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Abstract Performance of high-end supercomputers will
reach the exascale through the advent of core counts in bil-
lions. However, in the upcoming exascale computing era it is
important not only to focus on the performance, but also on
scalability of fine-grained parallel applications, data locality
and energy aware schedulingwithin the parallel code. In fact,
parallel applications need to change even now by redesigning
algorithms and data structures respectively to take advantage
of the recent improvements in energy efficiency of heteroge-
neous computing hardware, including multicore processors
and GPU accelerators. Over the next few years one of the
biggest challenges for exascale will be the ability of parallel
applications to fully exploit locality which will, in turn, be
required to achieve expected performance and energy effi-
ciency. Future highly parallel applications will have to deal
with deep memory hierarchies taking into account energy
cost in moving data off-chip. Therefore, they will have to
apply new coordinated scheduling approaches to balance
energy aware resource utilization and minimize work star-
vation during runtime. As new constraints and limits on
memory bandwidth and energy will play a key role in high
performance computing (HPC) in the future, more sophisti-
cated and dynamic scheduling techniques will be needed and
applied within the parallel code. In this paper we focus on an
energy-aware distribution of the stencil workload on hetero-
geneous processors. Our analysis of energy and performance
models focused on relevant class of stencil computations to
explore the relationship between task scheduling algorithms
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and energy constraints.Moreprecisely,we search for a sched-
ule which minimizes the energy usage within a specified
computation’s deadline of the stencil workload on hetero-
geneous architectures. Since the problem is computationally
intractable, we present an integer linear programming for-
mulation for finding optimal schedules. As finding optimal
schedules is time consuming we have developed four heuris-
tics and tested them experimentally with respect to optimal
solutions. In our work we focus on a single node configu-
rations with heterogeneous processors. These configurations
represent the state of the art multi- and many-core architec-
tures.

Keywords Power and energy modelling · Performance
analysis · Scheduling · Resource management · Stencil
computations · GPUs · Many-core systems

1 Introduction

Stencil computations as relevant class of applications occur
in many HPC codes on block-structured grids for modelling
various physical phenomena, e.g. for computational fluid
dynamics, geometric modelling, solving partial differential
equations or image and video processing [1–5]. As comput-
ing time and memory usage grow linearly with the number
of array elements in stencil computations our research tar-
gets highly parallel implementations of stencil codes together
with task scheduling and optimization techniques taking into
consideration energy cost and data locality [6–10]. We have
proved during our experimental studies that recent changes
introduced in heterogeneous computing hardware resulted
in different performance and energy characteristics that are
critical for highly efficient and scalable stencil computations
[11]. As shown in [12,13], the overall performance of stencil
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computations is memory bound. One should note that many
existing HPC architectures mainly focus on floating point
performance [14]. However, only a partial and limited usage
of the floating point units in a given computing architecture
is possible today and may reduce energy cost without the
performance degradation. Moreover, many latest improve-
ments introduced in dynamic power management policies
at the hardware level, e.g. dynamic voltage and frequency
scaling (DVFS) or even switching off an entire unit block
of a chip (clock gating), can lead to significant reduction in
the energy required formemory-boundworkloads.Advanced
dynamic power management policies give new opportunities
for scheduling tasks within the fine-grained parallel code as
users are able to control the utilization of various functional
units in heterogeneous computing hardware, e.g. turn on and
off dynamically individual cores, change on-demand the fre-
quency of a small processing and communication units or
even put portions of cache memory at specific sleep states
during runtime.

In our previous work [15] we performed an exhaustive
evaluation of the key characteristics that have a relevant
impact on the performance and energy usage of a stencil
computation running on a certain processing unit. Based on
these characteristics in this article, we present an energy-
aware ILP model that distributes stencil computations to
heterogeneous processors andminimizes the schedule energy
cost while meeting the computation’s deadline. The distrib-
ution of stencil computations is done on the blocks obtained
from the decomposition of the computational domain. The
computational domain is a Cartesian grid on which the sten-
cil computations are defined. The optimization space of the
model shows that the best strategy depends not only on load
balancing the problem size between the processing units,
the processing units specification, and the stencils employed,
but also on detailed mapping of the communication depen-
dencies of the blocks to the communication topology of
respective processing units. No previous work has attempted
to account for the time and energy simultaneously in the con-
text of the distribution of the stencil computations between
processing units. We also developed new heuristics that
schedule example workloads in real time. The developed
heuristics attempt to include the communication overhead
in the distribution process. The described algorithms have
been tested experimental using the state of the art multi- and
many-core architectures. In our work we focus the experi-
ments on a single node configurations with heterogeneous
processors.

The paper is organized as follows. In Sect. 2 the related
work is discussed. The key properties that have an influence
on energy usage are defined in Sect. 3. The scheduling prob-
lem is introduced in Sect. 4. Performance and energy models
are introduced inSect. 5. Section6describes the integer linear
programming (ILP) model. The dynamic scheduling policies

are described in Sect. 7. Section 8 presents experiments using
a 3D Laplacian stencil defined on different grid topologies
using several CPU–GPU configurations. Section 9 concludes
our experiments and presents a future work.

2 Related work

In general, considered stencil calculations perform global
sweeps through data structures that are typically much larger
than the capacity of the available data caches available within
processing units. Additionally, accessing data in main mem-
ory within the hardware is not fast enough and we often have
to dealwith the traffic between local cache andmainmemory.
Therefore,many researchers have already tried to exploit data
locality in stencil computations by performing operations on
cache-sized blocks of data after domain decomposition [16],
after time decomposition [17] or proposed cache-aware opti-
misation algorithms on many-core modern processors [18].

In consequence, there exist frameworks that try to ease
the implementation of the stencil calculations. The user
writes single stencil code in a framework’s specific lan-
guage which during a compilation is translated to a target
architecture. The frameworks distribute the computations
to employ multiple processors. The distribution involves
the decomposition of the Cartesian domain to overlapping
blocks. The overlap, called halo region, is needed to cor-
rectly update the decomposed block on borders. Each block
is updated by a single processor. Theminimal size of the over-
lap depends on the stencil pattern. The stencil pattern defines
which neighbouring points are used during stencil computa-
tions. For example, Physis [19] uniformly decomposes the
global domain over all the accelerators as instructed by a
user-controllable parameter. The user has to experimentally
determine which decomposition provides the highest perfor-
mance. The framework focuses only on theGPUarchitecture.
Similarly,work in [1] utilises a simple decompositionmethod
with uniform partition where each processor and accelerator
receives blocks of the same size.On the other hand, authors in
[20] provide a method that allows programmers to partition
the data contiguously between CPU and GPUwithin a single
node. Unlike our work, their approach does not allow to find
an optimal distribution of the domain between heterogeneous
architectures in terms of time and energy costs.What ismore,
there is a lack of careful analyses of stencil optimizations and
performance modelling connecting specific properties such
as communication and locality with architectural time and
energy costs.

