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ryegrass undergoing cold acclimation. Taken together, our 
results demonstrate that EBR-induced changes are tempera-
ture dependent. The beneficial effect of EBR is not univer-
sal under cold conditions, as genetically determined mecha-
nisms are apparently dominant relative to EBR action.
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Introduction

In addition to structural and biochemical changes, cold 
acclimation in plants is associated with photosynthetic 
acclimation at low growth temperatures. Low temperature 
and light intensity affect the relative redox state of photo-
system II (PSII), thereby leading to an imbalance between 
the energy absorbed in the light phase of photosynthesis 
and its consumption for photochemistry (Huner and oth-
ers 1998). Plants possess two main mechanisms to coun-
teract such cold-induced photoinhibition (Adams and oth-
ers 2002): a photochemical mechanism, which relies on 
increased energy utilization, and a non-photochemical 
mechanism (non-photochemical quenching; NPQ), which 
involves increased dissipation of excess light (Huner and 
others. 1993); activation of both mechanisms is genotype 
dependent, however plants with higher tolerance towards 
cold-induced photoinhibition are usually more tolerant to 
frost, (Huner and others 1993; Rapacz and others 2004).

Cold acclimation is also a time-dependent response, 
with freezing tolerance increasing along with acclima-
tion time (Fowler and others 1996). The recovery of pho-
tosynthesis after long-term growth at low, non-freezing 
temperatures is supported by increases in the activities 
of photosynthetic carbon reduction cycle enzymes, such 

Abstract  We investigated the modification of cold-
induced mechanisms of photosynthetic apparatus adjust-
ment and phytohormone response by brassinosteroid 
24-epibrassinolide (EBR) and its consequences for frost 
tolerance of perennial ryegrass (Lolium perenne L.). We 
recorded the responses of two cultivars with contrast-
ing frost tolerances to foliar hormone application, both in 
non-acclimated plants and plants cold acclimated for 3 and 
6 weeks at 4 °C. In non-cold-acclimated plants of both cul-
tivars, EBR induced increases in carbon fixation and low-
ered sucrose levels. Temporary suppression in quantum 
efficiency of PSII of photosystem II and activities of rib-
ulose-1,5-bisphosphate carboxylase/oxygenase and sucrose 
phosphate synthase, a consequence of energy dissipation in 
non-photochemical quenching, was observed in the leaves 
of the highly frost-tolerant cultivar after 3  weeks of cold 
acclimation. After 6 weeks of cold acclimation, EBR accel-
erated recovery of photosynthesis, reflecting adjustment to 
cold conditions, and increased frost tolerance. As carbo-
hydrate export from leaves is favored during cold acclima-
tion, EBR application did not increase frost tolerance of the 
moderately tolerant cultivar, reflecting the downregulation 
of photosynthesis due to high leaf sucrose concentrations. 
It is also likely that EBR participated in the enhancement 
of frost tolerance by regulation of stress-related signaling 
compounds such as JA and ethylene but not SA, in winter 
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as ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco), and enzymes responsible for sucrose biosynthe-
sis (Guy and others 1992; Holaday and others 1992).

Phenolics accumulation is observed under environmen-
tal stresses (Reuber and others 1996; von Ropenack and 
others 1998). Bound phenolics are integrated components 
of the cell wall determining its mechanical properties and 
protecting photosynthetic apparatus by absorption of UV 
radiation (Bilger and others 1997). Soluble phenolics con-
tribute to scavenging reactive oxygen species (ROS), a 
common cause of damage to the photosynthetic membranes 
(Blokhina and others 2002; Nogues and Baker 2000).

The decreased growth rate that accompanies cold accli-
mation has been found to be associated with dynamic 
changes in growth-promoting and growth-suppressing phy-
tohormones such as cytokinins, auxins, abscisic acid, jas-
monic acid, and salicylic acid (Kosová and others 2012). 
The level of growth stimulants and stress-related plant hor-
mones such as salicylic acid (SA), jasmonic acid (JA), and 
ethylene depends on the stage of cold acclimation (Kosová 
and others 2012). JA was shown to regulate C-repeat bind-
ing factor (CBF) during cold stress. Ethylene pathways are 
also involved in cold and freezing tolerance. 1-aminocy-
clopropane-1-carboxylic acid (ACC) application enhanced 
freezing tolerance of Arabidopsis (Catalá and others 2014) 
and 1-methylcyclopropene (1-MCP) reduced cold tolerance 
of tomato (Zhao and others 2009).

