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SUMMARY  
 
1. Activity and microhabitat use are important factors determining species performance in habitats 
that differ in permanence and species composition of top predators. This study examined the 
relationship between the distribution across a gradient of habitat permanence and an associated 
transition in the composition of top predators and the behaviour of species of larval dragonflies. It 
also assessed the relationship between larval behaviour, body size and the duration of the larval 
stage. In laboratory mesocosms the mobility of the different species was measured, as was the 
extent to which they associated with artificial vegetation.  
 
2. Species mobility was positively related to their natural occurrence in habitats in which 
invertebrates or small-bodied fish were the top predators, and negatively related with the 
frequency with which species co-existed with large-bodied fish, the permanence of the habitat and 
the length of the larval stage.  
 
3. Rather than falling into strict low and high mobility categories, habitat generalists that occurred 
across the habitat gradient, co-existing with different top predators, had variable mobility levels. In 
these generalists, mobility was positively related to how frequently they were found in natural 
habitats in which invertebrates were the top predators.  
 
4. The extent to which species utilized the artificial vegetation in mesocosms was associated with 
the length of the larval period but was not associated with mobility or species habitat distribution 
in the field.  
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Introduction  

Activity can be an important behavioural trait deter-mining the distribution of species 

across habitat gradients (amphibians: Woodward, 1983; Skelly, 1995; Relyea, 2001; Richardson, 

2001; Odonates: McPeek, 1990; Johansson, 2000; Stoks & McPeek, 2003a; Johansson & Suhling, 

2004; Trichopterans: Wissinger et al., 1999). In freshwater systems, a gen-eral framework has been 

developed which predicts that species in temporary habitats will be more active and that the 

transition from fishless ponds with invertebrate predators to lakes where fish are the top predators 

is associated with a shift from more to less active prey (Wellborn, Skelly & Werner, 1996). Activity 

is part of a trade-off between growth rate and predation risk, because more active species 

potentially grow faster but are also more vulnerable to predators (Lima & Dill, 1990; Werner & 

Anholt, 1993).  
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In lentic systems, predation intensity and habitat permanence positively co-vary and 

species sorting along this gradient appears to be related with the degree of activity in many taxa. 

This results in species turnover along a gradient of habitat permanence and predator regime, with 

less active species predominat-ing as permanence and predation intensity increase (Wellborn et al., 

1996; Stoks & McPeek, 2003a; Johansson & Suhling, 2004). Turnover across these gradients 

suggests that species fall into distinct categories distinguished by Sih (1987) as fast versus slow life-

history strategies. These strategies are distinguished by differences in activity and developmental 

rate. ‘Fast’ species are more active and have more rapid development than ‘slow’ species, making it 

possible for them to complete development in temporary habitats but increasing their vulnerability 

to predators which excludes them from high-risk permanent habitats. In addition to activity, 

species differ in microhabitat use. Odonate larvae may also select different microhabitats within a 

pond and larvae that choose structurally complex microhabitats can decrease their vulnerability to 

fish predators (Wellborn & Robinson, 1987; Pierce, 1988). Sih (1987) suggested that microhabitat 

selection and activity may be correlated. He predicted that active species would also take greater 

risks in their habitat selection behaviour and utilize open microhabitats more than less active 

larvae which would be more frequently associated with vegetation or other elements in the habitat 

that provide refuges from predators. 

In addition to habitat specialists, many freshwater communities also include generalist 

species with wide distributions across the permanence–predator gradient. The activity of generalist 

species has been explored less thoroughly than that of species which segregate across this gradient. 

Research on coenagrionid damselflies in permanent habitats has compared species of Enallagma, 

which segregate across top predator habitats, with Ischnura species which do not and are thus 

more widely distributed (McPeek, 1996, 2004). The habitat generalists (Ischnura spp.) were 

consistently more active than habitat specialists (Enallagma spp.) from both ends of the gradient, 

and this difference appeared to be important in facilitating their coexistence. The generality of this 

pattern, however, has not been widely explored. In particular, there is a lack of multi-species 

comparisons that explicitly relate species activity to their habitat distributions. One exception is 

Johansson’s (2000) comparison of six species of larval odonates, including both dragonflies and 

damselflies. He related species activity and microhabitat use to their life-history, use of ephemeral 

habitats and vulnerability to fish. He found support for a slow–fast life-history dichotomy (Sih, 

1987) but also suggested that this contrast was actually part of a continuum of activity. 

