshold
EL —60 mV Resting membrane potential
At 2 mV Slope factor
Tm 9.33 ms Membrane time constant
Vieset —60 mV Reset potential
a 100 (E) 0 (D) nS adaptation conductance
b 1(E)0 @D nA Spike-triggered adaptation current
Ty 144 ms Adaptation time constant
Erey (E)0 @) —80 mV Synaptic reversal potential
Vipike —40 mV Spike threshold

For parameters specific to a neuron type, E denotes excitatory cells and I denotes inhibitory cells. Note that
adaptation parameters a and b are varied widely across simulations

randomly chosen cells. The area for saturated regime with
Synchronous regular dynamics correspond to an average fir-
ing rate over 75 Hz and a mean coefficient of variation for
the interspike intervals (CV ISI) less than 0.2. Silent regimes
correspond to firing rates lower than 0.2 Hz. Regions of the
diagram not detected by these criteria are denoted as the
Asynchronous Irregular regime.

Reliability of responses The reliability of the response is
assessed by considering repeated input spike trains from
a population of 2000 neurons connected with probability
Pext = 0.01 to the excitatory cells of the column. For inputs
as homogeneous Poisson process, we consider spike trains

with firing rate, r.;; = 85Hz and for inputs as inhomoge-
neous Poisson processes, the firing rate is modulated by a
sine function, ry.r = fo + ficos 2rwt) with fy = 100H z,
fi = 40Hz and o = 5Hz. The spiking response and
the average membrane voltage is recorded for 40 times and
measures are averaged on these 40 repetitions of the same
input spike trains.

The reliability of the spiking response is monitored by the
pairwise spike correlation averaged over pairs of repetitions.
To assess the reliability of membrane potentials, we monitor
the Coefficient of Variation (CV) of the mean voltage V,
of excitatory neurons, that is the standard deviation divided
by the mean over the 40 repeated trials, and is unitless. The

A B
Excitation
adExp neuron 0030
— 1lms
Inhibition Y 0025 — 9ms
— {Iinear(a) . — Sms
!énarc adaptatlon. non-linear (b) Df 0020 10 ms
g a-function = ==V
40nS ‘0 Time (ms] 78 S 0015
= Q 0010 g[ns]
S0 -
Vipikes[ ===17========="p =[] —no adaptation
£ I I— 5 OSSR S | 1 —daptation 0005 o
; AA N
---------------------------- - SN eeS 00 -’
0 ] 200 1 100 1000 10000
Time [ms] Input firing rate [Hz|

Fig.1 Illustration of synaptic current and diffusion approximation. a.
Schematic view of a neuron with the various components included in
the model. Excitatory and Inhibitory inputs are modelled as a-shaped
conductances (inset), and examples of the Vi, dynamics can be seen
in different cases: without adaptation or with non-linear adaptation.
b. Plain line: KL-divergence between input simulated conductance
distribution and theoretical estimate N\ (i, 0'2) in the diffusion limit
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(Vexc >> Texc) for various synaptic time constants, assuming indepen-
dent Poisson inputs at excitatory synapses. Dashed line KL-divergence
between the recorded membrane potential distribution and its closest
Gaussian distribution with same mean and variance. Insets are exam-
ple of simulated conductance traces and recorded Vy, distribution (in
mV), compared to theoretical predictions
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spike and voltage reliability measures are averaged over 10
different inputs and reported with standard deviations for
various values of @ and b in Fig. 9.

Mean field The coarse-grained dynamics of a column can
be captured by the firing rates (rg, r;) averaged over
excitatory and inhibitory populations. The evolution equa-
tion for the firing rate dynamics is then reduced to the
Wilson-Cowan system:

“

d
{ TEgE = —rg + fE(WEETETE — wETT))
d
TGk = —r1 + frI(WgrETE — wirity)

with wyp standing for the effective coupling from the
sub-population A to the sub-population B (wap =
PABNANpg', pap probability of connection from A to B,
N4 number of neurons in population A, g/ conductance
level at a synaptic contact), T4 the synaptic time constant
of the sub-population A mentionned in the neuron model
and f4 the firing rate response of sub-population A. The
function f4 (1) is the response curve, that is the mean fir-
ing rate of neurons in sub-population A when stimulated by
incoming inputs /. These response curves and their approx-
imations are discussed in the results Section 3.1. We are
using standard numerical methods of bifurcation theory as
implemented in the AUTO library with the python inter-
face PyDSTools (Clewley 2012). The local stability analysis
for the fixed points of the dynamical system consists in the
study of the set of parameters where some eigenvalues of the
Jacobian are zero. Further study of the Jacobian are indica-
tive of the type of instability at these points (Kuznetsov
1998). A fold (or saddle-node) bifurcation curve separates
regions with one stable fixed point from bistable regions
with two stable fixed points separated by an unstable fixed
point. Along those curves, the Jacobian has a zero eigen-
value and a stable fixed point and an unstable fixed point
annihilate. When an eigenvalue is non-zero but has a zero
real part, there is a Hopf bifurcation curve separating a
region with one stable fixed point from a region with a
limit cycle. On those curves, eigenvalues of the Jacobian
are a pair of pure conjugated numbers. If 2 saddle-node
branches collide in the parameter plane, the resulting bifur-
cation point is a so-called cusp. Other bifurcations points
are related to Hopf bifurcations when the linear field cancels
(Bogdanov-Takens point) or when the quadratic contribu-
tion to the vector field cancels (Bautin point). Note that
Bautin points separate the part of the Hopf curve where the
limit cycle arising has infinitesimal amplitude from the part
where it has finite amplitude. Simulations of the stochas-
tic dynamics where implemented in C++ using the Milstein
scheme.

3 Results
3.1 Dynamics of a single neuron without adaptation

First, we consider the case of a single adaptive expo-
nential integrate-and-fire neuron neuron simply bombarded
with excitatory and inhibitory homogeneous Poisson inputs.
Both types of inputs are triggering conductances changes
at the soma level as illustrated on Fig. 1a, and the spiking
activity of the neuron is modified by the adaptation mecha-
nisms regulating the activity. In all the following, we assume
that “linear” (or sub-threshold) adaptation is mediated by
the parameter a of the model (see Section 2), while “non-
linear” (or supra-threshold) adaptation is related to the b
parameter. To gain a better understanding of the responses,
we consider the spiking activity of the neuron without any
adaptation (@ = 0, b = 0, see Section 2). Without a loss
of generality, we can restrict the analysis to the case where
only excitatory inputs are impinging the cell (vipp = 0). In
this case, the average synaptic input onto the cell for fil-
tered Poisson spike train of rate vexc With VexcTexe >> 1 can
simply be approximated by a Gaussian process of distribu-
tion Gexe = N(u, 02) with a mean u and a variance o2
(Papoulis 1965; Ricciardi and Sacerdote 1979; Lansky and
Lanska 1987; Richardson and Gerstner 2005; Hertig et al.
2014) (see Section 2 for the synapse model):

u
o2

The validity of such a diffusion approximation can be
checked by computing the Kullback-Leibler divergence
(KL, see Section 2) between the theoretical distribution of
the synaptic input conductances (Gexc) and numerical sim-
ulations for various values of the maximal conductance g[; .
and input firing rate vexc, keeping the total mean effective
input it = gl TexcVexc constant. In all the numerical simu-
lations, we use the planar adaptive integrate and fire neuron
described in Brette and Gerstner (2005) and further studied
in Touboul and Brette (2008).

As we can see from Fig. 1b, in absence of adaptation and
for our particular model, this diffusion approximation on
Gexc becomes valid for a synaptic time constant of Texe =
2 ms., and for input rates of approximately 1000Hz (KL
2~ 0). This can be seen in the insets by the convergence
of the conductance distribution toward a Gaussian distri-
bution, while incoming synaptic conductances are shown
as black traces. Similarly, the KL-divergence between the
empirically measured distribution of the V, and a Gaussian
distribution having mean @y and variance 0\% of the real Vi
distribution (dashed line in Fig. 1b) is converging toward
zero. The voltage being filtered with a slower timescale (in
the order of t, &~ 10 ms, see Section 2), converges faster