Our previous studies have also revealed the role of 
brassinosteroids in cold acclimation of winter rye (Pocie-
cha and others 2016a). Brassinosteroids belong to a group 
of plant growth regulators that are responsible for cell 
division, cell expansion, and vegetative growth. These 
steroidal hormones also play a significant role in adaptive 
response to environmental stresses, such as high-tempera-
ture stress, oxidative stress, drought, and salinity (Yu and 
others 2004; Bajguz and Hayat 2009; Janeczko and others 
2011), but their function during cold acclimation is poorly 
recognized (Pociecha and others 2016a) and requires fur-
ther study. Investigation of the role of brassinosteroids 
during cold acclimation is important, as the mechanism 
of action of these phytohormones may be different at opti-
mal versus cold temperatures. Janeczko and others (2007) 
have previously demonstrated the temperature-dependent 
effect of these hormones on cell membrane permeability 
and lipid composition as well as chlorophyll degradation. 
At optimal growth temperatures, brassinosteroids increase 
the quantum yield of photosystem II (PSII) and Rubisco 
activity and consequently boost concentrations of soluble 
sugars (Yu and others 2004). Brassinosteroids regulate 
the function of Rubisco in many ways. According to Xia 
and others (2009), brassinosteroids regulate Rubisco activ-
ity and also upregulate the expressions of rbcL and rbcS 
genes that encode subunits of this enzyme. In their study, 

transcript levels of rbcS and rbcL genes were elevated in 
24-epibrassinolide (EBR)-treated plants, but were reduced 
in plants treated with a brassinosteroid inhibitor com-
pared with control plants. The mechanisms underlying 
the effect of EBR on Rubisco activity may also be based 
on the impact of these hormones on enzymes directly or 
indirectly supporting Rubisco functioning, such as Rubisco 
activase (RCA) or carbonic anhydrase. According to Xia 
and others (2009), transcript levels of the rca gene were 
elevated in EBR-treated cucumber, with EBR also increas-
ing RCA protein levels. Application of a brassinosteroid 
biosynthesis inhibitor reversed these effects. The protec-
tive effect of brassinosteroids on the efficiency of PSII can 
also be explained by their structural and physical proper-
ties. Dobrikova and others (2014) revealed that exogenous 
EBR alters the thermodynamic parameters of photosyn-
thetic membranes of pea (Pisum sativum) plants under non-
stress conditions. The revealed structural reorganizations 
most probably ensure structural stability, which is required 
to preserve the integrity of the membranes and the entire 
organelle (Dobrikova and others 2014).

Because the mechanisms underlying the action of brassi-
nosteroids are involved in plant carbohydrate metabolism 
and photosynthesis, the processes crucial for cold acclima-
tion, we studied their effect on frost tolerance of perennial 
ryegrass (Lolium perenne L.). The aim of our study was 
to investigate the mechanisms of photosynthetic appara-
tus adjustment and photoinhibition avoidance during cold 
acclimation in perennial ryegrass treated with 24-epibrassi-
nolide. We specifically focused on chlorophyll a fluores-
cence, Rubisco, and sucrose phosphate synthase (SPS) 
activities, the profile of water-soluble carbohydrates, solu-
ble and bound phenolics, and stress-related hormones such 
as salicylic acid, jasmonic acid, and precursor of ethylene 
1-aminocyclopropane-1-carboxylic acid (ACC). Finally, 
we attempted to verify whether EBR-induced changes were 
related to frost tolerance.