 Here, I compared activity within a single family of dragonflies (Libellulidae) within, as well 

as across, genera. I also used data from extensive regional surveys to relate the distribution of 

species across the permanence–predator gradient to their activity and use of artificial vegetation in 

the laboratory. Finally, I included the length of the larval period and body size in analyses to assess 

whether these species traits were also related with activity. These data were used to address two 

questions. First, what is the relationship between species activity (specifically movement 

behaviour), association with structurally complex or simple microhabitats, habitat distribution 

across the permanence–predator gradient, body size and duration of the larval period? Secondly, 

are there distinct sets of species that correspond to the proposed slow–fast dichotomy (e.g. Sih, 

1987), or is there a set of more active generalists (e.g. McPeek, 1996, 2004)? I addressed these 

questions by quantifying behaviour in a group of nine species including those whose distribution 



reflects a segregation across the presence or absence of fish as well as generalists that coexist with 

a wide variety of top predators. 

 

Methods  

This paper presents data on behaviour in the absence of predators for nine species of 

libellulid dragonfly larvae (Odonata: Anisoptera: Libellulidae) (Table 1). Because of differences in 

their developmental phenology, species were observed independently in identical experimental 

set-ups but at different times during the summer and autumn so that all observations were made 

on late instar larvae. Experiments were conducted in the laboratory at water temperatures ranging 

from 18 to 23 _C (exact control of temperature was not possible). To test for temperature effects, 

Pearson’s correlation was used to assess the relationship between the three behaviours measured 

(movement rate, movement distance, and association with artificial vegetation) and water 

temperature during the observation period. No correlation was found between water temperature 

and any measure of behaviour. Therefore, temperature was not used as a variable in further 

analyses. 

Larvae were collected from the field and therefore had been exposed to a natural set of 

predators (e.g. McPeek, 1990). One species (Libellula pulchella, Drury) is difficult to collect in 

adequate numbers from natural ponds and, therefore, larvae for this study were collected from 

cattle drinking tanks filled with well-water which they had naturally colonized. All larvae were held 

in well water in the laboratory for a minimum of 2 days before use in trials, so that their behaviour 

did not reflect recent reactions to predator cues. Each larva was housed individually in a glass 

aquarium (21 · 40.5 cm and 27 cm deep) filled to c. 3 cm from the top with well water. To create 

artificial vegetation, two pieces of yellow polypropylene rope 60 cm in length, frayed into 15–20 

strands, and weighted at their centre point were placed into each aquarium. The ‘vegetation’ 

extended from top to bottom of the water column and then spread out over the surface creating an 

c. 6 cm floating mat. 

To facilitate comparison of the data presented here with equivalent experiments in which 

larvae were exposed to cues of risk from various top predators, empty ‘predator’ cages were 

present in each aquarium. These cages were 1 L clear plastic bottles the tops of which were below 

the water surface. These were weighted to the bottom with gravel, capped with window screening, 

and an air–stone diffused air into bottles throughout the experiment. These materials, cleaned and 

bleached between trials, were used in all nine behaviour trials. 

For each trial, one larva was placed into each aquarium on the previous afternoon (18–20 h 

before the first observation). Sample sizes for each species varied from 16 to 25 because of three 

factors; occasional mortality, individuals excluded because they moulted during the trial, and pre-

trial misidentifications in the genus Libellula. Twenty Daphnia were added to each tank after the 

larva was introduced. Throughout the trial, 5–10 additional Daphnia were added to each tank every 

day to keep larvae feeding ad libitum. Aquaria were randomly placed on five shelves in the 

laboratory on a 14 : 10 (day : night) cycle. Two observation periods were conducted a day, with the 

first starting at c. 10:00 hours and the second at noon. During observations a researcher went to 

each tank in sequence and recorded larval position. With the exception of one species (Celithemis 

fasciata, Kirby), behavioural observations were conducted at 5min intervals during each session. 