00
Vexc fo K™ (v)dr = ggcfexcvexc
00

Vexc fo (Kexc(f))zd": = (gg}(c)zfexcvexc

&)
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Rheobase input [nS]

Response firing rate [HZ]

o 2 4 6 8 10 12
Input firing rate [Hz] (x10)

Fig. 2 a. Difference between the real rheobase conductance g™<° and
its estimated value 2™ from diffusion approximation as a function
of the rate of excitatory Poissonian input. b. Firing rate of the neuron
without adaptation subject to excitatory inputs from a Poisson source
as a function of the input u, for several maximal conductances goi%".
Red curve is for low membrane conductances values and high firing

than for the conductance distribution. Therefore, this dif-
fusion approximation is valid for a neuron receiving input

w

160

50

0 30 100 200
Constant input p [mA]

rates, while green curve is obtained for high conductances and low fir-
ing rates. Plain lines are theoretical approximations obtained for the
situations (low rate, high conductance) (green) and (high rate, low con-
ductance) (red), dots are obtained from numerical simulations. Inset
shows simulations of couples (rate, conductance) for several values of
&m-» color-coded

spikes at realistic rate (1-10Hz) from a population as small a
1000 neurons. A reasonable size of a population from which
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Fig. 3 Influence of linear and non linear adaptation a. Comparison
of the response to the same excitatory input from a Poisson spiking
process for a neuron without adaptation and neuron with (up) linear
adaptation (middle) non linear adaptation (bottom) combined linear
and non linear adaptation conditions (see Section 2). b. Firing rate
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square markers) and gain («, filled square markers) of the sigmoid.
Bottom: same as middle, but when the non-linear adaptation is varied
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a mean field model can be used is needed to describe its
dynamics and to justify the size of the cortical columns we
will use in the following.

Then, it is known that for a stationary Poisson input at
a firing rate vexc in the diffusion limit, i.e for low values
of g’ . and approximated by a Gaussian process N (u, o?),
individual fluctuations in Vy, are small compared to V7.
Therefore, the synaptic current lexc (1) = Gexc (1) (Vim(t) —
E5¢) can also be approximated by a Gaussian process with

rev
mean t = u(Vr—ESLS) and variance 62 = UZ(VT—Ef;f)2
(Destexhe et al. 2001; Richardson and Gerstner 2005).
The dynamics for the exponential integrate-and-fire neu-
ron can be summarized by the adaptive integrate-and-fire

Ornstein-Uhlenbeck process defined as follows
dVin(t) _

Tm i —(Vm() — EL) + ¥ (Vi (?)) (6)
LR + 6 /Tmn (1) ™
8L

where 7(¢) is drawn from a Gaussian distribution N (0, 1).

For this model, as already studied in La Camera et al.
(2004) the rheobase effective input g™, i.e. the minimum
conductance input triggering a spike, is a fixed value that
can be compared with estimations obtained from numerical
simulations. As we can see on Fig. 2a, for low input firing
rate vexc, the neuron tends to fire spikes at lower values jptheo
of input threshold than the theoretical one but as the input
firing rate is increased, the fluctuations in synaptic inputs
vanish and the neuron tends to behave as its deterministic
limit g™, From Fig. 2a, we conclude that this deterministic
limit, reached at around 5000 H z, is more restrictive than the
one given by the diffusion approximation alone, but remains
valid for the networks considered in the following.

The two limiting cases of large and small conductance
Zexc can be studied while maintaining the mean effective
input & = gexcVexceTexe constant. When the maximal con-
ductance is close to gli%*, response is linear at low inputs
rates and saturates to the maximal firing rate imposed by the
refractory period, with vy = H‘?ﬁ (see green curve on
Fig. 2b). On the opposite, in the limit of high firing rates,
Vexe > 1/Texc, the sub-threshold dynamics is well approxi-
mated by the Ornstein-Uhlenbeck process shown above, and
it is known Ricciardi and Sacerdote (1979) and Sacerdote
and Giraudo (2013) that the mean first passage time is given

by
TTm Vspike _l:“'m . i
Tov =\ %7 / {1+ Erf(z/6y/tm)}e? dz
Vi

reset "M Tm
where Erf is the error function and other parameters are
described in the Methods (see Richardson and Gerstner
2005, Ostojic and Brunel 2011 for a fast method to compute
this quantity). The firing rate for the adaptive exponential
neuron without adaptation is then simply vour = 1/(Tref +