Materials and Methods

Plant Materials and Experimental Design

Two cultivars of perennial ryegrass, Flinston and Ama-
rant, were selected for our experiments. According to the 
Polish Institute of Plant Protection, National Research 
Institute (2015), Flinston is the more frost tolerant of 
these two cultivars. Plants were grown in pots (30 plants 
per 30 × 15 × 15 cm pot, 12 pots per cultivar) containing 
a mixture of soil:peat:sand (2:2:1 v/v/v) and fertilized 
weekly with Hoagland’s solution. The plants in pots 
were kept in a growth chamber at 18/16 °C (day/night) 
and illuminated for up to 12-h photoperiods with sodium 



620	 J Plant Growth Regul (2017) 36:618–628

1 3

lamps (AGRO Philips, Brussels, Belgium) at a light 
intensity of 250 µmol m−2 s−1 photosynthetic photon flux 
density (PPFD). At the three-leaf stage, the plants were 
divided into two groups. One group was sprayed with 
an EBR solution (0.25  mg dm−3) containing Tween 20, 
which was obtained by dilution with distilled water of 
an EBR stock solution (Sigma–Aldrich, Poznań, Poland) 
prepared in 1 ml 96% ethanol using an ultrasound bath. 
The second group (plants non-treated with EBR) was 
sprayed with aqueous solution of EBR solvent (distilled 
water with ethanol and Tween 20) and was used as a con-
trol. After spraying, the plants were kept at 18 °C for a 
week. Both groups (control and EBR treated) were then 
cold acclimated for 3 or 6  weeks at 4 °C under an 8-h 
photoperiod with a light intensity of 200  µmol m−2 s−1 
PPFD. The data obtained from two independent, ran-
domly arranged experiments conducted from Septem-
ber to mid December in 2013 and 2014 were combined. 
Before cold acclimation (after 1 week at 18 °C) and after 
3 or 6 weeks of cold acclimation at 4 °C, the following 
parameters were evaluated: PSII efficiency, Rubisco, 
and SPS activities, and a profile of soluble sugars. After 
measurements and sampling, both EBR-treated and con-
trol plants that had been cold acclimated for 3 or 6 weeks 
were exposed to frost (see “Testing of frost tolerance” 
below) and their frost tolerance was estimated.

Slow Kinetic Fluorescence of Chlorophyll a

Parameters of the slow kinetic fluorescence of chlo-
rophyll a were measured using an FMS2 fluorom-
eter (Hansatech Ltd., Kings Lynn, UK). The following 
measurements were obtained from dark-adapted leaves 
held in leaf clips for 20  min: maximum quantum yield 
of PSII (Fv/Fm), variable fluorescence (Fv = Fm − Fo), 
fluorescence when all PSII reaction centers are closed 
(Fm), and chlorophyll a fluorescence when all PSII reac-
tion centers are open (Fo). Measurements of maximum 
quantum yield of PSII in light-adapted leaves (Fvʹ/Fmʹ) 
were obtained from light-adapted material, with fluo-
rescence when all PSII reaction centers are closed (Fmʹ) 
and steady-state fluorescence (Fs) was recorded after 
achieving stable values of Fs after re-exposure to light. 
Quantum efficiency of PSII (φPSII), (Fmʹ −Fs)/Fmʹ, was 
calculated according to Genty and others (1989). Pho-
tochemical quenching (qp), (Fmʹ − Fs)/(Fmʹ − Foʹ), where 
Foʹ is fluorescence in leaves previously exposed to light 
and darkened just before measurement, was calculated 
according to Schreiber and others (1994). NPQ was cal-
culated as (Fm − Fmʹ)/Fmʹ according to Bilger and Björk-
man (1991).

Biochemical Analyses

The youngest fully developed leaves were collected for 
analyses of enzyme activities and carbohydrate compo-
sition. Rubisco (EC 4.1.1.39) activity was determined 
spectrophotometrically as described by Sharkey and oth-
ers (1991), and SPS (EC 2.4.1.14) activity was measured 
according to the method of Kalt-Torres and Huber (1987). 
Enzyme activity was measured in five replications repre-
senting five leaves from different plants for each treatment. 
Carbohydrate composition was measured by high-perfor-
mance liquid chromatography (HPLC) as described by 
Pociecha and Dziurka (2015). We determined the content 
of sugars such as glucose, fructose, sucrose, 1-kestose, and 
nystose. Each carbohydrate composition assay was repeated 
three times on bulk samples, each containing five leaves 
from different plants for each treatment.

