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Abstract 

The California Polytechnic State University CubeSat student research & development group, 

PolySat, is currently in a mature development stage of a single unit CubeSat designated CP7. The CP7 

mission implements a scientific payload designed to characterize particle dampers in microgravity 

conditions.  When subjected to vibration, the momentum exchanges and frictional forces of the particles 

create a damping effect that can be optimized to suit a number of applications over a broad frequency 

and amplitude range. In space based applications, particle dampers would serve as a robust and simple 

device to eliminate jitter in optical assemblies and other sensitive instrumentation.   This report will 

include the design and implementation of the payload software for the CP7 satellite. 
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1. Introduction 

The California Polytechnic State University CubeSat student research & development group, PolySat, 

is currently in a mature development stage of a single unit CubeSat designated CP7. The CP7 mission 

implements a scientific payload designed to characterize particle dampers in microgravity conditions. 

Particle dampers are mechanical damping devices that consist of an enclosed cavity filled with particles. 

When subjected to vibration, the momentum exchanges and frictional forces of the particles create a 

damping effect that can be optimized to suit a number of applications over a broad frequency and 

amplitude range. In space based applications, particle dampers would serve as a robust and simple 

device to eliminate jitter in optical assemblies and other sensitive instrumentation.  

Due to the nonlinear dynamics of particle dampers, and their dependence on orientation with 

gravity, the development of a model of particle damper behavior in spacecraft cannot be supported 

entirely by data achieved from ground tests. The CP7 mission provides orbital data, enabling the 

development and verification of this model.   

After testing the original CP7 sensor design on a NASA Zero-G flight it was concluded that 

the sensor board and bus interface would require a complete redesign (Abel, et al., 2009).  The 

first component of the redesign was switching the beam sensor from magnetic switches to 

accelerometers.  The second was altering the sensor board to allow the measured peak voltage 

levels from the accelerometer to be cleared.  The third was to add a software driven automatic 

gain control system to maximize the resolution of the measured waveform.  The fourth was to 

add error checking in the form of full waveform sampling and measuring the phase shift.   

This project will include the design and implementation of the payload software for the CP7 

satellite including its ability to react to commands received from the satellite bus.   
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2. Background 

2.1. What is a CubeSat? 

The CubeSat program was founded in 1999 by Dr. Jordi Puig-Suari of Cal Poly San Luis Obispo 

and Dr. Robert Twiggs of Stanford University.  Their idea was to develop a standard of picosatellite 

and a deployment mechanism which would enable students and research groups to design, 

implement, and deploy experimental payloads at a fraction of the cost and risk.  The CubeSat 

standard defines a single unit CubeSat as a 10cm cube with a mass less than or equal to 1.33kg.  The 

CubeSats are deployed from the launch vehicle using a Poly Picosatellite Orbital Deployer (P-POD) 

which is capable of deploying 3 1-Unit (1U) CubeSats or any variation of units that fills the 3U 

capacity.  (CubeSat Program, 2009) 

 

Figure 1: Schematic of a 3U P-POD borrowed with permission from (CubeSat Program, 2009). 

PolySat, a California Polytechnic State University CubeSat student research & development 

group, has been developing CubeSats since its inception in 1999 by Dr. Puig-Suari.  PolySat was 
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Figure 2: CP3 CubeSat Engineering Model. 
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Figure 3: P-CAP Motherboards. 

 

2.2. What is Particle Dampening? 

Particle dampening is a passive nonlinear mechanical dampening system.  Particle dampeners 

have one or more hollow cavities built into their structure filled with free moving particles.  When 

the structure experiences mechanical vibration from an external source the particles experience 

exchanges in momentum and dissipate energy through friction that results in a dampening of the 

input vibration.  The structure and fill of particle dampeners can be designed to reduce a spectrum 

of vibrational frequencies and vibrational amplitudes.  Below is a figure demonstrating a simple 

spring base particle dampener borrowed with permission from Northrop Grumman.  (Dr. Stepan S. 

Simonian, 2008) 
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Figure 4: Illustration of a simple particle dampener. 

A particle dampener is optimized for an application by designing the mechanical system to have 

a resonant frequency centered on the interfering frequency.  It is important that during the design 

of the mechanical system that the mass and orientation of the particle fill is taken into account 

because the distribution of the mass of the system has a direct correlation to the resonance of the 

system.  The underlying problem involved during the design process is particle dampeners are 

nonlinear with respect to the behavior of the particles and with respect to the systems orientation 

with gravity.  In order to overcome the complexity of the particle dampeners nonlinear behavior 

models are developed from collected test data of specific particle dampener designs.  (Dr. Stepan S. 