Tou) (see red curve on Fig. 2b). Note that in the inset of
Fig. 2b firing rate response are plotted as a function of g,
ranging from 0.05 to 50 nS, color-coded. Response behaves
linearly for gex. > gli2*. Interestingly, for values of g¢x. in
between, response curves cross almost all in the same region
around which the response firing rate is not dependent on
the size of post-synaptic potential for a given effective input.
This could be interesting for networks including hetero-
geneities of synaptic weights as their output rate would be
similar for identical effective input when input rates are
scaled appropriately.

3.2 Dynamics of a single neuron with adaptation

Now if we consider adaptation, its dynamics (7, = 100ms)
is slower than timescales involved in spike generation or
membrane relaxation (r, = 10ms) so for the analysis of
response properties it is possible to assume timescale sep-
aration (van Vreeswijk and Hansel 2001; Benda and Herz
2003; Ermentrout 1998). Let us first study the effect of lin-
ear (sub-threshold) adaptation current on the response to
Poisson input spike train. At slow time scale, the fast mem-
brane dynamics can be averaged so that ((Vin(#) — EL)) =
g% and injecting this value in the dynamics for the adapta-

tion current gives the stationary current u = ag% resulting

in the effective dynamics for Vi, (¢)

d V(1)

T = ~8LVm(1) = EL) +8.Y (Vin)

T
+(1 —a)—+ —n) ®)
8L 8L

The effect of linear adaptation is thus to reduce the effec-
tive input and the firing rate response for all inputs, shifting
the response curve. This negative feedback could be use-
ful to tune the threshold depending on the basal level of
computation, and a similar mechanism has been shown to
enable contrast invariant computations in the visual system
(Carandini and Ferster 1997).

If we now consider the non-linear effect of adapta-
tion, we can notice that between two consecutive spikes
txx1 — tx = T, a discrete map describes the dynamics
of the adaptation current. At each spike time, we have
u(t) — u(t)e /™ 4+ b, so that between 0 and T we have
u(t) = b(1—e"/™)/(1—e~T/%). For a high firing rate vy,
compared to the adaptation time scale t,,, the average adap-
tation current can therefore be estimated as () = 7,bv.xc.
Figure 2b (red curve) showed that for v.,. far below satu-
ration, the response curves of the neuron without adaptation
behave linearly. In this linear regime of the response, the
firing rate can therefore be described with a linear relation-
ship vour = k(@ — ftc), with k, fi. being constants and
i the total current to the membrane i = Isy, — u. By
replacing u(¢) by its mean value estimated above, we have
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Vout = k(Lsyn — ite)/ (1 + kbt,), such that the net effect of
non-linear adaptation is to change the slope of the response
to slow input variations, as also found in Ermentrout (1998)
and Benda and Herz (2003).

Figure 3a shows examples of the dynamics of the exact
same neuron, in different conditions of adaptation. We com-
pare single-cell responses to a particular input without any
adaptation (@ = 0, b = 0) to a regime with full adapta-
tion (a, b with standard values as defined in Section 2), one
with only linear adaptation (b = 0), and one with only non-
linear spike frequency adaptation (@ = 0). In Fig. 3b, the
firing rate responses as functions of the input u are plotted
for those different adaptation conditions. The effect of lin-
ear adaptation is a shift in the spike threshold (see Fig. 3b,
the fact that when b = 0 (green curve), the curve is ris-
ing for higher values of ;& compared to the response curve
with no adaptation (in red)). Similarly, the effect of non-
linear adaptation (¢ = 0) is equivalent to a change in the
slope of the response curve to slow input variations (see
blue curve). Schematically, we can fit with a least square fit-
ting procedure those response curves to sigmoidal functions
flex) =1/01 +e ?exn=h)) (see Fig. 3c, top) and quantify
this behavior.