Moreover, performance and energy models for mod-
ern heterogeneous computing architectures incorporating
specialized processing capabilities should be flexible and
extendable to explore recent properties of heterogeneous
hardware units. A good example is the roofline model which
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allows a programmer to model, predict, and analyse an
individual kernel performance given an architecture commu-
nication and computation capabilities [21]. In this approach
an application is modelled simply by the ratio of useful oper-
ations to memory operations. The roofline model can predict
the performance of a simple von Neumann architecture with
two levels of memory as well as the more complex design
with amulti-levelmemory hierarchy. It has been successfully
used to model the performance of many applications on the
multi-core and many-core processors [22]. Recently, it has
been extended to model the energy consumption in GPUs
[23]. In the new model the authors have assumed that each
operation has a fixed energy cost and a fixed data movement
cost while the constant energy cost is linear in time. The con-
stant power depends on both a hardware and an algorithm and
includes both static and leakage power management. How-
ever, the proposed model does not include dynamic power
management by charging and discharging gate capacitance.
The authors assumed that time per work (arithmetic) opera-
tion and time per memory operation are estimated with the
hardware peak throughput values, whereas the energy cost is
estimated using a linear regression based on real experiments.
Another set of extensions to the rooflinemodel have beenpro-
posed in [24] to model energy on dual multi-core CPU with
three-level cache hierarchy. In this approach the dynamic
power management was modelled as a second degree poly-
nomial, based on real benchmark data, that scales linearly
with the number of active cores up to the saturation point. The
authors assumed that the dynamic power depends quadrati-
cally on the frequency. In the saturation point the energy to
solution grows with the number of used cores, that is pro-
portional to dynamic power, while the time to solution stays
constant. In our article we are providing two examples of
architecturesCPUs andGPUs.However, the presentedmodel
can be utilized with other architectures as well, for instance
Intel Xeon Phi or ARM.Antoher example is an energymodel
presented in [25] to evaluate the cost of parallel algorithms
forGPU.Based on the energymodel they propose themethod
for the energy scalability to easy the selection of the optimal
number of blocks.

3 Stencil properties

In our previous work [15] we experimentally discovered the
key characteristics that have a relevant impact on the perfor-
mance and energy usage of a stencil computation running
on a certain processing unit (PU). We tested the performance
and energy usage of an example 3DLaplacian stencil on eight
core Intel Xeon E5-2670@2.6GHz CPU and Kepler K20m
GPU using multiple of frequency and voltage pairs, called
P-states. Firstly, the maximum performance can be reached
with a lower number of cores than available. Secondly, to

minimize the energy usage it is more important to reduce
the frequency than the number of cores used. What is more,
in case of CPU, DRAM may use up to 60% of the energy.
Thus, the data movement consumes the most of the power.
Finally, the lowest energy usage may be reached with not
the maximum performance. To summarise the analysis, the
stencil computation u ∈ T , called task, is described by the
following parameters:

1. The number of arithmetic operations per grid pointWu,p

on a processor p,
2. The number of required bytes to update a grid point Qu,p

on a processor p,
3. The block dimensions du = [dxu , dy

u , dzu]T .

The processor p ∈ P has following properties:

1. The set of available frequenciesF={ f p1, f p2, . . . , f pn},
2. The set of available cores C = {cp1, cp2, . . . , cpm},
3. The set of states L = {( f, c) : f ∈ F ∧ c ∈ C}, where

l ∈ L is a selected state,
4. The sustained bandwidth to the main memory bp,l in

bytes per second based on the state l.
5. The performance h p,l in the floating-point operations per

second based on the state l.

4 Problem formulation

As showed in the previous section that the data locality has
the highest influence on the energy usage, it has encouraged
us to focus our research on a stencil workload scheduling
using heterogeneous computing architectures to minimize
the energy usage while meeting the computation’s deadline.
The scheduling problem is defined by a setP ofm processors
and a workload T = T1, T2, ..., Tn of n dependent tasks.

A considered workload represents a stencil defined on a
structural grid. Each point on a grid is updated with a strict
pattern, see Fig. 1. The pattern defines which neighbour-
ing points are used during a stencil computation. A single
update of the whole grid is called a timestep. In our approach

Fig. 1 3D Laplacian stencil
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we focus on an explicit method where a current timestep is
updated by using values of the grid points from a previous
timestep. The considered heterogeneous hardware includes
unrelated processing units (PUs) and the same stencil com-
putation takes different execution times on them. Based on
our experimental studieswe distinguished twodifferent unre-
lated processing units: central processing units (CPUs) and
graphic processing units (GPUs).

The workload contains the set of dependent tasks. The
block decomposition of the structural grid updated by the
stencil forms the workload of tasks with the communication
dependencies. A task represents a single block of the decom-
posed grid.We assume that the grid is decomposed on equally
sized blocks. We assume that a given task may be processed
by a single processing unit at a time and each processing unit
may execute several tasks.

The tasks are represented by a directed graph defined by
a tuple G = (V, E) where V denotes the set of tasks and
E represents the set of edges. For simplicity we assume that
the task Tu = u and the processor is depicted by p. Each
edge (u, v) ∈ E defines a communication between the tasks
u, v ∈ V . The communication load du,v on the edge (u, v)

depicts the number of grid cells exchanged between tasks.
The model assumes a fully connected network of heteroge-
neous processors with heterogeneous communication links.
If tasksu andv are executed ondifferent processors p, k ∈ P ,
they cause the time tep,k and the energy e

e
p,k penalty required

to exchange a single grid cell between the processors p and
k. If both tasks are scheduled on the same processor, then
the communication time and the communication energy are
equal to zero. The computation loadwu describes the number
of grid cells provided by the task u. The computation time
and the energy cost to update the single cell on the processor
p are represented by tcu,p,l and ecu,p,l respectively; see (3),

(4). The idle power Pidle
p depicts the power used when no

computations are executed on processor p. The memory size
mp represents the maximum number of grid cells that can
be computed on processor p. The total communication time
and the total communication energy to exchange all data are
represented by te and ee respectively. Total execution time t t

indicates how much time it takes to finish the whole work-
load. The execution deadline td denotes the time by which
all tasks have to be finished. The objective is to determine
a schedule such that the total energy cost is minimized and
deadline td is not exceeded.