Simonian, 2008) 

 

2.3. Why is modeling Particle Dampening in Space important? 

Particle dampeners are a cost effective, zero power requirement solution to mechanical 

vibrations.  They are often used in land based applications to affordably overcome unexpected jitter 

in laser, radio, and photographic structures (Simonian, 2006).  The ability to apply particle 
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dampeners in space based technologies would prove to be less expensive and require less power 

than existing active dampening solutions.  (Dr. Stepan S. Simonian, 2008) 

The ability of organizations like Northrop Grumman to implement particle dampening in 

microgravity is limited by the lack of a modeling data.  This modeling data is particularly important 

due to the nonlinearity of particle dampeners with respect to gravity.  It is not evident how a particle 

dampener will behave in microgravity, but in order to design, implement, and gain heritage it is 

important to test and model particle dampening in space.  (Abel, et al., 2009) 

 

2.4. How do CubeSats and Particle Dampening come together? 

The CubeSat platform was defined and designed with intention of developing and testing small 

scientific packages in space in a cost effective and low risk manner.  Northrop Grumman saw the 

benefit in sponsoring the development of a CubeSat standard satellite to test and develop a model 

of particle dampening in microgravity not only for use in future missions, but also to aid in the 

educational and technical development of the student engineers involved.  Northrop Grumman 

came into contact with PolySat and the CP7 satellite was born.  The CP7 satellite will model of the 

behavior of three cantilever beam particle dampeners, each with a different percentage fill.   
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Figure 5: Filled particle dampener cavity of CP7 Test Beam. 

 

2.5. What is a Piezoelectric Actuator? 

A piezoelectric actuator (or piezoelectric transducer) is constructed of a ceramic material of 

polarized molecules with electrodes extending from opposing ends.  The polarized molecules are 

arranged such that when an electric potential is applied the molecules will realign themselves 

expanding or contracting the piezo with respect to polarity and amplitude of the charge.  This 

behavior is known as electrostriction.  (Piezotransducers, 2009)  A function describing the 

mechanical force exerted by a piezo is: 

 

Where A is the area of the piezo cross section, Eb are the Longitudinal Young’s Modules of the 

piezo, d31 is the tranverse piezoelectric charge constant, tc is the piezo thickness, lc is the piezo 

length, and V is the applied voltage.  (A. Oliveira, 2004) 
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The piezoelectric actuators used on CP7 were provided by Northrup Grumman are Navy Type II 

PZTA3.  Applying the parameters of the Navy Type II PZTA3 it is determined that the piezo will exert 

.1675lbs force per applied volt to the beam.  (Krueger)  The piezo is bonded to the beam using 

nonconductive epoxy.  The type of bonding agent used has been found to have a significant effect 

on the performance of the piezo’s ability to transfer energy into the beam.  To improve the response 

of the beam the selection of a more rigid bonding agent is recommended.   

 

Figure 6: Demonstration of expansion (blue) and contraction (red) of piezo on CP7 Test Beam. 

 

2.6. What was learned from the CP7 tests on the NASA Zero-G Flight? 

In the Summer of 2009 several members of PolySat were invited to test a proof of concept 

revision of CP7 on the NASA Zero-G Flight (a reduced gravity parabolic flight).  The NASA Zero-G 

Flight played a significant role in the design of the current revision of CP7.  Several issues came to 
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view during the development process of the proof of concept and from the data gathered during the 

flight.  (Abel, et al., 2009) 

 

Figure 7: PolySat members handling initial CP7 revision during NASA Zero-G Flight. 

The first issue that came to light was the use of hall sensors to determine and measure the 

velocity of the beam tip.  This technique utilized magnets and carefully positioned sensors.  The 

largest problem found with this technique was need for the sensors to be carefully calibrated and 

the tendency of those sensors to shift out of calibration.  It became a significant concern that the 

sensors would not be able to make it through the launch process without moving out of calibration.  

This technique also had limitations to the degree of resolution.  In order to overcome these issues it 

was decided to utilize an accelerometer appended to the tip of the beam and infer the velocity from 

the measured acceleration.  In order to improve the resolution of the measured beam response it 

was concluded to implement a stage of automatic gain control to dynamically increase the strength 

of the signal.   
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A second issue that came up in the development of the proof of concept was the characteristic 

decrease in beam response as the input frequency increased.  This attenuation was found to be the 

result of the piezoelectric actuator behaving electrically as a capacitor.  By considering the piezo’s 

position in the circuit, the resulting circuit behaves similar to a low pass filter.  In order to 

compensate for the resulting signal attenuation a stage of automatic gain control is implemented.  