Using the sigmoidal fits, we study the variation of the
thresholds 8 and the gains «, as functions of the adaptation
parameters of the neuron, a and b. We can see on Fig. 3c,
middle, that the linear adaptation (controlled by a) affects
mostly the threshold B shifting the response curve to the
right with higher values of a resulting in higher thresholds
B. This dependence is linear as expected from the analysis
via time scales separation. On the other hand, the non-linear
adaptation (controlled by the parameter b) affects mostly
the gain o of the sigmoidal response curve by decreas-
ing the slope of the response function, with higher values
of b resulting in lower o (see Fig. 3c, bottom). Again,
as expected from former considerations, this dependence
is non-linear. The decrease in gain also results in a wider
dynamic range. Note that the change in « is necessary to
keep the rheobase constant so that non-linear adaptation
changes both « and 8. We note that having lower gain, the
input range for which linear approximation of the response
is valid is increased and this can be summarized by stating
that the net effect of non-linear adaptation is to linearize the
response curve.

3.3 Dynamics of a cortical column with adaptation

In the neocortex, neurons are arranged in complex micro-
circuits affecting their response properties and giving rise
to internal dynamics. The cortical column (Horton and
Adams 2005) is a good example of such canonical circuits
encountered in the brain and has been shown to give rise
to oscillatory rhythms and self-sustained irregular activity
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(Brunel and Hakim 1999; Vogels et al. 2005). If the fine
connectivity details of such a column are still poorly under-
stood (Binzegger et al. 2007), we can still understand the
dynamical properties of a homogeneous balanced network
of adapting neurons, arranged in a columnar fashion. To
this aim, we simulated what we called a cortical column
composed of two populations of 800 excitatory and 200
inhibitory neurons connected in a random manner with an
averaged probability of connection of 5 % (Renart et al.
2010; Brunel 2000), and receiving external input from spike
source generated through Poisson processes. Such a generic
and classical network is often referred to in the literature as
a random balanced network (Brunel 2000; Vreeswijk et al.
1996), and has been well used as a good model of in vivo
activity in sensory cortices. More details could be found
in the corresponding section of the Section 2. Schemati-
cally, the structure of the network is represented in Fig. 4a.
Excitatory weights are fixed to gexe = 6nS and inhibitory
weights are modified through the control parameter g such
that ginn = g.8exc. Note that on Fig. 4a, insets shows the
distribution of the indegree for all the different connections.

In Fig. 4b, we show the phase diagram of such a corti-
cal column without any adaptation when the external rate
vext and the balance g between excitation and inhibition are
varied. We can see that the dynamics of the cortical column
can be maintained in an Asynchronous Irregular regime (Al,
Section 2 for details on the classification) with low firing
rate when external input is small enough, as already found
(Brunel 2000). This large region is termed Asynchronous
Irregular because neurons are firing irregularly (high coef-
ficient of variation of their inter spikes intervals), and the
network’s firing rate displays no clear oscillations. Simi-
larly, we can see in the diagram a Synchronous Regular
(SR) or a Synchronous Irregular (SI) regime. It is com-
monly assumed that the Al regime is a good candidate for
describing cortical dynamics observed in vivo and it has
been identified as the operating point of the brain with
transient perturbation leading to amplified response with
fast recovery to the resting operating point (Renart et al.
2010; Stimberg et al. 2009). Canonical raster plots of the
three main dynamical regimes identified in the phase dia-
gram are shown in Fig. 4c. In such Al regime, when input
is increased, the dynamics of the network depends on the
dominant polarity of the synaptic current. For an excita-
tion dominated column, increasing input destabilizes the
asynchronous irregular state so activity is amplified to a
persistent saturated state with all neurons firing at their max-
imal frequency. For an inhibition dominated network, the
destabilization of the irregular state through increased stim-
ulation leads to oscillatory dynamics with neurons firing
synchronously.

We can see what is the direct effect of the two previously
discussed components of adaptation (linear v.s non-linear)
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in Fig. 5. As we can notice in Fig. 5a, when linear adap-
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of single-cell response curves that is affecting the phase
diagram. Linear adaptation, responsible for a shift in the
response threshold is decreasing the synchronous activity,
thus reducing the amount of correlations in the network.