This species was the first to be observed and observations of this species were made every 3 min. In 



observations of subsequent species this time period was found to be too short to guarantee all 

observations could be completed within 3 min. To address this issue, data were standardized by 

comparing the number of moves per hour observed. This has the potential to introduce a bias, 

overestimating the movement frequency of this species. However, this potential bias does not 

appear important in estimates of movement rate, as this species had the fewest number of moves 

observed per hour of all the species in these trials. 

Larval activity was measured by quantifying movement frequency and movement distance. 

The methodology used was based on that of Johansson (2000). Movement was detected by 

comparing larval position on each observation to its position in the previous observation. Larval 

position was based on dividing the tank into 16 cells of equal size. An eight-block (four top, four 

bottom) grid of 8.75 · 12 cm squares drawn on white paper was attached to the back of each tank, 

and a line on the side of the aquaria divided the width of the tank in two equal halves. This grid 

provided 16 possible positions (blocks 1–8 and front or back) in which a larva could be recorded, 

each a cell with a volume of 8.75 · 12 · 10.5 cm
3
.A larva was scored as having moved if it was found 

in different cells in subsequent observations. Movement distance was measured as the minimum 

distance a larva travelled between observations (i.e. the shortest path between two cells was 

assumed). Movement distance was scored based on the minimum number of cell divisions that 

must be crossed to complete the move (i.e. movement between adjacent cells constituted a 

movement of one unit while a movement between two cell separated by another cell would be 

scored as two movement units). Comparisons of species were also made in a third behavioural 

attribute, their level of association with habitat structure. This was quantified by recording whether 

individuals were in contact with the artificial vegetation present in the aquarium. 

The number of observations differed between years. In 2002, each observation period was 

1.5-h long and larvae were observed for two observation periods on 1 day for a total of 3 h of 

observation (36 observations were made) per replicate. In 2003, observations were made on two 

sets of congeners, three species in Libellula and two species in Sympetrum. Because congeners 

were expected to be more similar than the species from different genera that were compared in 

2002, longer observation periods and more sessions were used. In 2003, each observation period 

was 2-h long (25 observations were made per period) and observations were made for 2 days (two 

observation periods per day). Larvae were observed for a total of four observation periods for a 

total of 8 h (100 observations) made on each replicate. To compare all species across these different 

protocols, behavioural measures were corrected as moves per hour and as the proportion of 

observations in which individuals were in contact with the artificial vegetation. 

 

Data analysis  

 

Species were characterized based on larval developmental period, body size, presence in 

habitats with differing top predators, and distribution across the hydroperiod gradient (Table 1). 

Developmental period in Sympetrum was estimated from experiments on hatching time (S. J. 

McCauley, unpubl. data) and, for other taxa, from a literature review (Walker & Corbet, 1978; 

Corbet, 1999). Developmental period was entered as the approximate number of months spent as a 

larva. For species that have either uni-and multivoltine life-histories, this was estimated as the 

mean of these developmental periods. A measure of species body size (final instar larval head 



width) was taken from the literature (Walker & Corbet, 1978). Head width is an integrative 

measure of body size for odonate larvae (Benke, 1970). Species habitat associations were based on 

surveys over several years that quantified their distributions in 57 lakes and ponds in southeast 

Michigan (McCauley, 2005). Habitats included waterbodies with three alternative top predator 

types; predatory invertebrates (INV), small-bodied fish (SBF) and large-bodied fish (LBF). 

Dragonfly species distributions across these predator environments were characterized as the 

proportion of their total pond occupancy in each habitat type (the number of ponds with a given top 

predator type inhabited/total number of ponds inhabited). Species were also characterized based 

on the mean hydro-period (proportion of the year a waterbody holds water) of the ponds in which 

they occurred (Table 1). 