This stage of automatic gain control was also necessary in order to produce a variety of signal 

amplitudes to fully characterize the particle dampener’s performance.   

The third issue that came up was determined from the data retrieved from tests run during the 

flight.  The data expressed occasional humps across the frequency spectrum of the test process.  It 

was determined that the cause of these humps was the altering of the frequency over actuating the 

beam.  The over actuation itself cannot be easily overcome; thus, it was concluded to compensate 

for the presence of this temporary over actuation by implementing a steady state algorithm that 

waits for the added energy to dissipate.   

 

2.7. What is an Accelerometer? 

An accelerometer is a device that measures the amount of acceleration experienced.  This 

acceleration is both in the form static acceleration (resulting from gravity) and dynamic acceleration 

(resulting from a change in velocity).  A number of MEMs Accelerometer packages are available on 

the market today and are found in everything from computer hard drives and cell phones to car 

engines.  Accelerometers can be found in one and two access versions, but can be combined to 

determine any number of axial combinations.   
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CP7 uses two axis 2G/6G configurable MEMs accelerometers attached to the centerline of the 

particle dampener heads.  The accelerator outputs the degree of acceleration in form of a voltage 

which can be interpreted by an analog to digital converter for further evaluation.   

  

3. Description 

3.1. CP7 Overall Design 

The CP7 satellite will test three cantilever beam particle dampeners with 0%, 95%, and 99% 

particle fills.  The data retrieved from testing will enable the development of a model for the 

development of similar cantilever beam particle dampeners for use in microgravity.  Each beam will 

be activated using a piezoelectric actuator driven by a high voltage board.  The response of each 

beam will be measured using a MEMs accelerometer centered on the head of the particle 

dampener.  Each beam is equipped with a locking mechanism that will enable the beams to be 

tested individually without interference from the other beams.  The control of the piezo driver 

board, the sensor boards, and the storage of the results will be managed by the payload board.  The 

payload board will communicate with the PCAP via I2C.  The PCAP will be responsible for power and 

communication management of the satellite.  All of the above components will be contained within 

1U CubeSat. 
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Figure 8: CAD Drawing of CP7. 

The payload software will be responsible for managing the piezo driver board, the beam control, 

the sensor boards, the data storage, and a segment of the communication with the PCAP.  The 

payload software will run on a PIC18F8722 80 pin microcontroller with an effective 5MHz instruction 

speed. (Microchip, 2008)  The payload software will be responsible for meeting the following 

requirements by controlling hardware through I2C, SPI and GPIOs.  The requirements for the 

payload software are listed below. 

[R-1] Testing 
[R-1.1] Ability to run identical tests on multiple beams. 

[R-1.2] Ability to run a series of tests over a range of frequencies. 

[R-1.3] Ability to set the frequency of a test. 

[R-1.4] Ability to measure the peak voltage, valley voltage, frequency and phase of the 

waveform output by the accelerometer.   

[R-1.4.1]   Ability to ensure that the beam has entered a steady state before measurements 

are taken. 

[R-1.5] Ability to store the results of tests such that they will not be lost in the case of a power 

shortage. 

[R-1.6] Ability to use Automatic Gain Control to maximize the resolution of a test data. 
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[R-1.6.1] Ability to set the gain in steps with accordance to measured values of the peak and 

valley voltages. 

[R-1.6.2] Ability to translate measured values after the adjusted gain into equivalent G-force 

values. 

[R-1.6.3] Ability for the Automatic Gain Control to utilize both 2G and 6G modes of the 

accelerometer. 

[R-1.7] Ability to dynamically adjust the amplitude of the waveform acting on the piezo electric 

actuator. 

[R-1.8] Ability to utilize phase and frequency data to validate the results of a test. 

[R-1.9] Ability to handle bus communication errors with sensor boards. 

[R-1.10] Ability to store test data for retrieval by the bus. 

[R-2] Bus Interaction 
[R-2.1] Ability to receive a command from the bus. 

[R-2.1.1] Command to do a single test. 

[R-2.1.2] Command to do a range of tests. 

[R-2.1.3] Command to check temperature. 

[R-2.1.4] Command to access stored test results. 

[R-2.1.5] Command to reset. 

[R-2.1.6] Command to enter low power mode. 

[R-2.1.7] Command to cancel testing. 