3.4 Mean field description of the cortical column

To get a better understanding on how adaptation is impact-
ing the phase diagram, we used the fact that the coarse-
grained dynamics of the cortical column can be captured, at
a macroscopic level, by describing the firing rates (rg, r;)
averaged over homogeneous excitatory and inhibitory neu-
rons. Using a mean field approach, as in Tabak et al. (2000)
and Giugliano et al. (2004), the evolution equation for the
firing rate dynamics can be reduced to the Wilson-Cowan
system:

drE
TE7 = —TE +fE(U)EEVE7:E _wIErI‘CI)
dr1
TIE = —r;+ fI(wgirgtg — wyritr) €))

For more details, see Section 2. To describe the dynam-
ics, we keep the sigmoidal approximation discussed in the
previous section for the response curve fa(x) = (1 +
e~2(a=P))~1 Beyond a fixed point attractor, this system is
known to exhibit multistability and limit cycle. The transi-
tion among these regimes can be studied through a bifur-
cation analysis (see Section 2 for details about the related
numerical tools). For this matter, as linear and non-linear
adaptation were shown to affect the threshold § and the
gain « of the response curves, these parameters are taken as
bifurcation parameters in Fig. 6 to study the various possible
instabilities.

Figure 6 depicts the distributions and the temporal traces
of the activity for the excitatory sub population in the system
under stochastic perturbation close to various bifurcation
points (see Methods for a description of the numerical tools
used for bifurcation analysis). Close to saddle-node points,
the distribution is bimodal with a bias toward up or down
state depending on which side of the bistable region is
considered (low or high «). Similar bistability is observed
between a limit cycle and a fixed point of high, low or mod-
erate level of activity close to the Hopf curve. A prediction
of the model is that if sufficient linear adaptation, affect-
ing the threshold parameter g in the coarse-grained model,
is at work in the excitatory cell dynamics, a column which
would be initially oscillatory or bistable would be silenced
to a low activity level in an abrupt fashion. The effect of
non-linear adaptation, affecting the gain parameter «, is
more subtle with possible transitions along the vertical axis
from bistable regime in the upper cusp to various oscilla-
tory regimes, changes in the oscillatory pattern or transition
from oscillation to fixed point.
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From Fig. 6 we see that the crossing of the Hopf
curve is reached with a reasonable change of the thresh-
old value B (related to linear adaptation) whereas a
large change in gain « (related to nonlinear adaptation)
is necessary to escape from the oscillatory region. This
is consistent with previous simulations of spiking neu-
rons where we observed that linear adaptation reduces
greatly the synchronous irregular region of the diagram
(see Fig. 5).

3.5 Dynamical response to external stimuli with or
without adaptation

3.5.1 Oscillatory dynamics

To study the effect of adaptation on columnar dynamics
modeled with spiking neurons (see Section 2), the network
conductances were set so that the mean firing rate of the net-
work is oscillatory when no adaptation is considered (a = 0,
b = 0) and adaptation parameters were then varied from this
setting. The measures of the activity of the excitatory sub
population (firing rate, coefficient of variation of interspike)
depending on those parameters are shown on the phase dia-
grams of Fig. 7a, b, c when the two components a and b of
the adaptation are varied. As expected, when linear or non-
linear adaptation is increased the mean firing rate activity
is decreased but the effects of adaptation is different on the
second order statistics for the dynamics at network level.
The pairwise spike correlations in the network drop abruptly
when linear adaptation is varied (see panel c) whereas much
smoother transition is observed when non-linear adaptation
is varied. Furthermore, when b is increased, the average fir-
ing rate in the column is oscillating at half the period of the
original network. We can see on Fig. 7d, e, f examples of the
activity in the three canonical regimes: without adaptation,
with only linear adaptation (b = 0), or with only non-linear
adaptation (a = 0).

