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On positive commutative tomonoids

Thomas Vetterlein

Abstract. We discuss totally ordered monoids (or tomonoids, for short) that are
commutative, positive, and finitely generated. Tomonoids of this kind correspond to
certain preorders on free commutative monoids. In analogy to positive cones of totally
ordered groups, we introduce direction cones to describe the preorders in question and
we establish between both notions a Galois connection. In particular, we show that
any finitely generated positive commutative tomonoid is the quotient of a tomonoid
arising from a direction cone. We furthermore have a closer look at formally integral
tomonoids and at nilpotent tomonoids. In the latter case, we modify our approach in
order to obtain a description that is based on purely finitary means.

1. Introduction

An interest in totally ordered monoids, or tomonoids as we say in accordance

with [4], is present in diverse fields. For instance, in computational mathemat-

ics and in particular in connection with Gröbner bases of polynomial ideals,

compatible, positive total orders on an Nn, called monomial or term orders,

play an important role; see, e.g., [2]. An early overview of the extensive re-

search on totally ordered semigroups can be found in [6]; a comprehensive

treatment of more recent times is [4].

Our own motivation to study tomonoids is related to a comparably young

research area. Namely, these structures are of central significance in fuzzy

logic [8]. The primary connective of propositional fuzzy logic is the conjunc-

tion, which is usually interpreted by a t-norm [11]. A t-norm is a binary

operation that makes the real unit interval, endowed with its natural order,

into a tomonoid. Tomonoids arising in this way have the additional properties

of being commutative and negative, where “negative” is the same as “posi-

tive” in the dual picture adopted here. Accordingly, we focus in this paper on

positive, commutative tomonoids, and we will furthermore generally assume

that the tomonoids are, as monoids, finitely generated.

We note in addition that the generalised semantics of fuzzy logics often

involve MTL-algebras or their subclasses. In particular, the fuzzy logic with

the same name corresponds to MTL-algebras. The variety of MTL-algebras is
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in turn generated by its finite totally ordered members [1]. But finite MTL-

chains are nothing but finite negative commutative tomonoids endowed with

an implication as an additional operation. The implication operation is de-

finable from the remaining structure, so that finite MTL-chains can actually

be considered as belonging to those structures that are studied in the present

paper.

We guess that there are many approaches to the problem of analysing

and describing finitely generated tomonoids. Here we make use of the well-

established method of describing commutative monoids by means of congru-

ences on free commutative monoids [3, 7]. In our case, a compatible, positive

total order needs to be taken into account additionally. To this end, we in fact

do not directly consider the congruences in question, but instead the preorders

induced by the total order of tomonoids on their associated free monoids. This

approach is quite practical because the preorders “encode” both the congru-

ence and the total order. We are, in this way, led to the question of how

compatible, positive total preorders on an Nn can be characterised.

Compatible preorders on free monoids have been studied, e.g., in [10]. Here,

our key idea is the following. Recall that the order of a partially ordered

group is described by its positive cone. In analogy to this idea, we introduce

what we call a direction cone, whose characteristic properties are quite similar

to those of positive cones of partially ordered groups. The correspondence

between the preorders in question and direction cones is many-to-one; that

is, not all preorders on the Nn are represented by a direction cone. However,

there is a Galois connection between the two notions, and each compatible,

positive total preorder can be restricted to a preorder arising from a direction

cone. Consequently, the class of tomonoids described by direction cones is

rich enough that each finitely generated, positive, commutative tomonoid is a

quotient of a member of this class.

The notion of a direction cone can be applied to some interesting subclasses.

We consider here the conditions of formal integrality as well as nilpotency.

In the latter case, we deal with finite structures, and it seems appropriate

to describe them by finitary means. However, directions cones are usually

infinite. Direction f-cones, in contrast, are finite; they are defined similarly to

direction cones, but tailored to the case of nilpotency. We establish a Galois

connection also for this more special situation and we show that any nilpotent

finite, positive, commutative tomonoid is the quotient of a tomonoid induced

by a direction f-cone.