 

The function of the payload can be described as a simple loop.  Upon startup of the 

microcontroller all of the external devices are initialized into their default or standby states.  The 

system then waits for the command flag to be updated signaling that a complete command has 

been received by the PCAP.  The command is executed and the next command will be waited for. 
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Figure 9: Main loop control flow diagram. 

 

3.2. Beam Control 

The CP7 Satellite will use three separate test beams.  The three beams are designed to behave 

the same; however, each beam’s cavity will contain a different percentage fill to model how the 

variation of fill will affect the beam behavior.  The first beam is the control beam and will have a 0% 

fill, the second beam will have a 95% fill, and the third beam will have 99% fill.  In order to correctly 

characterize each beam the other beams must be constrained in order to prevent them from 

interfering with the experiment.  For example, it would be detrimental to the development of the 

experimental data if the 99% fill beam was dampening the system while running an experiment on 

the 95% fill.   

To resolve the above issues each beam is equipped with a mechanical locking system.  The lock 

is controlled with a Shape Memory Actuator (SMA) that pushes a locking pin into position.  A SMA is 
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also utilized to actuate a release mechanism that unlocks all three beams simultaneously.  The SMA 

is a wire wound between two pulleys and attached to a latch.  When a current is applied to the wire 

it heats up and the wire contracts causing the latch to actuate.   

 

Figure 10: Green PCB of SMA Actuator connected to black pin of locking mechanism. 

The existing beam lock and unlock algorithms have been found to be oversimplified.  The SMA is 

sensitive to the applied current and generated heat.  These inputs to the system are required for 

functionality; however, if an excess of current is applied or the Shape Memory Wire (SMW) 

overheats, the SMW can burn out, de-characterize, or even break.   Any of these three states would 

leave the satellite in a non-optimal mode of functionality.  If it the wire to burn out is the release 

actuator, then all of the beams could be stuck in the locked position.  If it the wire to burn out is a 

locking actuator then a beam could be permanently unlocked (always interfering with experimental 

tests run on the other beams) or permanently locked (no longer able to run an experimental test).   

To manage and protect against the SMW from overheating a current sensor and temperature 

sensor have been built into the system.  The temperature sensor can be used to determine the 

relative temperature of the SMW while the current sensor can be used to estimate the total amount 

energy dissipated across the wire.  The future algorithm will need to evaluate these two conditions 
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in order to insure that the SMW does not overheat and become damaged during testing or flight.  

The determination of what amount of energy dissipation and what temperatures are acceptable for 

the SMW should be determined by developing a model of the system both in atmosphere and in 

space (heat dissipation and energy requirements to actuate the SWM will be different without the 

presence of atmosphere).  The new algorithm will require the use of timers with interrupts.  Delays 

cannot be used otherwise the estimates of energy dissipation will not be truly accurate.   

The existing beamLock algorithm is actually quite simple.  It begins by initializing a set of delay 

values.  Delays were determined to be used because it was spec’ed that a rough time limit would be 

sufficient to protect the SMW from overheating.  To reiterate the previous two paragraphs: a rough 

time limit is not sufficient to protect the SMW from overheating.  The beam position line is then 

checked and determined if it is locked.  If it is locked, the SMA Driver is set low and the algorithm 

quits.  Otherwise, the number of BEAM_LOCK_TIMER_CYCLES that have come to pass is evaluated.  

If the max has been reached and the beam is still not locked an error flag is set, the SMA Driver is set 

low and the algorithm quits.  Otherwise, the SMA Driver is set high and the count is incremented, 

and the algorithm delays BEAM_LOCK_TIMER_STEP.   
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Figure 11: lockBeam alogorithm. 
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The unlockAllBeams algorithm is similar to the lockBeam algorithm.  The primary difference is the 

unlockAllBeams algorithm drives the SMA Release actuator and checks the position of all three 

beams.  The returned error directly corresponds to the beams that did not unlock correctly.   

 

Figure 12: unlockAllBeams algorithm. 
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 The unlockBeam method is designed to leave the system with one beam unlocked.  It begins by 

calling the unlockAllBeams algorithm.  It then proceeds to lock the two beams that are not the 

specified beam to remain unlocked.   

 

Figure 13: unlockBeam algorithm. 
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3.3. Utilizing Automatic Gain Control on the Sensor Board 

After the NASA ZERO-G Flight it was determined that the resolution of the output from the 

accelerometer (or at the time the hall sensor) needed to be increased.  Part of this need for a 

increased resolution is due to the low voltage output of the accelerometer.  The setAGC algorithm is 

a highly refined automatic gain control that utilizes a table to specify gain steps, stages, and limits.  