5 Performance and energy models

Detailed analysis of the performance and the energy usage of
the stencil computations on two unrelated processing units
resulted in the following formulation of the performance

Table 1 Energy coefficients for the CPU and GPU architectures

Platform CPU GPU
Xeon
E5-2670@2.60GHz
(pJ)

Kepler
K20m
(pJ)

eop 327 54

ebyte 1700 324

model. Computation time tcu,p,l of task u on processor p with
state l is estimated as follows:

Ou,p = Wu,p ∗ dxu ∗ dy
u ∗ dzu (1)

Bu,p = Qu,p ∗ dxu ∗ dy
u ∗ dzu (2)

tcu,p,l = max(Ou,p/h p,l , Bu,p/bp,l) (3)

where Ou,p is the number of arithmetic operations executed
and Bu,p is the number of bytes transferred.

The energy model assumes that each arithmetic operation
as well as the memory operation consumes some energy:

ecu,p,l = eopu,p ∗ Ou,p + ebyteu,p ∗ Bu,p + P0u,p,l ∗ tcu,p,l (4)

Variables eopu,p, e
byte
u,p approximates the energy usage of

stencil operations. For simplicity, it is assumed that arith-
metic operations, i.e. additions, multiplications, subtractions
and divisions, consume the same amount of energy. Addi-
tionally, the energy usage also depends on an instruction set
used, thus for the highest performance the CPU implemen-
tation of the stencil uses the vector extensions. P0u,p,l is a
constant power consumed by the processor Pp based on the

state l. The coefficients eopu,p, e
byte
u,p and P0u,p,l are approx-

imated with a linear regression. Table 1 shows estimated
values of the energy cost for the double precision floating
point operation and the transfer of a single byte of data. For
CPU and GPU the cost to transfer a single byte of data is
5.2x and 6xmore expensive than the floating point operation,
respectively. What is more, both floating point and memory
operations are 5x more expensive on CPU than on GPU. Fig-
ure 2 shows that the constant power grows linearly with the
increasing number of cores using different P-states.

6 Optimal model

This section presents a method based on ILP (ILP) to obtain
the optimal solution of the energy minimization problem. In
particular, this method is developed to have a reference for
the heuristics described in Sect. 7. Before going into details
let us introduce basic definitions from graph theory [26].
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Fig. 2 Constant power P0: left CPU, right GPU

6.1 Multiplicity

Two edges uv, st ∈ E are parallel if {u, v} = {s, t}. The
multiplicity of an edgeuv ∈ E is the number of edges parallel
to uv:

μuv = |{st ∈ E : {uv} = {st}}| (5)

6.2 Incidence

Two edges uv, st ∈ E are incident if {u, v} ∩ {s, t} �= ∅ and
edge uv ∈ E is also called incident to its both end nodes u
and v. The set of edges incident at a node u is denoted by
δG(u):

δG(u) = |{e ∈ E : {e} ∩ {u} �= ∅}| (6)

The number of edges incident to a node u is the degree of
this node in G and will be denoted by degG(u). For U ⊆ V
the set of all edges with exactly one endpoint inU is denoted
by δ(U ). In a directed graph the edges in E are assumed
to be ordered pairs and are described as (u, v) ∈ E . For
a node u ∈ V in a directed graph G = (V, E) we define
δ+
G (u) : {(v,w) ∈ E : v = u} as the set of edges leaving the
node u and δ−

G (u) : {(v,w) ∈ E : w = u} as the set of edges
entering the node u.

6.3 Maximum degree and maximum multiplicity

Maximum degree and maximum multiplicity of a graph are
defined as

�G = maxdegG(v)
v∈V

(7)

μG = maxμG(e)
e∈E

(8)

A graph with μ(G) = 1 that contains no parallel edges is
called simple. Graphs with maximum multiplicity at least 1
are called multigraphs and denoted by M .

6.4 Chromatic index

An edge colouring of a graph G = (V, E) is a map c : E →
C which assigns to each edge e ∈ E a colour c(e) ∈ C
such that no two incident edges receive the same colour. The
minimal cardinality of the colour set C for which such a
mapping exists is called the chromatic index of the graph
and denoted by χ ′(G).

6.5 ILP solution

Our method was inspired by the model proposed in [27]. The
idea is to decompose the scheduling problem to two parallel
subproblems. At first, the tasks are mapped to processors to
minimize the maximum number of grid cells placed on each
processor. Secondly, the number of communication rounds is
minimized by employing an edge colouringmodel. The com-
munication is executed in parallel between different pairs of
processors in stencil computations. However, each proces-
sor can initiate a single communication link with another
processor at a time. As a result, we have to employ several
communication rounds to exchange all data. The number of
communication rounds directly influence the communica-
tion time te, as each round costs some time. The reason for
selecting the ILP solution is that the edge colouring problem
is NP-hard [28,29]. For the task scheduling model the set
of edges is mapped to processors, where each edge (u, v)

may be mapped to a single processor p or might be placed
between two different processors p and k. In the first case,
both endpoints u and v are mapped to p. In the second case,
u is mapped to p and v to k or u is mapped to k and v to p.
For each edge the slots (p, k) ∈ P × P are provided and it
is required that each edge must be assigned to exactly one
slot. If edge e is assigned to slot (p, k) then it starts in p
and ends in k. If p = k then e lies completely on p and is
intra-processor, in all other cases it is inter-processor. For the
minimization of the number of communication rounds the
edge colouring model is used. If the graph G = (V, E) of
tasks is mapped to the complete graph Km of m processors
to form a newmultigraph Mp, then each edge in Mp receives
at least as many colours as its multiplicity demands and inci-
dent edges do not receive the same colour. What is more, an
edge can only receive a colour that is used.

Variables. For the integer programming model we intro-
duce the following variables:

– (Edge to slot xe,p,k) The binary variable for all e ∈ E and
(p, k) ∈ P × P equals 1 if and only if edge e is mapped
to slot (p, k), and 0 otherwise,

– (Edge to colour ye,c) For all e ∈ Kn and c ∈ C , where
C = {0, . . . ,�(G)+μ(G)−1}, the binary variable equals
1 if edge e receives colour c in Mp, and 0 otherwise. The
most simple choice for the number of potential colours

123



2540 Cluster Comput (2017) 20:2535–2549

to colour multigraph is |E |. However, we can choose a
smaller set based on [30,31] that for any multigraph G =
(V, E) the chromatic index is χ ′(G) ≤ �(G) + μ(G),

– (Colour is used zc) For all c ∈ C the binary variable equals
to 1 if a colour c is used in the edge colouring of Mp and
0 otherwise,

– (Number of grid cells cp) This integer variable depicts for
each processor p the number of allocated grid cells,

– (Processor idle time tidlep ) This variable for each processor
p with the state l represents the idle time.