Although the species in this study included both congeners and species from different 

genera, each species was treated as independent in analyses. If activity level, life-history characters 

and habitat distribution are constrained by shared evolutionary history this could potentially 

inflate the degrees of freedom of these contrasts. However, the congeners within Sympetrum and 

Libellula were chosen for this study in part because they differed from each other in their habitat 

distributions and could therefore provide insight into the relationship between habitat distribution 

and activity within a lineage. The effects of phylogenetic relationships between species and their 

relationship to movement behaviour are considered in the Discussion. 

To prevent movement rate and movement distance from being confounded, I calculated the 

mean movement distance of each larva as the sum of the total distance moved during an 

observation period divided by the number of moves made in that period. For individuals that 

moved at least once per trial this made distance travelled independent of movement frequency, so 

that these two aspects of activity can be evaluated independently. Nonetheless, movement rate and 

movement distance were positively associated (individuals that moved often also made longer 

moves than more sedentary individuals) and so these two measures were combined into a 

integrative measure of movement rate and distance using a pricipal component analysis (PCA) 

analysis on all individuals in these trials. Movement rate and movement distance loaded strongly 

and positively on a single principal component (both loadings were 0.89 using an unrotated 

loading). Scores for this component were used in further analyses as a composite measure of 

activity. This composite variable is hereafter referred to as mobility. 

A MANOVA was used to determine whether species differed in their behaviour. Both 

behavioural variables, individual mobility and the number of observations per hour for which an 

individual was in contact with artificial vegetation (square-root transformed: 

                       0 5), were included as dependent variables and species as the predictor 

variable in this analysis. This analysis uses individual larva as the replicate. Post hoc AAA A  

analyses assessed whether there were differences between species for each behavioural variable 

(mobility and association with artificial vegetation). Tukey’s HSD post hoc tests were used to 

determine differences between species for each behavioural variable. 

 A PCA analysis was used to examine the relationship between species mobility, use of 

artificial vegetation, body size, developmental time, mean hydroperiod of habitat distribution and 

proportional occupancy of habitat types with alternative top predators. In this analysis species was 

the replicate unit. To address one of the central questions of this study, how mobility is related to 

species distribution across alternative top predator habitats, partial correlation was used to 



examine the relationship between mobility and species distribution across the three top predator 

habitats (as proportion of each type occupied) while controlling for variables that loaded strongly 

on the same axes as mobility and habitat distribution in the PCA analysis. All analyses were 

conducted in SPSS11.5 (SPSS Inc.,SPSS Chicago, IL, U.S.A.). 

 
Results  

 

There were significant behavioural differences between species in mobility and association with 

artificial vegetation (Wilks’ λ = 0.348, F16,398 = 17.27, P<0.001). ANOVAS found differences between 

species for both behavioural variables compared, mobility (F8,200 = 28.26, P < 0.001) and association 

with artificial vegetation (F8,200 = 7.92, P < 0.001) but there was broad overlap between species in 

both measures (Fig. 1). 

 Mobility and the use of habitats with insectivorous invertebrates or SBF as top predators 

were positively correlated with the first principal component axis, while mean hydroperiod 

inhabited, the length of the larval development period, and the use of habitats with LBF were 

negatively correlated with this axis (Fig. 2). Principal component one explained 53.7% of the 

variation in these data. Mean hydroperiod inhabited, duration of the larval developmental period 

and larval body size (head width) were all positively correlated with the second principal 

component (PC2), which explained 23.1% of the variation in the data (Fig. 2). Association with 

artificial vegetation and the length of the developmental period were both positively loaded on the 

third principal component (PC3), which explained 16.7% of the variation in the data (Table 2). 

 There was a significant positive correlation between mobility and the proportion of habitats 

with invertebrates as the top predators occupied by species, when controlling for mean 

hydroperiod of habitat occupied and larval developmental period (r = 0.96, d.f. = 5, P = 0.001, Fig. 

3a). There was also a trend towards a negative correlation between mobility and the frequency 

with which species occupied habitats where LBF are present (r = -0.74, d.f. = 5, P = 0.058). There 

was no correlation between mobility and the use of habitats with SBF (r = 0.16, d.f. = 5, P = 0.73). 