Analyses of ACC, jasmonic acid, and salicylic acid were 
performed using HPLC. The apparatus used was Agilent 
Technologies 1260 equipped with Tandem Mass Spec-
trometer 6410 (MS–MS) with electrospray interface (ESI). 
Standards were obtained from OlChemim (Olomouc, Czech 
Republic), and the other chemicals from Sigma-Aldrich 
(Poznań, Poland). Frozen samples (0.5–1  g each) were 
homogenized in a mortar with liquid nitrogen. Three mil-
liliters of extraction mixture: water/methanol/chloroform 
(3/5/12 v/v/v) were added and the samples were vigorously 
shaken for 30  min, sonicated for 5  min, and centrifuged 
at 2500  g for 5  min. Supernatant was collected and the 
extraction procedure was repeated with 2 ml of the extrac-
tion mixture, then both supernatants were pooled. The ali-
quot of the mixture comprising internal isotopic standards: 
[2H4] 1-aminocyclopropane-1-carboxylic acid and [2H6] 
jasmonic acid was added during the first extraction. Then, 
the chloroform and water–methanolic layers were sepa-
rated, collected, and dried under the stream of nitrogen at 
40 °C. Evaporated samples were reconstituted in methanol 
(water–methanolic fraction) and in acetonitrile (chloroform 
fraction). The samples were centrifuged at 21,000  g for 
10 min, placed in HPLC vials and analyzed. 1-aminocyclo-
propane-1-carboxylic acid was analyzed in water–metha-
nolic fractions injected into Phenomenex Kinetex 2.6u 
HILIC 100 A HPLC column, with 5 mM/dm3 ammonium 
formate dissolved in water and 5 mM/dm3 ammonium for-
mate dissolved in acetonitrile as eluents. MS–MS was set 
to primary ion 130 and secondary ion 56. Jasmonic acid 
was analyzed in chloroform fractions injected into Supelco 
Ascentis Express RP-Amide 7.5  cm × 4.6  mm, 2.7  μm 
HPLC column, with 0.1% formic acid in water, and mixture 
of methanol and acetonitrile (1/1 v/v) as eluent. MS–MS 
was set to primary ion 211 and secondary ions 151 and 
133. Salicylic acid was analyzed in water–methanolic frac-
tion according to the HPLC procedure used for jasmonic 
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acid. MS–MS was set to primary ion 139 and secondary 
ion 121.

Total phenolic content in both fractions was measured 
according to the Singleton method (Singleton and others 
1999), modified by Bach and others (2015). About 15 mg 
of lyophilized and finely ground sample was extracted in 
1  ml of H2O/HCOOH/methanol solution (4/1/15 v/v) for 
15 min at 30 Hz (MM 400, Retach, Kroll, Germany). Then, 
the samples were centrifuged (15  min, 22,000 × g, 10 °C, 
Universal 32R, Hettich, Germany) and the supernatant 
was collected. The extraction procedure was repeated and 
the supernatant was pooled. It comprised the fraction of 
soluble phenolics. Next, an aliquot of the extract was col-
lected for total soluble phenolic analysis. The remaining 
solution was evaporated under nitrogen stream (TurboVap 
LV, Capiler Ltd., MA, USA) and kept for HPLC analyses. 
The pellet was hydrolyzed with 3  M NaOH, the suspen-
sion was neutralized with HCl, and the released phenolics 
were extracted as above. They comprised the fraction of 
cell wall-bound phenolics. An aliquot of pooled extract was 
collected for estimation of total phenolics released after 
hydrolysis.

Testing of Frost Tolerance

Frost tolerance was estimated using a modified ver-
sion of Larsen’s method (1978). Pots with plants that had 
been cold acclimated for 3 or 6  weeks were transferred 
to a freezing chamber at a temperature of 4 °C. The tem-
perature was then reduced to −12 °C at a rate of 3 °C h−1 
under dark conditions and held at this level for a period of 
6 h. Then temperature was subsequently increased to 4 °C 
at a rate of 3 °C h−1 and cold acclimation conditions were 
recreated. Twenty-four hours later, all plants were cut and 
then exposed to conditions of 12 °C, a 12-h photoperiod 
and 250 μmol m−2 s−1 PPFD for regrowth. After 10 days, 
regrowth was estimated using Larsen’s (1978) visual score, 
where 0 corresponds to a completely dead plant and 9 indi-
cates a plant with no symptoms of injury.