The paper is organised as follows. We introduce in Section 2 the basic no-

tions around tomonoids and establish their correspondence with preorders on

Nn. In a first step towards the description of such preorders, we consider in

Section 3 a comparably well-understood subclass of tomonoids, namely those

that arise from the positive cone of totally ordered Abelian groups. In an

analogous manner, we then proceed in Section 4 with the case of finitely gen-

erated tomonoids and we establish their correspondence with direction cones.
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Formally integral tomonoids are dealt with in the Section 5. We then finally

turn to nilpotent tomonoids. For this class of tomonoids, it makes sense to

modify the approach developed so far; we do so in Section 6. Some general

remarks in Section 7 conclude the paper.

2. Totally ordered monoids

We study the following structures in this paper.

Definition 2.1. An algebra (L; +, 0) is a monoid if (i) + is associative and

(ii) a+0 = 0+ a = a for any a ∈ L. A monoid (L; +, 0) is called commutative

if + is commutative.

A partial order � on a monoid L is called compatible if, for any a, b, c ∈ L,

a � b implies a+ c � b+ c and c+a � c+ b. A structure (L;�,+, 0) such that

(L; +, 0) is a monoid and � is a compatible partial order on L is a partially

ordered monoid, or pomonoid for short. In case that the partial order is total,

we refer to L as a totally ordered monoid, or tomonoid for short. Finally, a

pomonoid is commutative if so is its monoidal reduct.

Pomonoids are often written multiplicatively; the monoidal operation is

then denoted by · or a similar symbol and the monoidal identity by 1. We

prefer to write (L; +, 0) rather than (L; ·, 1) because the emphasis of this article

is on free commutative monoids, which are usually written additively.

We are interested in commutative tomonoids subject to the following con-

ditions.

Definition 2.2. Let (L;�,+, 0) be a commutative pomonoid. L is called

positive if 0 is the bottom element.

Furthermore, L is called finitely generated if L, as a monoid, is generated

by finitely many elements.

Tomonoids considered in this paper are always positive, commutative, and

finitely generated. We will abbreviate “positive commutative” by “p.c.”.

A tomonoid is trivial if it consists of the zero, the monoidal identity, alone.

We will tacitly assume throughout this paper that all tomonoids are non-

trivial. Moreover, a set of generators of a tomonoid L will be understood to

be a non-empty, finite set of non-zero elements that generate L as a monoid.

P.c. tomonoids possess, in addition to the partial order included in their

signature, a partial order that depends on the monoidal reduct alone.

Definition 2.3. Let (L; +, 0) be a commutative monoid. For a, b ∈ L, let

a �H b if a+ c = b for some c ∈ L;

then �H is called Green’s preorder. If �H is a partial order, we refer to �H as

the natural order on L.
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Lemma 2.4. Let (L;�,+, 0) be a p.c. pomonoid. Then Green’s preorder �H
on (L; +, 0) is a compatible partial order, whose least element is 0. In other

words, also (L;�H,+, 0) is a p.c. pomonoid. Moreover, � extends �H.

We finally establish the notation as regards free commutative monoids,

which will play a central role. We identify the free commutative monoid

over an n-element set, where n � 1, with Nn. The addition is pointwise

and the identity is 0̄ = (0, . . . , 0), the n-tuple consisting solely of 0’s. For

i = 1, . . . , n, we denote the i-th unit vector of Nn by ui, that is, we put

ui = (0, . . . , 0, 1, 0, . . . , 0), “1” being at the i-th position. Then U(Nn) =

{u1, . . . , un} is a set of generators of Nn.

For (a1, . . . , an), (b1, . . . , bn) ∈ Nn, we put

(a1, . . . , an) � (b1, . . . , bn) if a1 � b1, . . . , an � bn. (2.1)

Clearly, � is the natural order on (Nn; +, 0̄). Endowed with �, Nn becomes a

p.c. pomonoid.