The complexity of the algorithm is increased by the accelerometer being able to measure the 

acceleration in a 2G range and a 6G range.  The complexity of the algorithm is also increased to 

handle potential noise in the system that could and has caused the gain to be set incorrectly.   
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Initialize Values:
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Figure 14: setAGC algorithm. 
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 The adjustGain algorithm is called by setAGC.  adjustGain evaluates the current VPK value with 

respect to the current gain, looks up the appropriate gain setting based on that result in the gain 

table, and sets the AD5245 with the respective gain setting.   

 

Figure 15: adjustGain algorithm. 

 The waitNRead algorithm is called by multiple functions to read the current VPK value.  

waitNRead toggles the RST pin on the PCA9536 which refreshes VPK and eliminates spikes that 

could be caused during frequency changes which were found during the NASA Zero-G Flight.  After 

the reset the system delays for the equivalent of 1.5 periods of the current waveform to ensure the 

peak voltage is captured.  A conversion in the ADS1115 is then initiated, read, and the result is 

returned.   
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Figure 16: waitNRead algorithm. 

 The findSteadyState algorithm is essential in determining a valid VPK value and is called after 

setAGC.  The findSteadyState algorithm essentially waits for the mechanical system to enter a stable 

mode and accounts for the fluctuations in the behavior of the beam that result from adjusting the 

frequency and amplitude of the waveform manipulating the beam.  This equivalent to waiting for 

the beam to debounce.   

The need for the findSteadyState algorithm was determined from data gathered during the 

NASA Zero-G Flight.  A result of transient frequency alterations, a characteristic of the 

programmable waveform generator, and gain increases the beam can actuate to greater degree 

than desired.  This imperfect deformation of the beam can result in the beam temporarily becoming 
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more excited than intended and the findSteadyState method waits for this excitation to settle out of 

the system.  

 

Figure 17: Graph demonstrating need for steady state algorithm. 

The findSteadyState algorithm samples the VPK value using waitNRead repeatedly over a period 

of time.  A valid or steady VPK is determined when the difference between the previous VPK and the 

current VPK is within the Steady State Margin (SSMRGN).  If after a SS_LOOP_MAX trials fail to find a 

steady VPK and the SSMRGN is less than SS_MRGN_MAX the SSMRGN is increased by 

SS_MRGN_INC.  This behavior enables the algorithm to handle small amount of noise on the system 

(either electrical or mechanical).   
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Start

SS_LOOP_CNT++

Return VPK, VVAL, SS_MRGN
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?
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SS_LOOP_MAX ?
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Store SS_MRGN

SS_MRGN += SS_MRGN_INC

YES

NO

YES

NO

YESNO

 

Figure 18: findSteadyState algorithm. 

 

3.4. Dynamically adjusting waveform frequency into Piezoelectric Actuator 

In order to replicate the behavior of a vibrating structure using the Piezoelectric Actuator and 

develop an effective model of the PD’s behavior it is necessary to be able to generate a waveform in 

a spectrum of frequencies in discrete steps.  This made possible by using a programmable waveform 

generator which utilizes direct digital synthesis (DDS).  The Analog Devices AD9833 DDS IC was 

selected for this project.  The AD9833 can generate square, saw tooth, and sinusoidal waveforms at 

frequencies from 0-12.5MHz with step sizes as small as 0.004Hz depending on the configuration.  
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The AD9833 is configured by a required external oscillator.  The faster the external oscillator (MCLK) 

the greater the spectrum of possible frequencies and the larger the step size; while the smaller the 

MCLK the smaller the spectrum of possible frequencies and the finer the resolution of the step size.  

Another important characteristic of the AD9833 is that with smaller MCLKs jitter in the output 

waveform becomes an issue.  In other words, it is possible to use a smaller MCLK and achieve a very 

fine resolution step size, but the resulting jitter, could in certain situations (CP7’s), reduce the clarity 

and accuracy of the experiment.  For CP7 a MCLK of 16MHz was selected because it provides an 

8MHz low jitter spectrum with 0.06Hz step sizes.  It was previously determined that a step size of 

0.5Hz would be sufficient in order to produce an effective model of the PD.   

 The AD9833 is described by its documentation as an “SPI Compatible Device.”  This was 

originally interpreted as meaning the AD9833 would function using the SPI Protocol; however, it 

quickly became clear that this was not the case.  It turns out that the AD9833 is “compatible” in the 

sense that it can utilize the SPI lines for communication while the other SPI devices are not in use.  