Statistical Analysis

To validate the use of parametric tests, the normal-
ity assumption of the ANOVA was verified by the Sha-
piro–Wilk test. A Levene test was used to check the 
homoscedasticity assumption. Data were analyzed with 
multi-factor analysis of variance (MANOVA). Graphs were 
plotted using means and standard errors for each data point. 
A post hoc comparison was conducted using Duncan’s 
multiple range test (p = 0.05). All calculations were carried 
out using the STATISTICA 12.0 (StatSoft Inc., Tulsa, OK, 
USA) software package.

Results

Slow Kinetic Fluorescence of Chlorophyll a Parameters

In both cultivars, EBR treatment modified photosyn-
thetic efficiency, with the observed changes depend-
ent on cultivar and length of cold acclimation (Fig.  1). 
In the moderately tolerant Amarant cultivar, EBR did 
not affect any investigated parameters except for NPQ. 
In contrast to the resistant cultivar, the value of NPQ 
increased gradually compared with non-acclimated 
plants and reached its highest point after 6 weeks of cold 
acclimation.

In the resistant Flinston cultivar after 3 weeks of cold 
acclimation, EBR induced the NPQ mechanism, which 
coincided with a sharp decrease in φPSII and qP compared 
with plants before cold acclimation and those that were 
cold acclimated for 6 weeks. After 6 weeks of cold accli-
mation, φPSII and qP values returned to pre-acclimation 
levels; this change was accompanied by only a slight 
decrease in NPQ, which was still markedly higher than 
that of non-acclimated plants.

Rubisco and SPS Activities

In both cultivars under optimal temperature before cold 
acclimation, EBR mediated increases in Rubisco and SPS 
activities (Figs.  2, 3). Under cold conditions, EBR sig-
nificantly decreased the activity of both enzymes in the 
leaves of Amarant. As for Flinston, slight decreases were 
found in Rubisco and SPS activities only after 3 weeks of 
cold acclimation. In plants acclimated for 6 weeks, EBR 
stimulated the activity of both enzymes (Figs. 2, 3).

Composition of Soluble Carbohydrates

Exogenous EBR modified soluble carbohydrate content, 
which was dependent on cultivar and duration of cold 
acclimation (Fig. 4). In non-acclimated control plants of 
both cultivars, EBR triggered an increase in fructose lev-
els, a decrease in sucrose levels, and no change in glu-
cose levels. In regard to fructooligosaccharides (FOSs), 
nystose was not detected while 1-kestose increased only 
in Amarant.

In moderately resistant Amarant, 3 and 6 weeks of cold 
acclimation under EBR treatment resulted in a decrease in 
monosaccharides (glucose and fructose) and an increase 
in sucrose (Fig.  4). Both examined FOSs decreased after 
3 weeks and increased after 6 weeks of cold acclimation. 
In 3-week acclimated Flinston plants, the lack of changes in 
monosaccharides coincided with decreased sucrose level. A 



622	 J Plant Growth Regul (2017) 36:618–628

1 3

decrease in monosaccharide’s occurred later after 6 weeks 
of cold acclimation and was accompanied by an increase in 
sucrose and FOSs.

Soluble and Bound Phenolics

EBR affected the concentration of soluble phenolics in 
different ways, depending on the investigated cultivar. 
After 3  weeks of cold acclimation, EBR significantly 

Fig. 1   Parameters of slow kinetic fluorescence of chlorophyll a in 
the leaves of control and 24-epibrassinolide (EBR)-treated non-cold-
acclimated perennial ryegrass plants and in plants after 3 and 6 weeks 
of cold acclimation. The following parameters were measured: 
maximum quantum yield in dark-adapted (Fv/Fm) and light-adapted 
(Fv

ʹ/Fmʹ) leaves, quantum efficiency of PSII (φPSII), photochemi-

cal quenching (qp), and non-photochemical quenching (NPQ). The 
presented data (arbitrary units) are mean values for the EBR-treated 
plants, expressed as a percentage of the control values based on 10 
replicates. Mean values marked with the same letter within a param-
eter and a cultivar did not differ significantly according to Duncan’s 
test at p ≤ 0.05