– (Total execution time t t ) This variable indicates howmuch
time it takes to finish the whole workload,

– (Energy used for communication ee) This variable rep-
resents the total energy used for the inter-processor
communication.

Constraints The model employs several types of con-
straints:

– (Mapedge to single slot)Each edge e ∈ Emust bemapped
to exactly one slot,

∑

(p,k)∈P×P
xe,p,k = 1 (9)

– (Restrict slots) Mapping edge uv to slot (p, k) restricts
the slots to which edges in δ(uv) can be mapped. Edges
in δ+(u) must start in p and edges in δ−(u) must end
there. Likewise, edges in δ+(v) must start in k and edges
in δ−(v) must end there:

∑

k∈P
xuv,p,k −

∑

k∈P
x f,p,k = 0 (10)

∑

k∈P
xuv,p,k −

∑

k∈P
x f,k,p = 0 (11)

∑

k∈P
xuv,k,p −

∑

k∈P
x f,p,k = 0 (12)

∑

k∈P
xuv,k,p −

∑

k∈P
x f,k,p = 0 (13)

These constraints are for all p ∈ P and uv ∈ E , where
f ∈ δ+(u) is for (10), f ∈ δ−(u) is for (11), f ∈ δ+(v)

is for (12), f ∈ δ−(v) is for (13),
– (Control the number of grid cells) This constraint controls
the number of the grid cells allocated for each p ∈ P . The
sum of grid cells mapped to processor p is given by

∑

uv∈E

∑

k∈P
(wu/degu ∗ xuv,p,k + wv/degv ∗ xuv,k,p) ≤ cp

(14)

for all p ∈ P ,

– (Number of colours not less than multiplicity) This con-
straint requires that each edge in Mp receives at least as
many colours as its multiplicity demands. Each edgemod-
els time required to exchange single grid cell between
processors p and k:

∑

uv∈E

(
xuv,p,k ∗ tep,k ∗ duv + xuv,k,p ∗ tek,p ∗ duv

)
≤ yp,k,c

c∈C
(15)

– (Incident edges receive different colours) This requires
that incident edges do not receive the same colour in the
edge colouring of Mp and that an edge can only receive a
colour that is used:

∑

k �=p,k∈P
yp,k,c ≤ zc (16)

– (Restrict memory capacity for each processor) This con-
straint restricts the number of grid cells allocated for each
processor p:

cp ≤ mp (17)

– (Control energy used for communication) The sum of
energy used for the inter-processor communication is
depicted as
∑

uv∈E

∑

p �=k,(p,k)∈P×P
xuv,p,k ∗ duv ∗ eep,k ≤ ee (18)

– (Control execution time) These two constraints calcu-
late the total execution time t t using the maximum value
from the computation and the communication time. As
described in Sect. 4 the computation and the communica-
tion are done in parallel:

tcu,p,l ∗ cp ≤ t t (19)

∑

c∈C
zc ≤ t t (20)

– (Control processor’s idle time) This constraint controls the
idle time for all p ∈ P:

t t − tcu,p,l ∗ cp ≤ t idlep (21)

– (Deadline) This inequality restricts the execution time:

t t ≤ td (22)

Table 2 shows the number of variables and constraints that
formulate the ILP model.

Optimization objective. Finally, the objective of the
model is to minimize the energy cost:
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Table 2 Number of variables and constraints that formulate the ILP
problem

ILP

x variables |E × P × P|
y variables |C × P × P|
z variables |C |
x constraints |E |
y constraints |P × P|
z constraints |P|

∑

p∈P

(
ecu,p,l ∗ cp + t idlep ∗ Pidle

p

)
+ ee (23)

Algorithm 1 Balancing load
1: procedure BalancingLoad

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for i = 0, ..., |P| − 1 do
3: Set s = 0
4: while s ≤ wV ∗ ri/

∑
p∈P

rp do

5: Remove the first task u from T
6: Set m(u) = pi and s = s + wu
7: end while
8: end for
9: end procedure

7 Heuristics

Taking into account the relevance of an energy efficiency
issues in the next generation of the high-end supercomputers
in this section we introduce new heuristics. In our approach
we consider energy aware stencil workload scheduling on
heterogeneous architectures with two following objectives:
– minimize the energy usage,
– load balance of the tasks to meet the deadline.

7.1 Simple

This strategy is focused on balancing the load between
processors, and does not take into account the communica-
tion dependencies. These heuristics are usually quite simple
and fast as they act online on the workload.

7.1.1 Balancing load

The algorithm distributes tasks to processors while attempt-
ing to keep the maximal load small and not to exceed the

Algorithm 2Minimize degree
1: procedure Minimize degree

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for u ∈ T do
3: deg(u) = degG(u)

4: end for
5: for i = 0, ..., |P| − 1 do
6: Set s = 0
7: while s ≤ wV ∗ ri/

∑
p∈P

rp do

8: Find u′ = argmin{deg(u) : u ∈ T }.
9: � If there are multiple tasks that attain this
10: � minimum pick the one with smallest computational

load.
11: Remove task u′ from set T
12: Set m(u′) = pi and s = s + wu′
13: for v ∈ N (u′) ∩ T do
14: deg(v) = deg(v) − μu′v
15: end for
16: end while
17: end for
18: end procedure

Algorithm 3Minimize multicut
1: procedure Minimize multicut

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: for u ∈ T do
3: deg(u) = |N (u) ∩ T |
4: end for
5: for i = 0, ..., |P| − 1 do
6: Set s = 0
7: while s ≤ wV ∗ ri/

∑
p∈P

rp do

8: Find u′ = argmin{deg(u) : u ∈ T }.
9: � If there are multiple tasks that attain this
10: � minimum pick the one with smallest computational

load.
11: Remove task u′ from set T
12: Set m(u′) = pi and s = s + wu′
13: for v ∈ N (u′) ∩ T do
14: deg(v) = deg(v) − 1
15: end for
16: end while
17: end for
18: end procedure

deadline. This strategy is called Balancing Load, see Algo-
rithm 1. We start with processor p0 and assign tasks to this
processor until its size is at least wV ∗ ri/

∑
p∈P

rp. Then we

move to the next processor and repeat the procedure. The
limit wV ∗ ri/

∑
p∈P

rp stems from the fact that in a prefect

balancing of tasks there is one processor that has this many
grid cells. This limit is a modification of a limit wV /|P| for
homogeneous processor, as we consider the speed rp of each
processor. The time complexity of the algorithm is O

(|V |)
to assign all tasks to processors. The algorithm is sensitive to
the order in which the tasks and the processors are selected.
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Algorithm 4 Accumulate neighbours
1: procedure Accumulate neighbours

Input: A set T of tasks and the processor set P .
Output: A mapping m.