Congruences and quotients. We compile a few definitions and facts concerning

the formation of quotients of pomonoids.

Let L be a p.c. pomonoid. By a pomonoid congruence of L, we mean an

equivalence relation ∼ on L such that (i) ∼ is a congruence of L as a monoid

and (ii) for any a0, . . . , ak ∈ L,

a0 � a1 ∼ a2 � a3 ∼ · · · � ak−1 ∼ ak � a0 (2.2)

implies a0 ∼ · · · ∼ ak. In this case, we endow the quotient 〈L〉∼ with the

smallest partial order such that 〈a〉∼ � 〈b〉∼ if a � b, with the induced addition

+, and with the constant 〈0〉∼. The result is a p.c. pomonoid again and called a

pomonoid quotient of L. If 〈L〉∼ is totally ordered, we speak about a tomonoid

congruence, leading to a tomonoid quotient. Moreover, if the 0-class consists of

0 alone, that is, if 〈0〉∼ = {0}, we call the congruence ∼ as well as the quotient

〈L〉∼ pure.

In case of a naturally ordered free commutative monoid, we can characterise

the pomonoid congruences as monoid congruences whose classes are convex.

Lemma 2.5. An equivalence relation ∼ on Nn is a pomonoid congruence of

(Nn;�,+, 0̄) if and only if (i) ∼ is a congruence of the monoid (Nn; +, 0̄) and

(ii) all ∼-classes are convex with respect to �. In this case, the partial order

on 〈Nn〉∼ is its natural order �H.

Proof. Let ∼ be a pomonoid congruence on Nn. Then a � b � c ∼ a implies

a ∼ b ∼ c; hence, the ∼-classes are convex.

Conversely, let ∼ be a congruence of the monoid (Nn; +, 0̄) such that all

classes are convex. For a0, . . . , ak ∈ Nn, (2.2) implies a0+c0+c2+· · ·+ck ∼ a0,

where, for each i = 0, 2, . . . , k − 2, we have ai + ci = ai+1 and ak + ck = a0.

We conclude that a0, a0 + c0, . . . , a0 + c0 + · · ·+ ck, and hence all the ai’s are

pairwise equivalent.
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Finally, 〈Nn〉∼ is endowed with the smallest partial order � such that we

have 〈a〉∼ � 〈a+ c〉∼ for any a, c ∈ Nn. It is not difficult to check that �
coincides with the natural order �H of (〈Nn〉∼; +, {0̄}). �

The construction of an arbitrary finitely generated p.c. tomonoid can be

described in two steps as follows.

Proposition 2.6. Let ∼ be a congruence of the monoid (Nn; +, 0̄) such that

all classes are convex with respect to � and 〈0̄〉∼ = {0̄}. Then ∼ is a pure

pomonoid congruence of (Nn;�,+, 0̄) and the quotient (〈Nn〉∼;�H,+, {0̄}) is

a p.c. pomonoid which is generated by 〈u1〉∼, . . . , 〈un〉∼.
Let furthermore � be a compatible total order on 〈Nn〉∼ extending its natural

order �H. Then (〈Nn〉∼;�,+, {0̄}) is a p.c. tomonoid.

Any finitely generated p.c. tomonoid is isomorphic to a tomonoid arising in

this way.

Proof. The first part follows from Lemma 2.5. The second part is clear.

For the last part, let (L;�,+, 0) be a p.c. tomonoid. Then the monoid

(L; +, 0) is isomorphic to a quotient (〈Nn〉∼; +, 〈0̄〉∼) of Nn, generated by the

non-zero elements 〈u1〉∼, . . . , 〈un〉∼. Identifying L and 〈Nn〉∼, � extends the

natural order �H on 〈Nn〉∼, by Lemma 2.4.