For a better grasp at the effects of adaptation on the
dynamics of a column, we consider the time course of the
activity when a stimulus is presented starting from quies-
cent state. The resulting responses are reported on Fig. 8.
As expected from time averaged measures, after the stim-
ulus was presented, the mean firing rate of the column
oscillates when no adaptation is considered. Strong adap-
tation currents result in relaxation to a stationary firing
rate. This relaxation occurs at the slow time scale imposed
by the adaptation current for linear adaptation whereas it
occurs much faster, within an oscillation cycle, for non-
linear adaptation currents. To summarize, with subthresh-
old adaptation a, oscillatory fluctuations first decrease in
amplitudes and then for higher values of a the column
firing rate also decreases. In contrary, with suprathresh-
old adaptation b, both oscillatory fluctuations, oscillation
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Fig. 8 Columnar dynamics under sustained Poissonian input at con-
stant rate. a. Time course of the mean firing rate of of cortical column
for various levels of adaptation currents coded in colors when linear
adaptation only is varied (b = 0). The shaded areas represent two
standard deviation around the mean. b. Firing rate for various levels of

frequency and mean firing rate of the columns are decreas-
ing simultaneously.

We showed through theoretical arguments that effects of
adaptation on the neuronal dynamics may be related to «
and B parameters in the macroscopic model under the diffu-
sion approximation and slow adaptation. The study of the 2
variables macroscopic model is then useful to interpret some
aspects of the dynamics like oscillations. There are aspects
of changes induced by adaptation which are not discussed in
this way because they would go beyond the 2 variables mean
field model we consider to discuss qualitative dynamics. For
instance chaotic dynamics where found in a macroscopic
model including short term plasticity in Cortes et al. (2013).

3.5.2 Reliability of spike patterns
In previous sections, we analyzed the stationary responses

of a neuronal network with adaptation, and we distinguished
the linear v.s the non-linear part of that mechanism, either
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with simulations of spiking neurons or with a macroscopic
approximation. Now we consider the dynamical responses
of the same cortical column, but when stimulated with a
Poisson process at constant rate, or with one with rate
modulated in a sinusoidal manner (see Methods). For both
scenarios, we observed the effect of adaptation on the repro-
ducibility of the responses, when the exact same realization
of the input spike patterns were replayed to the exact same
network. At each trial, initial conditions of the network were
different (see Methods), and to visualize the mean response
of the column, we computed and plotted the mean voltage
over all N neurons within the column, [(¢) =< V,,(t) >n.
On Fig. 9a, b, we can see the temporal dynamics of the
mean membrane potential, averaged over 40 repetitions, and
when stimulated with constant Poisson input (Fig. 9a) or
time-varying inhomogeneous Poisson input (Fig. 9b) (see
Methods for a description of the input stimulus). In both
constant and varying rate cases, the variance over trials
of the responses are reduced by the adaptation currents.
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Fig. 9 Reliability of columnar dynamics under repeated stimulus. We
consider neurons with no adaptation current in black, with only lin-
ear (@ = 500nS) in red and with only nonlinear adaptation current
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etitions to a constant Poisson input at 850Hz, without any adaptation
(black), with linear only (red), or non-linear only (green). Below are
the trial-to-trial raster plots of three representative cells in the column
each spiking over 40 repetitions, in those three conditions. b. Same
as in a. but in response to an Poisson process with rate varying as a

This can be viewed more clearly in the raster plots below
Fig. 9a and b, showing the trial-to-trial spiking responses of
3 sampled neurons taken in the excitatory population of the
column for the 40 repetitions of the same input.

To quantify this increase in reliability between trials, we
used two measures. The first one is the CV of the mean volt-
age averaged over all N, neurons within the column. We
can see on Fig. 9c that this measure is affected similarly
by both adaptation currents in the case of the stimulation
at constant rate (dashed lines), while it has a minimum at
a finite value of nonlinear adaptation current b in the case
of a temporally varying stimulation (solid green line). For
high values of a, the CV is almost 0, meaning that the
reliability is very high. To rule out the fact that this will

a [nS]/ b [nA]

sinus during a period of 200 ms (see Methods). ¢. Measures of the
Coefficient of Variation (CV) of the mean membrane potential in the
period for the 40 repetitions of the stimulus averaged across 10 realiza-
tions of the network. The measures was computed for constant (solid)
or varying (dashed) input rate as a (red) or b (green) were varied. d.
Normalized pairwise cross-correlations between repeated response of
aneuron, averaged across 100 non-silent cells and over 10 realizations.
Line and color codes are same as in ¢

depend on the average activity, we also computed the nor-
malized averaged cross-correlation coefficient within trials
and among neurons spike trains as described in Methods
(see Fig. 9d). On Fig. 9d, we can see similar trends as for
the average membrane potential: the normalized correlation
coefficient is close to 1 for high values of linear adapta-
tion (red curves) and there is an optimal value of b at which
maximal reliability is achieved with time-varying input rate.