2: Set i = 0
3: while T �= ∅ and i ≤ |P| do
4: for u ∈ T do
5: N (u) = 0
6: end for
7: Set s = 0
8: while s ≤ wV ∗ ri/

∑
p∈P

rp and T �= ∅ do

9: if s ≤ f ∗ wV ∗ ri/
∑
p∈P

rp then

10: Find u′ = argmax{N (u) : u ∈ T }.
11: else
12: Find u′ = argmin{degG(u)−N (u) : u ∈ T , N (u)}.

13: end if
14: � If there are multiple tasks that attain this
15: � minimum pick the one with smallest computational

load.
16: Remove task u′ from set T
17: Set m(u′) = pi and s = s + wu′
18: For each v ∈ T that is adjacent to u′ set N (v) = N (v)+1
19: end while
20: end while
21: end procedure

7.2 Advanced

Algorithms described in this section attempt to include com-
munication overhead in the scheduling process. They try to
find such a schedule that the resulting multigraph yields a
small chromatic index. Since finding the chromatic index is
an NP-complete problem [28], the algorithms employ differ-
ent approximation methods to minimize it.

7.2.1 Minimize degree

In this algorithm task u with the lowest number of unmapped
edges is assigned to the current processor p. Based on the
equations χ ′(G) ≤ �(G) + μ(G) and χ ′(G) ≤ 
3 ∗
�(G)/2� the chromatic index χ ′(G) of any multigraph G
depends on the max degree. Thus, when task u is assigned to
processor p, then each incident edge to this task not mapped
to p increases the current degree of p by one. The neigh-
bours of the task u that are mapped to another processor
k �= p also increase the degree of p, but they are not con-
sidered in this algorithm. Therefore, the array deg(u) is used
to keep for each task u the number of unmapped edges. The
number by which the degree of processor p would increase
if the task u was mapped to it. If two tasks have the same
number of unmapped edges, then the task with the smallest
computational load is selected. In other words, the number
of additional grid points by which computational load on the
processor p would exceed the perfect load wV ∗ ri/ ∑

p∈P
rp if

the task u wasmapped to p. The running time of Algorithm 2
is O

(|V 2|). The time needed to find the task with the smallest
computational load takes O

(|V |), whereas the while loop is
executed O

(|V |) times.

7.2.2 Minimize multicut

In this algorithm the chromatic index for a multigraph is
estimated based on the complete number of edges |E |. The
previous Algorithm 2 is modified to obtain a minimal mul-
ticut. To achieve this task u with the smallest number of the
unscheduled neighbours is found to be mapped on the cur-
rent processor p. In line 3 the deg(u) is initialized with the
number of the unscheduled neighbours. Each scheduled task
u′ decreases the deg(v) for each unscheduled neighbour v of
u′. The time complexity of the algorithm is equal to O

(|V 2|).

7.2.3 Accumulate neighbours

In this algorithm the unmapped task u with the highest num-
ber of neighbours on the currently selected processor p is
chosen. This policy tries to yield most of the communica-
tion edges of the grid graph intra-processor. The array N
records the number of neighbours the task u has on the
processor p. In line 10 the task with the most neighbours
on the processor p is selected. However, at the end of the
inner while loop (line 12) when the processor p is almost
full different strategy is employed. The task u connected to
the subgraphmapped to p with a minimum number of neigh-
bours not on p is selected. To recognise when the processor
is almost full the load factor f ∈ [0, 1] is introduced. While
s ≤ f ∗wV ∗ri/∑p∈Prp the tasks with the maximum num-
ber of neighbours on the current processor p are selected,
whereas s ≥ f ∗ wV ∗ ri/

∑
p∈Prp the tasks with the min-

imum number of neighbours not on p are picked. When no
unmapped task is adjacent to the tasks currently mapped to
p, then the task with the maximum degree is preferred. Addi-
tionally, for the strategy defined in line 12, the task with the
minimum degree among the unmapped ones is selected. To
find the task in lines 10 and 12 takes O

(|V |) time. The while
loops are executed |V | times, thus the whole Algorithm 4
runs in time O

(|V 2|).

8 Experimental studies

8.1 Simulation setup

Tovalidate ourmodels a newsimulator has beendesigned and
implemented to calculate the total execution time, the energy
usage and the number of communication rounds (colours).
The simulator is initialized with the following data:
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Table 3 Properties of the simulated grids

Name #Blocks #Edges Block size Grid size

Cuboid 128 608 262144 512x256x256

Sphere 128 704 262144 512x256x256

Fig. 3 Cuboid

Fig. 4 Sphere

1. a text file with workload dependency graph,
2. a text file with processor topology,
3. the type of scheduling strategy used: ILP or heuristic.

The simulation instances include the two different real
world simulation grids. These grids are related to the weather
simulations problems. The connection topology of points on
each grid is defined by a 3D Laplacian stencil depicted in
Figure 1.

Table 3 outlines the properties of the test instances. The
first grid called Cuboid (Figure 3) was used to simulate a
decaying turbulence of a homogeneous incompressible fluid.
Whereas, the second grid called Sphere (Figure 4) was used
as a benchmark for the atmospheric circulation models. The
connections in the horizontal direction for the Sphere grid are
periodical. Figure 5 shows the example of the decomposed
Cuboid grid with the connection dependencies. Each num-
ber represents the block id that later is mapped to specific
processor. To analyse the quality of the ILP model and the
heuristics the grids are mapped to single node with the three
different configurations of the processors: CPU–CPU, CPU–
GPU and 2xCPU-2xGPU. The simulated CPU is Intel Xeon

0 1

2 3

4 5

6 7

Fig. 5 Graph of stencil tasks with the connection dependencies

CPU0 CPU1

GPU1GPU0

Fig. 6 Graph of processors

Table 4 Parameters setup

Parameter CPU GPU

tep,k 1 × 10−9s 1 × 10−9s

eep,k 1.36 × 10−7 J 1.36 × 10−7 J

tcu,p,l 8.33 × 10−10s 1.06 × 10−10s

ecu,p,l 2.9 × 10−8 J 5.5 × 10−9 J

Pidle
p 10 W 30 W

P0u,p,l 90 W 74 W

E5-2670 Sandy Bridge 8 core processor and GPU is Nvidia
Kepler K20m. Figure 6 presents the node topology with four
processors. In all algorithms the CPU and GPU frequencies
are set to default values. GPU operates at 705MHz of the
core clock and 2600 MHz of the memory clock. Whereas,
CPU operates at 2.6 GHz of the core clock. The parameters
used in all test runs are shown in Table 4. The values of the
parameters are obtained based on methodology described in
Sect. 3 and 5.