One taxon (Sympetrum obtrusum, Hagen S. rubicundulum Say), whose larvae are highly active and 

never occur with LBF, was an extreme point in this correlation. To evaluate whether this 

correlation remains when this habitat specialist is excluded, I performed the same partial 

correlation without this species. With the remaining eight species, which all occur in lakes with LBF, 

there was a positive relationship between mobility and how frequently a species occurs in habitats 

with INV (r = 0.95, d.f. = 4, P = 0.004), a negative relationship between activity and occurrence in 

sites with LBF (r = -0.92, d.f. = 4, P = 0.009, Fig. 3b), and narrowly insignificant positive correlation 

between mobility and how often a species occurs in habitats where SBF are the top predators (r = 

0.80, d.f. = 4, P = 0.058). 

 

Discussion  

 

Species differed in mobility and in their choice of microhabitat. However, only one taxon (S. 

obtrusum/ S. rubicundulum) differed in its mobility (incorporating both movement frequency and 

distance) from all other species. The other eight species, rather than forming discrete clusters of 

active and inactive species, exhibited a gradient of mobility. Similar results were observed in 



species microhabitat choices, specifically the frequency with which they were in contact with 

artificial vegetation. In this behaviour, no species differed from all other species. Species behaviours 

ranged from those which were never in contact with artificial vegetation (Pachydiplax longipennis 

Bumeister, C. fasciata, Libellula incesta Hagen) to species that were frequently associated with 

artificial vegetation (Leucorrhinia intacta Hagen, Erythemis simplicollis Say), but there were also 

species whose choice of microhabitat was intermediate and no sharp dichotomy in this behaviour 

was apparent. 

 Results from the PCA indicate that species mobility was related with distribution across the 

permanence–top predator gradient and the duration of the larval stage. Mobility was negatively 

correlated with how frequently species occurred with LBF, the length of the larval period and mean 

hydroperiod inhabited, and was positively correlated with how frequently species co-existed with 

INV and SBF. The partial correlations found that, controlling for hydroperiod and length of the 

larval stage, the relationship between species distribution across habitats with different top 

predators and mobility remained. Results from both analyses supported the conclusion that species 

mobility is related with habitat distribution. The more frequently a species occurred in permanent 

habitats with LBF, which impose a high predation risk (McCauley, 2007), the less mobile they were. 

In contrast, species found in ponds with invertebrate top predators and in non-permanent sites 

were more active. Johansson et al. (2006) found similar patterns in 17 species of European 

odonates, in which there was a negative relationship between activity and they abundance in lakes 

with fish. I also found that body size (final instar head-width) was not correlated with mobility but 

was positively associated with the mean hydroperiod occupied and the length of the developmental 

period. A longer larval period provides more time to grow to a large body size but also requires that 

the pond retains water throughout the larval lifespan. 

 Contrasting species that segregate across the hydroperiod–top predator gradient, there are 

species that correspond to Sih’s (1987) slow–fast dichotomy and these species are associated with 

opposite ends of the habitat gradient. For example, C. fasciata,is a ‘slow’ species which is extremely 

sedentary and restricted to permanent habitats with LBF. In contrast, the high mobility and rapid 

development of S. obtrusum/S. rubicundulum, which frequently occur in temporary habitats and 

never co-exist with LBF, indicate that these species have a ‘fast’ life-history and behavioural 

strategy. However, the mobility of habitat generalists was variable and did not clearly divide into 

either slow or fast categories. 

 One of the few studies that compared mobility in habitat specialists and generalists found 

that generalist Ischnura species were consistently more active than larvae of Enallagma, a genus 

containing both species that co-exist with fish and species restricted to habitats with invertebrate 

top predators (McPeek, 1996, 2004). Mobility differences between these generalist and specialist 

coenagrionid larvae determine their vulnerability to predation and are correlated with growth rate 

differences that together facilitate the co-existence of these generalist and specialist strategies 

(McPeek, 1996, 2004). In contrast, the mobility of the habitat generalists examined here fell 

between that of habitat specialists that segregate across the gradient. This continuum of mobility is 

analogous to patterns observed by Johansson (2000) in six species of odonates, where slow, fast, 

and also intermediate activity levels were found. In the species of libellulid larvae I observed, this 

continuum of mobility appears to be strongly related to how frequently species co-exist with either 

INV or LBF. 