The biggest difference between the protocols is the AD9833 uses 16 bit words separated by one or 

more clock cycles which are not compatible with the PIC Microcontroller SPI driver which uses 8 bit 

words separated by one or more clock cycles.  In order to resolve this issue it was required that a Bit 

Bang Driver be written.  The code and documentation for this driver can be found in cp7-spi-

ad9833.c cp7-spi-ad9833.h.   

 The use of the AD9833 DDS is a significant difference compared to the solution used for the 

NASA Zero-G Flight.  That revision of CP7 utilized a second microcontroller that’s sole responsibility 

was the generation of sinusoids at the desired frequencies.  This technique was limited in the 

number of possible frequencies that could produced, the complexity of adding additional 
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frequencies, plagued with problems resulting from the single thread operation of the 

microcontroller, and required more board space than the DDS.   

 

3.5. Dynamically adjusting waveform amplitude into Piezoelectric Actuator 

The CP7 revision developed for the NASA Zero-G Flight showed that as the Input Frequency 

increased the reaction of the beam from the signal slowly attenuated.  Research performed by John 

Abel and several others at PolySat found that this attenuation was not the result of mechanical 

influences, but was the result of the electrical characteristics of the piezo.  The piezo has many 

behavioral characteristics similar to that of a capacitor.  By considering the piezo driver circuit [see 

appendix], the generated waveform is passed through an amplifier, through a resistor, and across 

the piezo (a capacitor); it becomes clear that overall circuit behaves like a very poorly designed 

lowpass filter.  This problem is overcome by implementing Automatic Gain Control for the piezo 

driver and as an added bonus it allows multiple amplitude inputs to be used to characterize the 

particle dampener.   

 The piezo driver automatic gain control or input amplitude automatic gain control (inAmplAGC) 

is not as fine grained nor computationally intensive as the automatic gain control for the sensor 

boards.  The premise behind the algorithm is to break the problem into three parts.  The first part, 

setCoarseGain, is intended to overshoot the goal output (VSET) by as little as possible by evaluating 

four possible coarse gain states.  The second part, setFineGain, is intended to take large then small 

steps through the gain settings to reach an output as close to VSET as possible.  The first and second 

parts are to be used prior to running a frequency sweep of tests or a single test.  The third part, 
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updateInputAmpl, is intended to adjust the gain to compensate for changes in the output as a result 

of increasing attenuation.   

 

Figure 19: Graphical representation of the setCoarseGain results. 

 The setCoarseGain algorithm has four possible states.  The first state is the Low Voltage Mode 

(LV_MODE).  When in LV_MODE the nominal amplitude of the waveform is 2VPP to 86VPP.  The 

remaining three states are not in LV_MODE and can produce a nominal amplitude of the waveform 

from 20VPP to VMAX.  The remaining three states are gain settings controlled by the ADG621 based 

on which outputs are selected from the AD5280 from O1 and O2 and provides gains of 8, 25, and 

90.9.  The exact characteristics of this interaction can be clearly seen in the Piezo Driver Schematic 

found in the appendix.  A flow diagram for the setCoarseGain algorithm can be seen below.   
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Figure 20: setCoarseGain algorithm. 

 The setFineGain algorithm is called at the end of the setCoarseGain algorithm.  It is responsible 

for adjusting the gain controlled by the AD5280.  The AD5280 is an I2C Digital Potentiometer with 

255 equally distributed stages of resistance.  The setFineGain circles the output amplitude into VSET.  

Although it is unlikely the setFineGain will achieve the exact desired VSET it does achieve an 

amplitude that meets the accuracy requirements of the project.   
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Figure 21: setFineGain algorithm. 
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 The updateInputAmpl algorithm is designed to make minor adjustments to the output 

amplitude in order to compensate for the attenuation resulting from the increased frequency.  The 

updateInputAmpl algorithm either steps up or steps down the gain until it reaches an output 

amplitude as close to VSET as possible.  It is capable of determining that the desired VSET is out of 

the range of the current coarse gain setting and will call setCoarseGain to nominalize the coarse and 

fine gain.   
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Figure 22: updateInputAmpl algorithm. 
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3.6. Determining phase and frequency of test waveform 

The NASA Zero-G Flight raised a concern about how accurately the beam was actuated by the 

piezo driver board.  This was both a concern of the magnitude, but also the frequency the beam 

vibration with respect to the input frequency and the corresponding phase.  The frequency and 

phase analysis is almost entirely handled by hardware developed by John Abel.  The algorithmss to 

interpret and retrieve this information merely press the appropriate buttons to get the information 

from the Frequency and Phase Detector (FPD) circuitry.   