8.2 Simulation results

First, we show the results for the ILPmodel, see Tables 5 and
6, where the first column presents the configurations used.

123



2544 Cluster Comput (2017) 20:2535–2549

Table 5 ILP on Cuboid with all configurations

Arch. td [ms] #Col. E [J] ec (%) ee (%) t t [ms]

CPU–CPU 27.90 0 3.76 100 0 27.90

26.97 20 4.86 77 23 26.81

14.00 32 5.27 66 34 13.95

CPU-GPU 3.58 0 0.48 100 0 3.58

3.46 20 1.70 35 65 3.44

3.34 28 2.23 30 70 3.33

3.22 34 2.65 29 71 3.22

2xCPU–2xGPU 3.58 0 0.62 100 0 3.58

3.46 20 1.73 36 64 3.44

3.34 28 2.16 28 72 3.33

3.22 32 2.26 21 79 1.79

Table 6 ILP on sphere with all configurations

Arch. td [ms] #Col. E [J] ec (%) ee (%) t t [ms]

CPU–CPU 26.97 30 5.41 69 31 26.81

25.92 40 5.94 63 37 25.28

25.02 48 6.37 58 42 24.41

24.13 56 6.78 54 46 22.67

14, 00 64 7.05 49 51 13.95

CPU–GPU 3.60 0 0.48 100 0 3.58

3.46 30 2.26 26 74 3.44

3.35 38 2.79 24 76 3.33

3.23 46 3.32 23 77 3.22

2xCPU-2xGPU 3.58 0 0.62 100 0 3.58

3.46 30 2.28 27 73 3.44

3.34 38 2.72 22 78 3.33

3.22 46 3.16 19 81 3.22

3.11 54 3.60 16 84 3.11

2.99 56 3.69 16 84 2.91

2.66 64 4.05 12 88 1.79

Each configuration is simulated with different deadlines. The
deadline is provided as an input parameter. We reduce its
value to the point where the ILPmodel is not able to generate
the feasible solution.Thenext columnsprovide the number of
colours used in a multigraph, the total energy consumed, the
energy used for computations, the energy used for commu-
nication and the time elapsed. The number of colours used in
the graph colouring provide information about the number of
the communication rounds employed.As the results show the
decreasing deadlines improve the computation times, how-
ever they increase the energy usage. This is especially true
for the heterogeneous configurations where the energy usage
grows up to 7x from the extended deadline to the shortest
one. Shorter deadline forces usage of the next processing
unit, and as a result, it requires more energy to commu-

Table 7 Heuristics on cuboid with the CPU–CPU configuration

Algorithm #Edg. #Col. E [J]/gap (%) t t [ms]/gap (%)

Alg_1-RD 1224 306 20.53/289.49 13.95/0.00

Alg_1-IJK 256 64 7.05/33.81 13.95/0.00

Alg_1-JIK 256 64 7.05/33.81 13.95/0.00

Alg_1-KIJ 256 64 7.05/33.81 13.95/0.00

Alg_2 256 64 7.05/33.81 13.95/0.00

Alg_3 256 64 7.05/33.81 13.95/0.00

Alg_4-0.1 256 64 7.05/33.81 13.95/0.00

Alg_4-0.2 256 64 7.05/33.81 13.95/0.00

Alg_4-0.3 256 64 7.05/33.81 13.95/0.00

Alg_4-0.4 256 64 7.05/33.81 13.95/0.00

Alg_4-0.5 256 64 7.05/33.81 13.95/0.00

Alg_4-0.6 256 64 7.05/33.81 13.95/0.00

Alg_4-0.7 256 64 7.05/33.81 13.95/0.00

Alg_4-0.8 256 64 7.05/33.81 13.95/0.00

Alg_4-0.9 256 64 7.05/33.81 13.95/0.00

Alg_4-1.0 256 64 7.05/33.81 13.95/0.00

The best results in terms of energy efficiency are given in bold

nicate. For example, for the 2xCPU-2xGPU configuration
88% of energy is consumed by the communication. There-
fore, for this reason it is important to efficiently distribute
the stencil tasks to reduce the number of the communica-
tion rounds between the processing units. However, as we
can see it is beneficial to use the heterogeneous configura-
tions, as we switch from the CPU-CPU configuration to the
2xCPU-2xGPU configuration both the computation time and
energy costs decrease by 87 and 57%, respectively, for the
Cuboid grid. Similarly, the computation time for the Sphere
grid decreases by 87% whereas the energy usage decreases
by 42%.Higher energy usage for the Sphere grid is caused by
the periodic connections of tasks on the I and J boundaries.
For single node configurations we can notice that the max-
imum computation time tcu,p,l among the processing units
is a bottleneck for the total execution time t t . Although, we
can expect that for the multi-node configurations the limiting
factor will be the communication time.

The quality of all the four heuristics described in Sect.
7 is presented. The obtained results are presented in Tables
7, 8, 9, 10, 11 and 12, where Algorithm 1 is tested with
four different sorting orders of the tasks: random (RD), IJK
indices, JIK indices and KIJ indices. The tasks can be order
by the grid indices depending on their location within the
grid. This order may have influence on the number of edges
mapped between different processors.