Fig. 2   Rubisco activity in the 
leaves of control and 24-epi-
brassinolide (EBR)-treated 
non-cold-acclimated perennial 
ryegrass plants and in plants 
after 3 and 6 weeks of cold 
acclimation. The presented data 
are mean values based on five 
replicates. Mean values marked 
with the same lowercase letter 
within a cultivar and the same 
uppercase letters within term 
did not differ significantly 
according to Duncan’s test at 
p ≤ 0.05
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increased soluble phenolic concentrations in the leaves 
of Amarant, and for Flinston a sharp decrease was found 
(Fig. 5). Contrary to that, after 6 weeks of cold acclima-
tion soluble phenolic contents were reduced in Ama-
rant and enhanced in Flinston. Cell wall-bound phenolic 
contents did not change under EBR treatment with the 

exception of Flinston, where after 3 weeks of cold accli-
mation a significant increase was noticed. Additionally, 
the increase of bound phenolics in Flinston accompanied 
by the decrease of soluble phenolics suggested that they 
were used in cell wall strengthening.

Fig. 3   Sucrose phosphate 
synthase (SPS) activity in the 
leaves of control and 24-epi-
brassinolide (EBR)-treated 
non-cold-acclimated perennial 
ryegrass plants and in plants 
after 3 and 6 weeks of cold 
acclimation. The presented data 
are mean values based on five 
replicates. Mean values marked 
with the same lowercase letter 
within a cultivar and the same 
uppercase letters within term 
did not differ significantly 
according to Duncan’s test at 
p ≤ 0.05

Fig. 4   Carbohydrate contents 
in the leaves of Amarant and 
Flinston cultivars of control 
and 24-epibrassinolide (EBR)-
treated non-cold-acclimated 
perennial ryegrass plants and 
in plants after 3 and 6 weeks of 
cold acclimation. The presented 
data are mean values based on 
five replicates ±standard error
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ACC, JA, and SA Content

In control plants, prolonged cold resulted in the lowered 
levels of ACC in both cultivars, lowered (Amarant) and 
stable (Flinston) JA levels and no changes in SA levels. In 
Flinston, EBR applied before cold acclimation mediated 

an increase in ACC and JA but not SA content (Fig. 6). 
As for Amarant, raised content of ACC was observed 
only after 6 weeks of cold acclimation. In Flinston, EBR 
significantly decreased SA concentrations at the later 
stage of cold acclimation (after 6 weeks), as compared to 
its concentration after 3 weeks of cold acclimation.

Fig. 5   Soluble and cell wall-
bound phenolics in the control 
and 24-epibrassinolide (EBR)-
treated leaves of Amarant and 
Flinston cultivars of perennial 
ryegrass after 3 and 6 weeks of 
cold acclimation. Mean values 
marked with the same letter 
within a parameter did not 
differ significantly according to 
Duncan’s test at p ≤ 0.05

Fig. 6   ACC, JA, and SA 
contents in the control and 
24-epibrassinolide (EBR)-
treated leaves of Amarant and 
Flinston cultivars of perennial 
ryegrass after 3 and 6 weeks of 
cold acclimation. Mean values 
marked with the same letter 
within a parameter did not 
differ significantly according to 
Duncan’s test at p ≤ 0.05
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Frost Tolerance

The frost tolerance of control plants of the Amarant cul-
tivar was similar after 3 and 6 weeks of cold acclimation 
(Table 1). In the case of Flinston, a longer cold acclimation 
induced higher frost resistance. Foliar EBR application did 
not increase the frost tolerance of Amarant compared with 
control plants acclimated for 6  weeks. However, 6  weeks 
of cold acclimation and EBR application resulted in an 
increase in frost tolerance compared with plants cold accli-
mated for 3 weeks. In Flinston, EBR caused lack of changes 
after 3 weeks of cold acclimation and a significant increase 
in frost tolerance after 6 weeks of cold acclimation.