From this last fact, we conclude that the ∼-classes of Nn are convex with

respect to �. In particular, 〈0̄〉∼ is convex and does not contain ui for any i;

hence, 〈0̄〉∼ = {0̄}. �

The representation of a p.c. tomonoid according to Proposition 2.6 is cer-

tainly not unique. In fact, the indicated set of generators need not be minimal;

the same element can, for instance, appear here twice. For finitely generated

p.c. tomonoids, there is an easy way to choose a canonical representation, based

on the unique minimal set of generators; see, e.g., [4]. However, in this paper

we will not do so; we keep matters simpler when accepting the indeterminacy.

Monomial preorders. According to Proposition 2.6, the construction of tomon-

oids requires two steps: first, a quotient of the monoid Nn with convex classes

is formed; second, the natural order is extended to a total order. It is straight-

forward, and turns out to be convenient, to combine both steps in one: by

considering preorders on Nn.

A preorder on a set A is a reflexive and transitive binary relation � on A.

In this case, we write a ≺ b if a � b but not b � a. A preorder � is called

total if, for any pair a, b ∈ A, either a � b or b � a. We associate with �
its symmetrisation ≈, where a ≈ b if a � b and b � a. The equivalence class

of some a with respect to ≈ is called a �-class and is denoted by 〈a〉�. The

quotient with respect to ≈ is denoted by 〈A〉�, and its induced partial order

is denoted by � again.

A preorder � on a monoid (L; +, 0) is called compatible if a � b implies

a+c � b+c; and � is strictly positive, or simply positive, if 0 ≺ a for all a �= 0.
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Proposition 2.7. Let � be a compatible, positive total preorder on (Nn; +, 0̄).

Then ≈ is a monoid congruence whose �-classes are convex and 〈0̄〉� = {0̄}.
Moreover, (〈Nn〉�;�,+, {0̄}) is a p.c. tomonoid generated by 〈u1〉�, . . . , 〈un〉�.

Conversely, let (L;�,+, 0) be a p.c. tomonoid, and assume that the n � 1

elements g1, . . . , gn ∈ L\{0} generate L. Let ι : Nn → L be the surjective

monoid homomorphism determined by ι(ui) = gi for i = 1, . . . , n. Define

a � b if ι(a) � ι(b), (2.3)

for a, b ∈ Nn. Then � is a compatible, positive total preorder of Nn, and ι

induces an isomorphism between (〈Nn〉�;�,+, {0̄}) and (L;�,+, 0).

Proof. Let � be a compatible, positive total preorder on Nn. Then, for

a, b, c, d ∈ Nn, a ≈ c and b ≈ d imply a + b ≈ c + d by the compatibility

of �; hence, ≈ is a monoid congruence. As � is also positive, � extends

�, and it follows that the �-classes are convex. Again by the positivity, the

�-class of 0̄ consists of 0̄ alone.

As � is compatible, the partial order � induced on 〈Nn〉� is compatible as

well; that is, (〈Nn〉�;�,+, 〈0̄〉�) is a commutative pomonoid. Since, for any

a, b ∈ Nn, a � b or b � a, 〈Nn〉� is actually a tomonoid. Moreover, since

0̄ ≺ a for any a ∈ Nn\{0̄}, 〈Nn〉� is a p.c. tomonoid which is generated by

〈u1〉�, . . . , 〈un〉�.
Conversely, let (L;�,+, 0) be a p.c. tomonoid and g1, . . . , gn ∈ L\{0} gen-

erate L as a monoid. Let furthermore ι : Nn → L be as indicated and let � be

defined by (2.3). By construction, � is transitive and reflexive, that is, a pre-

order. Then � is compatible because � is, and ι is a monoid homomorphism.

Moreover, � is positive because L is positive, and hence ι(a) � 0 holds only if

a = 0̄. Finally, for a, b ∈ Nn, we have a ≈ b if and only if a � b, and b � a if

and only if ι(a) = ι(b); hence, ι induces an isomorphism as claimed. �

In analogy to the case of monomial orders on Nn [2], we call a compatible,

positive total preorder a monomial preorder.