For Algorithm 4 the first column in Tables contains the
value of the load factor f , that depicts when the processor is
almost full. This algorithm is tested with different values of
this parameter. The second to last columns show the number
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Table 8 Heuristics on cuboid with the CPU–GPU configuration

Algorithm #Edg. #Col. E [J]/gap (%) t t [ms]/gap (%)

Alg_1-RD 504 126 7.85/195.85 3.48/8.32

Alg_1-IJK 192 48 3.51/32.29 3.48/8.32

Alg_1-JIK 160 40 3.06/15.52 3.48/8.32

Alg_1-KIJ 160 40 3.06/15.52 3.48/8.32

Alg_2 192 48 3.51/32.29 3.48/8.32

Alg_3 192 48 3.51/32.29 3.48/8.32

Alg_4-0.1 224 56 3.96/49.07 3.48/8.32

Alg_4-0.2 200 50 3.62/36.49 3.48/8.32

Alg_4-0.3 200 50 3.62/36.49 3.48/8.32

Alg_4-0.4 200 50 3.62/36.49 3.48/8.32

Alg_4-0.5 200 50 3.62/36.49 3.48/8.32

Alg_4-0.6 200 50 3.62/36.49 3.48/8.32

Alg_4-0.7 192 48 3.51/32.29 3.48/8.32

Alg_4-0.8 192 48 3.51/32.29 3.48/8.32

Alg_4-0.9 176 44 3.29/23.90 3.48/8.32

Alg_4-1.0 160 40 3.06/15.52 3.48/8.32

The best results in terms of energy efficiency are given in bold

Table 9 Heuristics on cuboid with the 2xCPU–2xGPU configuration

Algorithm #Edg. #Col. E [J]/gap (%) t t [ms]/gap (%)

Alg_1-RD 520 318 22.00/870.23 1.74/−2.68

Alg_1-IJK 576 128 8.86/290.69 1.74/−2.68

Alg_1-JIK 480 112 7.52/231.75 1.74/−2.68

Alg_1-KIJ 480 112 7.52/231.75 1.74/−2.68

Alg_2 576 128 8.86/290.69 1.74/−2.68

Alg_3 576 128 8.86/290.69 1.74/−2.68

Alg_4-0.1 568 116 8.75/285.77 1.74/−2.68

Alg_4-0.2 504 92 7.85/246.48 1.74/−2.68

Alg_4-0.3 584 124 8.97/295.60 1.74/−2.68

Alg_4-0.4 480 100 7.52/231.75 1,74/−2.68

Alg_4-0.5 480 100 7.52/231.75 1.74/−2.68

Alg_4-0.6 480 100 7.52/231.75 1.74/−2.68

Alg_4-0.7 472 98 7.41/226.84 1.74/−2.68

Alg_4-0.8 456 92 7.19/217.01 1.74/−2.68

Alg_4-0.9 432 84 6.85/202.28 1.74/−2.68

Alg_4-1.0 432 84 6.85/202.28 1.74/−2.68

The best results in terms of energy efficiency are given in bold

of edges in the returned scheduling, the number of colours
used in the obtained multigraph and the objective values for
the energy and time. Gap is defined as a difference between
the optimal solution o′ and the solution o∗ returned be the
algorithm:

gap(o∗, o′) = (o∗ − o′)/o′ (24)

The optimal solution with the shortest deadline is selected
as a base for the comparison. In other words, the results

Table 10 Heuristics on sphere with the CPU–CPU configuration

Algorithm #Edg. #Col. E [J]/gap(%) t t [ms]/gap (%)

Alg_1-RD 1408 352 23.09/227.39 13.95/0.00

Alg_1-IJK 256 64 7.05/0.00 13.95/0.00

Alg_1-JIK 256 64 7.05/0.00 13.95/0.00

Alg_1-KIJ 512 128 10.62/50.53 13.95/0.00

Alg_2 256 64 7.05/0.00 13.95/0.00

Alg_3 256 64 7.05/0.00 13.95/0.00

Alg_4-0.1 256 64 7.05/0.00 13.95/0.00

Alg_4-0.2 256 64 7.05/0.00 13.95/0.00

Alg_4-0.3 256 64 7.05/0.00 13.95/0.00

Alg_4-0.4 256 64 7.05/0.00 13.95/0.00

Alg_4-0.5 256 64 7.05/0.00 13.95/0.00

Alg_4-0.6 256 64 7.05/0.00 13.95/0.00

Alg_4-0.7 256 64 7.05/0.00 13.95/0.00

Alg_4-0.8 256 64 7.05/0.00 13.95/0.00

Alg_4-0.9 256 64 7.05/0.00 13.95/0.00

Alg_4-1.0 256 64 7.05/0.00 13.95/0.00

The best results in terms of energy efficiency are given in bold

Table 11 Heuristics on sphere with the CPU–GPU configuration

Algorithm #Edg. #Col. E [J]/gap (%) t t [ms]/gap (%)

Alg_1-RD 576 144 9.53/186.63 3.48/8.32

Alg_1-IJK 256 64 4.40/32.50 3.48/8.32

Alg_1-JIK 192 48 3.51/5.70 3.48/8.32

Alg_1-KIJ 320 80 5.29/59.31 3.48/8.32

Alg_2 256 64 4.40/32.50 3.48/8.32

Alg_3 256 64 4.40/32.50 3.48/8.32

Alg_4-0.1 296 74 4.96/49.25 3.48/8.32

Alg_4-0.2 304 76 5.07/52.61 3.48/8.32

Alg_4-0.3 304 76 5.07/52.61 3.48/8.32

Alg_4-0.4 312 78 5.18/55.96 3.48/8.32

Alg_4-0.5 320 80 5.29/59.31 3.48/8.32

Alg_4-0.6 328 82 5.40/62.66 3.48/8.32

Alg_4-0.7 336 84 5.51/66.01 3.48/8.32

Alg_4-0.8 336 84 5.51/66.01 3.48/8.32

Alg_4-0.9 320 80 5.29/59.31 3.48/8.32

Alg_4-1.0 320 80 5.29/59.31 3.48/8.32

The best result in terms of energy efficiency is given in bold

are compared to the feasible solution with the lowest pos-
sible computational time and minimal energy obtained by
the ILP model. Tables from 7 to 12 show the time t t is all the
same. All heuristics are based on the idea of the load balanc-
ing where the computations of the tasks are well balanced
between processors. For each grid configuration the final
schedule obtains the same computation time. The commu-
nication time between heuristics is different, as the obtained
schedules provide different number of the communication
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Table 12 Heuristics on sphere with the 2xCPU-2xGPU configuration

Algorithm #Edg. #Col. E [J]/gap (%) t t [ms]/gap (%)