The FPD hardware is currently in its second revision.  The original revision utilized a Cypress 48-

pin I2C GPIO expander (CY8C9540A).  This GPIO expander proved to be overly complex to utilize and 

had improperly implemented the “Stop and Hold” aspect of the I2C protocol.  One out of five times 

the CY8C9540A would use the “Stop and Hold” procedure it would fail to return to a proper state 

and the I2C bus for the entire payload would be driven to ground.  This behavior was determined to 

be unacceptable and the CY8C9540A was replaced by two NXP Semiconductor 24-pin I2C GPIO 

expanders (PCA9555).   

The detectFreqNPhase function begins by initializing the FPD hardware to specified state.  It 

then switches the input read into the FPD hardware to the output of the specified beam.  The FPD 

hardware is then cleared and armed, and the Input Frequency, Output Frequency, and Phase values 

are read into the microcontroller.  Respective errors are flagged and the results are returned.   
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Initialize Freq and Phase Detector to specified 

values

Specify beam to read frequency output from

Set number of divisions to be used to count 

frequency

Pull CLR HIGH and toggle /ARM

Read FREQUENCY_IN and store errors

Read FREQUENCY_OUT and store errors

Read PHASE and store errors

Return

 

Figure 23: detectFreqNPhase overall flow chart. 

 

The remaining portions of the function read in the input frequency, output frequency and phase.  

They all follow the exact same pattern to retrieve the data.  The respective BUSY line is waited on to 

reach a low or inactive state.  If TMAX is reached before it goes low and error flag is set.  Either way 

the function proceeds to toggle the UPDATE_CNT line and read in each byte of the four byte value 

beginning with the most significant.  The bytes are shifted into return variables. 
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Wait for F_IN_BUSY to go LOW

Toggle UPDATE_CNT
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Figure 24: Frequency In evaluation. 
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Wait for F_OUT_BUSY to go LOW

Toggle UPDATE_CNT

Set F_OUT_SB3 LOW and read in byte 3

Set F_OUT_SB3 High and F_OUT_SB2 low and 

read in byte 2

Set F_OUT_SB2 high and F_OUT_SB1 low and 

read in byte 1

Set F_OUT_SB1 high and F_OUT_SB0 low and 

read in byte 0

Return

Within TMAX?

Set F_OUT_SB0 high

Set F_OUT_ERROR

NO

YES

 

Figure 25: Frequency Out evaluation. 
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Wait for PHASE_BUSY to go LOW

Toggle UPDATE_CNT

Set PHASE_SB3 LOW and read in byte 3

Set PHASE_SB3 High and PHASE_SB2 low and 

read in byte 2
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Set PHASE_ERROR
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Figure 26: Phase evaluation. 
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3.7. Developing a test platform 

The testing segment of the CP7 satellite is broken into two parts.  The first part is the evaluation 

of beam behavior at a single frequency, single amplitude, and on a single beam.  The second part is 

the ability to evaluate a single beam across a spectrum of frequencies at constant amplitude.  It is 

important that if one component of the test fails that the failure is noted, remaining test data is not 

corrupted or disrupted, and all of the resulting data can be stored in the same form as a correct test 

sample.  It is also important that the test utilizes the gain controls to maximize the accuracy of the 

data and that the test includes all the aspects of data acquisition available.   

The singleFrequencyTest method runs with the expectation that the AD9833 has been properly 

initialized and configured and that setCoarseGain has been called placing the piezo driver board in a 

proper state for the test.  The method sets the frequency to be output by the AD9833 and stores the 

frequency on the EEPROM.  The wait and read time is reevaluated based on the current frequency.  

Depending on the updateAmp parameter the updateInputAmplitude algorithm is called or the 

waitNRead algorithm is called and the results are stored on the EEPROM.  The I2C bus of the 

appropriate beam and the output lines from the peizo driver to the appropriate beam are selected.  

The automatic gain control for the sensor board is activated and the results of the automatic gain 

control process are stored on the EEPROM.  The findSteadyState algorithm is called and the results 

are stored, and finally the frequency and phase are found and also stored on the EEPROM.   
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Figure 27: Single Frequency Test method. 
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The freqSweepTest method handles the preparation of the AD9833 and the calls the setCoarseGain 

algorithm.  During the initialization period a significant amount of time is spent waiting for the 

hardware to reach a stable state.  After the system has stabilized the singleFreqTest method is called 

with the parameters altered to achieve tests of the desired frequency spectrum.   