 Umbra limi (Kirtland) is the most common SBF found locally in ponds without large fish, 

and this species will readily consume dragonfly larvae (McCauley, 2007; McCauley, pers. obs.). 

Consequently, both habitats have fish that will prey on larval dragonflies but the two categories of 

fish appear to have different functional effects on the dragonfly assemblage. More active species 

were found in habitats with SBF more frequently than less active species, which were more 

commonly found in lakes with LBF. Whether ponds with SBF or LBF represent distinct habitat types 

for other aquatic taxa is not known. However, it is probably that for many aquatic taxa the relevant 

divisions between habitat types along the permanence–predation gradient will be more complex 

than fish or no fish, and permanent or temporary. For example, Stoks & McPeek (2003b, 2006) 

found that species of Lestes (Odonata: Zygoptera: Lestidae) segregate along a permanence–

predator gradient that can be subdivided into four distinct habitat types, that include habitats with 

and without fish but also distinguishes temporary habitats based on late or early drying regimes 

(and their consequences for the INV assemblage). More research incorporating finer scale 

differences along this gradient, and the relationship of these differences to species distribution, 

lifehistory and behaviour, will provide new insights into mechanisms structuring aquatic 

communities. 

 While clear patterns emerged in the relationship between species distributions and their 

mobility, the use of structural complexity in the environment was not clearly related with habitat 

distribution. No congeners differed significantly in the frequency with which they were associated 

with artificial vegetation, making it possible that contrasts in this behaviour are strongly 

constrained by common evolutionary history rather than reflecting adaptation to species’ current 

habitat distributions. Association with vegetation was related only to the length of the larval period, 

although this pattern was not especially strong. Species that spend approximately 1 year in the 

larval stage spanned almost the entire spectrum in the frequency with which they associated with 

artificial vegetation. The use of artificial vegetation was not associated with species distribution 

across macro-habitat characteristics including the top predator type or hydroperiod. They did not 

appear to alter their use of artificial vegetation in the face of predation risk (McCauley, unpubl. 

data). These results suggest that association with structural elements in the habitats are not an 

important behaviour affecting species sorting across habitats that differ in hydroperiod or top 

predator type. These results do not support the hypothesis that lower mobility is also associated 

with increased use of complex microhabitats (Sih, 1987). Results from this study are similar to 

Johansson’s (2000), who found that species differed in microhabitat use but that this was not 

related with activity. 

 There was clear evidence that species mobility, but not their use of habitat structure, is 

related with their distribution in predictable ways. Further, any dichotomy between fast and slow 

lifestyles (Sih, 1987) is only a part of what generates these different levels of mobility. Many habitat 

generalist species had intermediate levels of mobility that fell between those of the habitat 

specialists which segregate with respect to the different top predators. Additionally, habitat 

generalists appear to resolve the trade-offs between activity, growth rate and predator 

vulnerability differently than the damselfly habitat generalists that have been studied (e.g. 

Ischnura, McPeek, 1996, 2004). However, future work should explore the digestive physiology of 

libellulid habitat generalists and specialists which is also important in determining the relationship 



between activity, growth and predation risk in damselfly larvae (McPeek, Grace & Richardson, 

2001; Stoks & McPeek, 2003a; McPeek, 2004). 
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Table 1 Species used in behavioural trials, codes used to identify species in figures, habitat distributions, and species characteristics