Alg_1-RD 1664 350 24.01/492.79 1.74/−2.68

Alg_1-IJK 704 160 10.64/162.77 1.74/−2.68

Alg_1-JIK 704 160 10.64/162.77 1.74/−2.68

Alg_1-KIJ 800 760 11.98/195.77 1.74/−2.68

Alg_2 704 160 10.64/162.77 1.74/−2.68

Alg_3 704 160 10.64/162.77 1.74/−2.68

Alg_4-0.1 744 164 11.20/176.52 1.74/−2.68

Alg_4-0.2 728 158 10.97/171.02 1.74/−2.68

Alg_4-0.3 712 152 10.75/165.52 1.74/−2.68

Alg_4-0.4 712 156 10.75/165.52 1.74/−2.68

Alg_4-0.5 720 158 10.86/168.27 1.74/−2.68

Alg_4-0.6 720 158 10.86/168.27 1.74/−2.68

Alg_4-0.7 704 158 10.64/162.77 1.74/−2.68

Alg_4-0.8 704 158 10.64/162.77 1.74/−2.68

Alg_4-0.9 672 144 10.19/151.77 1.74/−2.68

Alg_4-1.0 672 144 10.19/151.77 1.74/−2.68

The best results in terms of energy efficiency are given in bold

rounds. The communication time is smaller than the com-
putation time and both are done in parallel. As a result, the
communication time do not influence the time t t . However,
the number of communication rounds strongly influence the
energy consumption. Tables 7 and 10 show that almost all
heuristics except for Alg_1 − RD are able to schedule sten-
cil tasks with close to the optimal solution for homogeneous
hardware configurations with two processors. What is more,
the results show that the heuristics that target at the balanced
load provide good solutions for simple configurations with
two processors. The balancing load algorithm Alg_1 pro-
duces an efficient distribution depending on the sorting order
of the input tasks. The order based on JIK indices minimizes
the number of the communication rounds for both grids with
two processors.With four processors it is beneficial to use the
heuristics that take into account the communication penalty.
The algorithm Alg_4 provides good schedules for the four
processors as it tries to yield most of the communication
edges of the task graph intra-processor. The quality of sched-
ule depends on the load factor, which determines when to
switch the mapping from the task with the most neighbours
on the current processor to the task with a minimum num-
ber of neighbours not on the current processor. Take as an
example the 5x4x5 gird with 100 blocks distributed on a
node with single CPU and two GPUs where the 3D Lapla-
cian stencil is empolyed. Figure 7a shows the schedule from
Alg_1 with the best performing J I K order. The blocks are
distributed horizontally according to the J I K order. Figure
7b shows the output from Alg_4with the load factor equal to
0.9. The blocks scheduled to CPU are distributed vertically
within the computational grid whereas the blocks scheduled

Fig. 7 Comparison of schedule between Alg_1 and Alg_4. The
colours represent the schedulingof blocks to the processors: redGPU00,
blue GPU01 and green CPU00. Left output from Alg_1, right output
from Alg_4

Table 13 The average execution time (us) of the investigated ILPmodel
and heuristics for the 2xCPU–2xGPU configuration

ILP Alg1 Alg2 Alg3 Alg4

Cuboid 3118×06 32 78 52 55

Sphere 281836×106 33 98 57 65

to GPUs are distributed horizontally. Alg_4 and the rest of
the algorithms (Alg_2 and Alg_3) are able to mix the spa-
tial distribution of the blocks. The energy cost is 4.65J and
4.43J for Alg_1 and Alg_4 respectively. 5% of the energy
is saved by reducing the number of communication rounds.

The presented heuristics may be applied to the distribu-
tion of the stencil computations between the processing units
defined on the Cartesian grids. These grids may be 2D or 3D
with or without periodic boundaries.

Table 13 shows the average exeuction time of the inves-
tigated ILP model and heuristics for the 2xCPU–2xGPU
configuration with previously described grid setups. As one
can notice, the time to find the optimal solutions is seven
orders of magnitude larger than the time of heuristics.

8.3 Verification of energy model

This section contains the experimental comparison of the
energy usage model used in the simulator with the real mea-
surements. Figures 8 and 9 present the comparison of energy
usage between the proposed model and the real measure-
ments. The results are obtained for the Intel Xeon processor
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Fig. 8 Comparison of accuracy (%) between the proposed model and
the real measurements on the Intel Xeon E5-2670@2.6GHz processor

Fig. 9 Comparison of accuracy (%) between the proposed model and
the real measurements on the Nvidia K20m accelerator

Table 14 Energy usage (J) of the proposed model and the real mea-
surements for the investigated ILP model and heuristics

ILP Alg1 Alg2 Alg3 Alg4

Ereal 2.29 7.23 8.56 6.56 8.56

Emodel 2.27 7.53 8.86 6.86 8.86

Table 15 Comparison of accuracy (%) between the proposed model
and the real measurements for the investigated ILPmodel and heuristics

ILP Alg1 Alg2 Alg3 Alg4

Emodel/Ereal 99 104 103 105 103

and the Nvidia K20m accelartor respectively for the 3D
Laplacian stencil defined on the grid with 2563 points. Table
14 contains the energy usage for all examined heuristics
and the ILP model for the 2xCPU–2xGPU configuration of
processors defined on the Cube grid presented in Sect. 8.1.
Whereas, Table 15 summarizes their accuracy.

As it can be observed, the accuracy of the presentedmodel
is high and exceeds visibly 90%. The results suggest that
applying the time and energy models, while verifying dif-
ferent scheduling policies, does not lead to deterioration of
overall results. This leads to the conclusion that the described
environment can be used to simulate the heterogeneous com-
puter system.

9 Conclusions and future work

In this paper new heuristics to distribute efficiently the stencil
workload on the heterogeneous architectures and conse-
quently minimize the energy usage within the deadline are
presented and evaluated. They are based on our analysis of
energy and performance models for a relevant class of sten-
cil computations to explore the relationship between task
scheduling algorithms and energy constraints. Additionally,
the obtained results during experimental tests of our heuris-
tics are compared to optimal solutions achieved by the ILP
formulation of the stencil-scheduling problem.Theoptimiza-
tion space of the model shows that the best strategy depends
not only on load balancing the problem size between the
processing units, the processing units specification, and the
stencils employed, but also on detailed mapping of the com-
munication dependencies of the blocks to the communication
topology of respective processing units. The careful map-
ping of the stencil tasks on the heterogeneous architectures
can lead to the substantial savings in the execution time and
energy costs. We show that even a basic heuristic with load
balancing for the configurations of the two processors is suf-
ficient enoughwith respect to energy efficiency.Moreover, in
this paper we demonstrate various improvements which take
into account recent achievements in heterogeneous CPU and
GPU architectures. Nevertheless, with the increasing number
of processors, in our opinion heuristics that take into account
the communication penalty are needed. The heuristics are
applicable to distribute the stencil computations defined on a
Cartesian grid regardless of a domain topology. The domain
borders can be both periodic and non-periodic.

In our future work we plan to extend the proposed model
and heuristics to take into account the remote communication
between nodes to better predict the runtime and the energy
usage of stencil computations in large scale. Therefore, we
plan to conduct additional experimental tests to model the
data movement within the inter-node network. Furthermore,
wewant tomodel aworkflowof the different stencils to better
predict the energy usage of real use cases and applications.
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