 

Set I2C Bus to PIEZO DRIVER 

BOARD

Start

Clear PCA9538_PIN_PIEZO_1

Wait 250ms for hardware

Set frequency on AD9833

Set the waitNRead time

Wait for hardware to stabalize

setCoarseGain()

singleFreqTest()

i++

Set PCA9538_PIN_PIEZO_1

Return

While(I < 

numTests)
sleepAD9833()

 

Figure 28: Frequency Sweep Test method. 
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4. Evaluation 

The CP7 satellite currently exists as an engineering model.  The structure for the three beams have 

been machined and assembled and are in testing.  The entire structure, including all electronics, 

successfully completed preliminary vibration testing on 11/30/2010. The fact that the piezos survived 

the vibration testing is considered a huge success as it was a potential flaw in the system design.   

 

Figure 29: CP7 Engineering Model without solar cells. 
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The piezo driver board has been shown to correctly produce waveforms with amplitudes from 

10VPP to 700VPP.  The design of the coarseGain, fineGain, and updateInputAmpl algorithms are 

designed to get the output waveform amplitude as close to the desired VSET as is possible to achieve 

with respect to the hardware.  The maximum measured error has been roughly 2V for certain VSETs 

above 660VPP or a maximum 0.6% error.  At this level the degree of accuracy for the measurements 

becomes blurred due to the limitations of the laboratory equipment.  The response of the beam to 

these inputs can only be evaluated by the data retrieved from the sweep tests.  Below is a graph 

showing the beam response at different frequencies and amplitudes.  Note the response of the unfilled 

beam versus the filled beam clearly demonstrates the effectiveness of the particle dampener.   

 

Figure 30: Magnitude response of the test beam. 

The piezo driver board has been shown to correctly produce waveforms with frequencies between 

10Hz to 200Hz.  The scope used to measure the frequencies output by the piezo driver board could only 

measure to 0.01Hz accuracy and in this range it was found that the defined output frequency was 
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always achieved.  Another important aspect of the piezo driver board’s output frequency was the beams 

resultant frequency response.  The frequency and phase hardware was able to measure the difference 

in output frequency to beam frequency to be less than one milli-hertz.  Shown below are the frequency 

and phase plots resulting from a sweep test.   

 

Figure 31: Phase response of the test beam. 

The measured output of the sensor boards was calculated to be within 3 milli-G’s of the expected 

output.  This level of accuracy was made possible by the automatic gain control and the accuracy of the 

MEMs accelerometer.  Below is a graph showing the beam response of multiple frequency sweeps 

across multiple amplitudes.  The response is measured in G’s per foot pound and the input amplitude is 

measured in foot pounds. 
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Figure 32: 3D graph of magnitude response of test beam. 

A result of the NASA Zero-G Flight the steady state response was of particular concern.  It has been 

found that steady state is typically found within 0.02G’s.  This includes in the highly unstable resonant 

frequency region when the particle dampener is generating the most nonlinear behavior.  Below is a 

graph demonstrating the systems steady state tolerance. 

 

Figure 33: Steady state tolerance. 
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5. Conclusions 

Working on the CP7 Payload Software was a significant and worthwhile undertaking.  Many 

frustrating hours went into debugging hardware and software issues, but each of those hours proved to 

be full of unexpected learning opportunities.  The multidisciplinary nature of the project and the 

excellent engineers working on the project added a great deal of value to the experience and I sincerely 

hope that future computer engineers will be able have similar experiences.   

There are a number of things that will need immediate attention for the CP7 Payload Software.  The 

Bus Interaction is incomplete and will need extensive development on both the payload side and the P-

CAP side.  An error flagging system has been described in detail in the code documentation, but still 

needs to be implemented.  The beam locking algorithm needs to be updated to use timers and 

interrupts in conjunction with the current and temperature sensors to protect against failures of the 

shape memory actuators.  No aspect of the watchdog timer has been implemented; this will need 

specialized attention and care to ensure no hardware loops are permitted.  The full waveform capture 

on the sensor boards has not been fully implemented which is not necessary for mission success, but 

would add to the quality of test data.  Memory usage is currently limited to one of the four EEPROMS, 

this could easily be expanded by implementing a memory management algorithm and memory read and 

write methods.  The accelerometer self test feature currently has a method in place, but has not been 

tested due to a VVAL hardware failure over the summer.   
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