4 Discussion

In this paper, we analyzed the effects of adaptation in
the adaptive exponential integrate-and-fire neuron model,
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distinguishing linear and non-linear mechanisms, related
biologically to voltage-gated and calcium-gated channels.
Using mathematical observations and comparisons with
simulations, we showed how those two distinct components
could lead to different changes of the firing rate response
curve for this particular neuron model. In single-cell sim-
ulations, we found that linear adaptation affects mostly
the threshold at which a neuron starts to fire, while non-
linear adaptation tends to lower the slope of the response
curve. Extending those observations to cortical networks,
we studied the role of adaptation onto the dynamics of a
cortical column (a so-called random balanced network) with
an activity similar to what can be observed in vivo. We
found that linear adaptation introduces a switch from corti-
cal oscillations to a fixed point of stationary low firing rate
while non-linear adaptation preserves cortical oscillations
but shifts their frequency to lower values. These are thus two
possible ways to modulate synchrony in a neuronal network.
From a functional point of view, we showed that the
dynamic range of the response of a cortical column is
increased when non linear adaptation currents are included
and that there is a shift of the threshold and response to
lower values when linear adaptation current is included.
These aspects may be important to understand the contrast
invariant computations at the neuronal level and predictive
aspects of the neuronal response (Deneve 2008; Boerlin
et al. 2013). We also demonstrate that when oscillatory
dynamics arise in a cortical column, both adaptation cur-
rents attenuate these oscillations but in different manners.
Our study thus sheds lights on the possible ways to mod-
ulate oscillatory dynamics with slow currents which is of
crucial interest for cognitive neuroscience (Buzsaki 2010).
Moreover, we found that adaptation was also able to greatly
increase the reliability of the neuronal responses and as
observed in vitro (Mainen and Sejnowski 1995) and in vivo
(Haider et al. 2010), responses are reliable on a trial-to-trial
basis. The linear part of the adaptation mechanism used in
the integrate-and-fire model considered here was the one
mostly involved in this process. Because this linear adapta-
tion is related to voltage-gated channels, we can establish a
link between the temporal precision of the responses and the
distribution of those channels in neurons. Interestingly, it is
known that the repartition of such channels can also be activi
ty-dependent (Lu et al. 2004), so neurons may have mecha-
nisms to adapt their precision as a function of their inputs.
Adaptation is an ubiquitous phenomena in the brain that
can spawn multiple time scales: from time constants of
several minutes or even hours, it has been shown to be cru-
cial for homeostasis and stability in neuronal network. In
this work, we investigated only adaptation mechanisms in
the order of hundreds of milliseconds, so relatively close
to the membrane time constant. This form of adaptation is
known to rely on the kinetics of the voltage or calcium gated
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channels, and for a more in depth knowledge, see Marder
(2012). Therefore, our study focused only on dynamical
responses and equilibrium that could be reached within
those time scales. Results are observed for random balanced
networks with sparse connectivity (Vogels et al. 2005), and
itis likely that differences may be found in denser networks,
or when the balance between excitatory and inhibitory
conductances is reduced (Vreeswijk et al. 1996; Ostojic
2014). All together, unravelling the effect of adaptation in
spiking networks is crucial to understand the computation
that can be performed by such dynamical systems. Func-
tionally, one could hypothesize that linear (sub-threshold)
adaptation, responsible for a shift in the threshold of the
response curve is useful to implement contrast invariant
responses, while the change in the slope of the response
curve induced by non-linear (supra-threshold) adaptation
increases the dynamic range of the neuron and softly mod-
ulates the oscillatory dynamics. This findings remains to be
tested in vivo.
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