Discussion

Several studies have shown that brassinosteroids are 
directly involved in the regulation of photosynthesis at 
optimal growth temperatures (Yu and others 2004; Janec-
zko and others 2016). In the present study, the response of 
plants to EBR treatment was similar in both cultivars prior 
to cold acclimation. The only differences involved quan-
tum efficiency of PSII (φPSII) and photochemical quench-
ing (qp), which were higher in the highly frost-tolerant 
Flinston cultivar compared with the control. Independent 
of differences in photosynthetic efficiency between the 
two cultivars, EBR increased Rubisco and SPS activities-a 
change that was accompanied by lowering of sucrose levels 
coupled with an increase in fructose. This result suggests 
that at optimal growth conditions, EBR in the lesser extent 
influenced the light reactions of photosynthesis than the 
dark reactions of carbon fixation and carbohydrate metabo-
lism. Our findings are consistent with the previous studies 
obtained on barley (Hordeum vulgare) mutants. Disrup-
tion of brassinosteroid biosynthesis resulted in decreases 
in Rubisco activity and sucrose concentration accompanied 
by increases in glucose and fructose contents (Janeczko 
and others 2016). Defects in brassinosteroid biosynthesis 

did not disturb the efficiency of PSII and even slightly 
increased the effectiveness of this photosystem (Janeczko 
and others 2016).

In contrast to observations made under optimal growth 
conditions, very little is known about whether brassinos-
teroids play a role in the alteration of photosynthetic accli-
mation during prolonged growth under cold temperatures. 
Downregulation of photosynthetic efficiency is a mecha-
nism that allows plants to survive winter conditions. Cold 
acclimation usually is accompanied by a decrease in φPSII 
and qp together with an increase in NPQ (Rapacz and oth-
ers 2004). A similar relationship between sugar distribu-
tion, photosynthetic efficiency, and winter resistance was 
also observed in our earlier study on Festulolium (Pocie-
cha and others 2010). In that study, the resistant genotype 
showed a decrease in leaf sugar content after 3  weeks of 
cold acclimation that was associated with a lower reduction 
in NPQ and a higher decline in qp and φPSII; this was in 
contrast to the susceptible line, where an increased level of 
carbohydrates was connected with lower reductions of qp 
and φPSII.

In the present study, the NPQ mechanism was activated 
by EBR in the Flinston cultivar after 3 weeks of cold. The 
decrease in φPSII, which is related to limited consumption 
of NADPH, was accompanied by lowered Rubisco and 
SPS activities. Low Rubisco activity, probably due to low 
internal concentration of CO2, decreased the pool of the 
electron acceptor NADP+ available on the acceptor side of 
photosystem I. Moreover, a decline in the activity of SPS, 
an enzyme responsible for the export of sucrose to acceptor 
tissues, was followed by a decrease in sucrose levels. The 
suppression of φPSII and Rubisco and SPS activities was 
transient and can be attributed to photoinhibition avoid-
ance via NPQ. Thanks to the NPQ mechanism, the level of 
excitation energy in the PSII antenna can be regulated to 
prevent over-reduction of the electron transport chain. After 
6  weeks of cold acclimation, a marked increase in φPSII 
and qP reflected increased demands for ATP and NADPH, 
as an increase in qP is related to increased consumption of 
reductants and ATP (Nogues and Baker 2000). At the same 
time, EBR increased Rubisco activity, and, as a result of 
increased carbon fixation, SPS activity and sucrose levels. 
These changes can thus be attributed to the adaptation of 
the photosynthetic apparatus to function at low tempera-
tures, in contrast to changes observed after 3 weeks at 4 °C, 
when plants redirected their metabolism to deal with stress. 
In general, EBR accelerated the recovery of the photosyn-
thetic apparatus and enzyme activities, which reflected an 
adjustment to cold conditions and contributed to increased 
frost tolerance.

In the Amarant cultivar, an increase in sucrose levels 
was accompanied by a decrease in Rubisco and SPS activi-
ties during the cold acclimation period. An accumulation of 

Table 1   Frost tolerance of control and 24-epibrassinolide (EBR)-
treated perennial ryegrass plants after 3 and 6 weeks of cold acclima-
tion

The presented data are mean values based on 50 replicates ± SE. 
Mean values marked with the same letter did not differ significantly 
according to Duncan’s test at p ≤ 0.05

Cultivar

Amarant Flinston

Weeks of cold acclimation 3 6 3 6

Frost tolerance
(on a 0 to 9 scale)