Species Mean Development Head-width
Species code lNV SBF LBF hydroperiod. time (months) (nun)

eelithemis fusciata, Kirby cefa 0.00 0.00 1.00 1.00 12 5.25
Erythemis simplirollis, Say ersi 0.11 024 0.65 0.% 18 5.00
Leucorrhinia intacta, Hagen lein 025 0.44 0.31 0.87 12 5.00
Ubellula incesta, Hagen liin 0.00 0.00 1.00 1.00 12 5.05
Libellula luctuosa, Burmeister liIu 0.06 0.13 0.81 0.99 12 5.50
Ubellul. pU/chell., Drury lipu 0.47 0.47 0.07 0.95 12 6.20
Pachydiplax Iongipennis, Bwmeister Folo 0.06 0.36 0.58 0.93 12 5.50
Sympetrum obtrusum/S. rubicundulum·, syor 0.73 027 0.00 0.77 4.5 4.50
Hagen/Say

Sympetrum vidnum, Hagen 'yv; 0.19 0.33 0.48 0.88 5.5 4.50

Species habitat disbibutions are characterized by the mean hydroperiod of habitats in which they occun-ed and by the proportion of
habitats with one of three top predator communities (INV, predatory invertebrate; SBF. small-bodied fish; LBF, large-bodied fish)
which they occupied.
"These two species were lumped because rearing larvae to the adult stage suggests that current keys do not reliably distinguish them
and that they share a common habitat distribution <c.}. Davis unpubl. data).
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Fig. 1 Results for behavioural observations of nine species of
larvallibellulid dragonfly. Results presented are (a) species
mobility, composite mobility PC-scores based on movement rate
and movement distance, and (b) the proportion of observations
species associated with artificial vegetation, untransformed data
are presented. Species are identified by species codes (Table 1).

Bars represent mean ± 1 SE. Bars identified with the same letter
do not differ significantly (P > 0.05, Tukey's HSD). Note that the
order of species differs in parts (a) and (b).
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Fig. 2 Loadings of species means of behaviour, habitat distri
bution, developmental period and body size characteristics on
PCl and PC2 in principal components analysis. Mobility, mean
mobility score; Dev time, approximate length of the larval stage
in months; HW, larval head-width; Hydro, mean hydroperiod of
habitats occupied; II'N, proportion of habitats with predatoI)'
invertebrates as top predators occupied; LBF, proportion of
habitats with large-bodied fish as top predators occupied; SBF,
proportion of habitats with small-bodied fish as top predators
occupied; Veg, mean number of observations per hour larva was
in contact with artificial vegetation <square-root transformed).

Table 2 Factor loadings for varimax rotated PeA

Variable PCI PC2 PC3

Mobility
Associated with artificial vegetation
Development time (months)
LBF
SBF
1NV
Mean hydroperiod
Larval head-width

0.910
0.283

-0.568
-0.982

0.769
0.929

-0.805
-0.013

-0.325
-0.210

0.578
-0.033

0.335
-0.179

0.537
0.967

-0.074
0.923
0.561

-0.180
0.292
0.060

-0.142
-0.159

PCA, principal component analysis; INV, predatory inverte
brate; SBF, small-bodied fish; LBF, large-bodied fish.
PCA of species behaviour, habitat distribution, life history and
body size are the three principal components explained 93.6% of
the variation in the data. Variables with factor loadings >0.4 are
considered. to be strongly correlated with the PC-<:omponents
(PCl, PC2 and PC3) and are indicated in bold.



 

(a) • 'y'"
1.50

1.00

~ 0.50 • lipu:c
0
::;: • .""0.00 • lein

-0.50

• cela

0.00 0.20 0.40 0.60 0.60 1.00

Proportion of habitats with invertebrates as top predators

(b)

1.50

1.00

~ 0.50:g
::;:

0.00

-0.50

• 'YO'

• lipu

• syvi
• lein

liin

• palo • Iilu •.....
cela •

0.00 0.25 0.50 0.75 1.00

Proportion of habitats with large-bodied fish as top predators

Fig. 3 Relationship between species mobility (PeA scores for
the combination of movement frequency and distance) and their
distributions across habitats with different top predators. (a)
Species mobility and the proportion of habitats with invertebrate
top predators that species occupy_ (b) The relationship between
mobility and frequency of occurrence in habitats with large
OOdied fish as top predators. Species are identified using species
codes given in Table 1.