By Proposition 2.7, any monomial preorder � on Nn gives rise to a p.c.

tomonoid L, generated by n elements. We refer to L then as the tomonoid

represented by �.

Proposition 2.7 also states that, up to isomorphism, any finitely generated

p.c. tomonoid L arises in this way from a monomial preorder. In other words,

describing finitely generated p.c. tomonoids can be done by describing mono-

mial preorders. We do this here, using the following lemma.

Lemma 2.8. Let the monomial preorder � on Nn represent the tomonoid L.

Then any pure tomonoid quotient of L is represented by a monomial preorder

extending �. Conversely, any monomial preorder on Nn extending � repre-

sents a pure tomonoid quotient of L.
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3. Tomonoids from totally ordered Abelian groups

As a preparation of what follows, we review in this section a structure that is

well known in the present context. Our topic is positive, commutative totally

ordered monoids; a typical example is the positive cone of a totally ordered

Abelian group. The latter is, as a monoid, in general not finitely generated

even if the group is. As we are interested in finitely generated tomonoids,

we will actually consider submonoids of the positive cone of a totally ordered

group, which we just assume to generate the whole group. For basic facts on

partially ordered groups, we refer to [5].

Definition 3.1. Let (G;�,+, 0) be a totally ordered Abelian group and as-

sume that G is generated by the n � 1 elements g1, . . . , gn ∈ G+\{0}. Let L

be the submonoid of G generated by g1, . . . , gn and let L be endowed with the

total order inherited from G, with the group addition, and with the constant

0. Then we call (L;�,+, 0) a group cone tomonoid.

It is clear that a group cone tomonoid is a finitely generated p.c. tomonoid.

It is furthermore easily seen how group cone tomonoids are characterised. We

call a p.c. tomonoid L cancellative if, for all a, b, c ∈ L, a + c = b + c implies

a = b. Note that in this case, for all a, b, c ∈ L, a � b is equivalent to

a+ c � b+ c.

Proposition 3.2. A finitely generated p.c. tomonoid (L;�,+, 0) is a group

cone tomonoid if and only if L is cancellative.

Proof. The “only if” part follows from the construction of a group cone to-

monoid.

To see the “if” part, let L be cancellative. Let G be the group consisting

of the differences of elements of L; see, e.g., [5, Chapter II.2]. Viewing L as

a subset of G, we introduce a total order on G as follows: for a, b, c, d ∈ L,

we define a − b � c − d if a + d � b + c in L. Then (G;�,+, 0) is a totally

ordered Abelian group, and (L;�,+, 0) is a subtomonoid of (G+;�,+, 0). The

assertion follows. �

We can characterise group cone tomonoids by means of monomial preorders

as follows. Call a preorder � on Nn cancellative if for any a, b, c ∈ Nn, a � b

is equivalent to a+ c � b+ c.

Proposition 3.3. Let the p.c. tomonoid L be represented by the monomial

preorder � on Nn. Then L is a group cone tomonoid if and only if � is

cancellative.

Proof. Let L be a group cone tomonoid. Then (〈Nn〉�;�,+, {0̄}) is cancella-
tive by Proposition 3.2. Thus, for a, b, c ∈ Nn, we have a � b iff 〈a〉� � 〈b〉�
iff 〈a〉� + 〈c〉� � 〈b〉� + 〈c〉� iff 〈a+ c〉� � 〈b+ c〉� iff a+ c � b+ c, that is,

� is cancellative.
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Conversely, let � be cancellative. Then (〈Nn〉�;�,+, {0̄}) is a cancellative

p.c. tomonoid and hence, by Proposition 3.2, a group cone tomonoid. �

In what follows, (Zn; +, 0̄) will denote the free Abelian group generated

by n � 1 elements. Furthermore, � will be the partial order on Zn defined

according to (2.1): for a, b ∈ Zn, we put a � b if a + c = b for some c ∈ Nn.

Then (Zn;�,+, 0̄) is a partially ordered group.