Control
EBR

2.80c

2.58c
5.12bc

6.67b
3.26c

4.51c
6.01b

8.09a
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cytoplasmic sucrose causes a build-up of triose and hexose 
phosphates as a consequence of feedback inhibition of SPS 
by sucrose (Paul and Foyer 2001). This observation sug-
gests that EBR triggered an excess of sugars in the leaves 
of the Amarant cultivar, which in turn induced feedback 
inhibition of photosynthesis. Instead of being exported, 
carbohydrates accumulated in leaves and suppressed pho-
tosynthesis, as high sugar concentrations have been shown 
to downregulate photosynthetic genes including Rubisco 
activase (Jurczyk and others 2016). Interestingly, downreg-
ulation of photosynthesis in Amarant did not diminish frost 
tolerance, which remained at the control level. Most likely, 
another protective mechanism stemming from brassinoster-
oid structural and physical properties was operating, such 
as stabilization of membrane structure similar to that due to 
sterols at cold temperatures (Grunwald 1974, Janeczko and 
others 2007).

Because accumulated reserves are the source for 
regrowth of new leaves from surviving subapical meris-
tems, the strength of the sink is important for winter sur-
vival. Sugars allocated from leaves to crowns not only pro-
vide energy resources, but also lead to anatomical changes 
that support defense mechanisms. In winter rye, callose 
synthesis in crown tissue (Pociecha and others 2013; Żur 
and others 2011) and strengthening of the cell wall matrix 
with structural carbohydrates (Pociecha and others 2016b) 
accompany plant resistance to winter stress factors. In Flin-
ston plants exposed to 3 weeks of cold acclimation, EBR 
enhanced the level of cell wall-bound phenolics which 
also participate in cell wall reinforcement. Additionally, 
the increase of bound phenolics was accompanied by a 
decrease in soluble phenolics indicating their utilization as 
building material in the cell wall structure.

In Flinston, EBR pre-treatment enhanced ACC and 
JA accumulations during cold acclimation. The elevated 
level of these signaling compounds corresponded with 
the results of Gaudet and others (2010), who reported an 
upregulation in ethylene and jasmonic acid pathways in 
freezing susceptible line CI14106 and to a lesser extent 
in cold hardy line DH + 268, particularly in later stages 
of hardening at 2 °C from days 7 to 49. According to their 
work, full expression of the gene-controlling jasmonic 
acid synthesis, allene oxide synthase (AOS) was achieved 
after 42  days of hardening treatment. In our study, the 
highest level of JA was noticed in EBR-treated Flinston 
plants exactly after 6  weeks of cold acclimation. The 
interaction between BRs and JA in abiotic stress adapta-
tion is still unclear, however, it is hypothesized that BRs 
might influence plant stress responses by stimulating JA 
biosynthesis (Ahammed and others 2015). In Flinston, 
EBR-mediated increase of ACC level was consistent with 
the results published by Hansen and others (2009) who 
found a positive influence of BRs on ET biosynthesis 

through the regulation of ACS and ACC oxidase activity. 
The lack of changes or decreased SA level in the study 
could be explained by mutual antagonism of JA and SA. 
It is known that mutations that disrupt JA signaling (coi1) 
lead to enhanced basal and inducible expression of SA 
marker gene PR1, whereas the mutations that disrupt SA 
signaling (npr1) lead to concomitant increase in the basal 
or induced levels of JA marker gene PDF1.2 (Kazan and 
Manners 2008). According to Kosova and others (2012), 
21 days of low temperature stimulated the accumulation 
of endogenous JA in winter wheat, whereas prolonged 
cold treatment was associated with a decrease of SA.

Taken together, our results demonstrate that brassinos-
teroid-induced regulation of photosynthetic efficiency and 
activities of photosynthetic enzymes such as Rubisco and 
those involved in sugar metabolism are temperature and 
stage of cold acclimation dependent. Our findings empha-
size the role of EBR in enhancing photoprotection mecha-
nisms during prolonged exposure to cold. It is also likely 
that EBR participated in the enhancement of frost tolerance 
not only by altering photosynthesis but also by regulation 
of stress-related signaling compounds such as JA and eth-
ylene but not SA in winter rye undergoing cold acclima-
tion. However, as evidenced by the increase in frost toler-
ance observed only in the highly frost-tolerant cultivar, the 
beneficial effect of EBR is not universal. It is suggested that 
genetically determined mechanisms may be dominant rela-
tive to the action of exogenous EBR. However, to under-
stand the role of EBR in sink size regulation and hormone 
homeostasis more detailed investigations are needed.
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