The order of a partially ordered Abelian group (G;�,+, 0) is uniquely de-

termined by its positive cone G+ = { g ∈ G : g � 0 }. In fact, for any g, h ∈ G,

g � h if and only if h−g ∈ G+. We may alternatively understand the positive

cone of a partially ordered group as the set of all differences of elements g and

h such that g � h; indeed, G+ = {h− g : g, h ∈ G such that g � h }.
Cancellative monomial preorders, which represent group cone monoids, can

be described along similar lines.

Definition 3.4. Let � be a cancellative monomial preorder on Nn. Then the

set

P� = { b− a ∈ Zn : a, b ∈ Nn such that a � b }
is called the positive cone of �.

A positive cone determines the preorder from which it is defined just as in

the case of groups.

Lemma 3.5. Let P ⊆ Zn be the positive cone of the cancellative monomial

preorder �. Then we have:

(GO) for any a, b ∈ Nn, a � b if and only if b− a ∈ P .

Proof. By definition, a � b implies b− a ∈ P .

Conversely, let b − a ∈ P . Then there are c, d ∈ Nn such that c � d and

d− c = b− a. Then a+ d = b+ c � b+ d, and hence a � b. �

Thus, we have for a cancellative monomial preorder �,

P� = { z ∈ Zn : a � b for some a, b ∈ Nn such that z = b− a }
= { z ∈ Zn : a � b for all a, b ∈ Nn such that z = b− a };

(3.1)

in fact, the first equality holds by definition and the second one by Lemma 3.5.

The positive cones of partially ordered Abelian groups are exactly the can-

cellative commutative monoids such that a + b = 0 implies a = b = 0. The

positive cones of cancellative monomial preorders are characterised as follows.

Theorem 3.6. A set P ⊆ Zn is the positive cone of a cancellative monomial

preorder on Nn if and only if the following conditions are fulfilled.

(GC1) Let z ∈ Nn. Then z ∈ P , and if z �= 0̄, then −z /∈ P .

(GC2) P is closed under addition.

(GC3) Let z ∈ Zn. Then z ∈ P or −z ∈ P .

In this case, P = P�, where � is given by condition (GO) above.
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Proof. Let � be a cancellative monomial preorder on Nn. Clearly, 0 ∈ P�

then. Furthermore, any z ∈ Nn\{0̄} is in P� because 0̄ � z holds by the

positivity of �. Assume that also −z ∈ P�. Then there is a b ∈ Nn such

that b + z � b and hence by the cancellativity z � 0, in contradiction to the

positivity of �. This shows (GC1).

For a, b, c, d ∈ Nn, a � b and c � d implies a + c � b + c � b + d. We

conclude that if b−a, d− c ∈ P�, also (b−a)+(d− c) = (b+d)− (a+ c) ∈ P�.

This shows (GC2).

For a, b ∈ Nn, at least one of a � b or b � a holds because � is total. So,

(GC3) follows as well.

Let now P ⊆ Zn fulfil (GC1)–(GC3). For a, b ∈ Nn, let a � b if b− a ∈ P .

We claim that � is a cancellative monomial preorder. As 0 ∈ P by (GC1),

� is reflexive. By (GC2), � is transitive. Hence, � is a preorder. Then �
is total by (GC3) and positive by (GC1). Finally, by construction, a � b is

equivalent to a+ c � b+ c; the compatibility and cancellativity of � follows.

It remains to show that P is actually the positive cone P� of �. By

Lemma 3.5, we have that for any a, b ∈ Nn, b − a ∈ P� if and only if a � b.

But by construction, a � b if and only if b− a ∈ P . Hence, P = P�.

Finally, if P ⊆ Zn is the positive cone of any cancellative monomial preorder

�, then � is by Lemma 3.5 uniquely determined by (GO). The last statement

follows. �

In the context of tomonoids, we may consider a positive cone, without ex-

plicit reference to some monomial preorder, as a subset of Zn fulfilling condi-

tions (GC1)–(GC3). Group cone tomonoids correspond to cancellative mono-

mial preorders; Theorem 3.6 then establishes a one-to-one correspondence be-

tween cancellative monomial preorders and positive cones.

In what follows, we will generalise the notion of a positive cone to cover a

wider class of tomonoids. In this case, we will not obtain a strict correlation

such as in the context of group cone tomonoids, but we will be led to a Galois

correspondence.

4. Direction cones

In this section, we introduce a tool to describe monomial preorders. The

condition of cancellativity will no longer be assumed.

Let � be a monomial preorder on Nn and recall for a moment again the case

that � is cancellative. Then, for any pair a, b ∈ Nn, the question of whether

or not a � b holds depends only on the difference z = b− a: we have a � b if

and only if c � d for any other pair c, d ∈ Nn such that z = d−c. By (3.1), the

positive cone P� consists of these differences; a � b if and only if b− a ∈ P�.

In general, the question of whether or not a � b does not depend on their

difference alone; e.g., it may be the case that a + c � b + c for some c ∈ Nn,

but not a � b. However, let z ∈ Zn. Then we can still say that at least one
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of following possibilities applies: a � b for all a, b ∈ Nn such that b − a = z,

or b � a for all a, b ∈ Nn such that b − a = z. This is a consequence of the

following elementary lemma.

Lemma 4.1. Let z ∈ Zn. Then there is a unique pair a, b ∈ Nn such that

z = b − a, and for any c, d ∈ Nn such that z = d − c, we have c = a + t and

d = b+ t for some t ∈ Nn.

Proof. Put a = −z ∨ 0̄ and b = z ∨ 0̄. Then z = b− a. Moreover, if c, d ∈ Nn

such that d− c = z, we have c � 0̄ and c = d− z � −z; thus, c � a. Similarly,

d � b. As b−a = d−c, the differences c−a and d−b coincide. The uniqueness

of a, b follows from the �-minimality. �

With reference to Lemma 4.1, the pair a, b ∈ Nn associated to an element

z ∈ Zn has the property that z = b − a, and any other pair in Nn, whose

difference is also z, arises from a, b by translation by some t � 0̄. Inspecting

the above proof, we see that b is simply the positive part of z ∈ Zn, and a

is its (negated) negative part. We define z+ = z ∨ 0̄ and z− = −z ∨ 0̄; then

z+, z− ∈ Nn are such that z = z+ − z−.

Let now � be a compatible preorder on Nn and let z ∈ Zn. If z− � z+,

we conclude from Lemma 4.1 and the compatibility of � that a � b actually

holds for any pair a, b ∈ Nn such that b − a = z. Thus, intuitively, we may

view any z ∈ Zn such that z− � z+ as being “positively directed”; for, in this

case, we have a � a+ z for any a ∈ Nn such that a+ z ∈ Nn. Our viewpoint

is reflected in the following definition.

Definition 4.2. Let � be a monomial preorder on Nn. Then we call the set

C� = { z ∈ Zn : z− � z+ } the direction cone of �.

From Lemma 4.1 it is immediate that for any monomial preorder �,

C� = { z ∈ Zn : a � b for all a, b ∈ Nn such that z = b− a }. (4.1)

Comparing with (3.1), we see that the direction cone of a cancellative mono-

mial preorder is its positive cone. In the general case, we conclude from the

positivity of � that condition (GC1) for positive cones applies here as well,

and from the totality of � also condition (GC3) is immediate: for each z ∈ Zn,

at least one of z or −z is in C�.

In contrast, a direction cone does not in general fulfil condition (GC2), that

is, it is not necessarily closed under addition. In order to see in which respect

direction cones differ from positive cones, we introduce the following notion.

We call a k-tuple of elements of Zn, (x1, . . . , xk) for k � 2, addable if

(x1 + · · ·+ xk)
− + x1 + · · ·+ xi � 0̄ (4.2)

for all i = 0, . . . , k. Note that for addability, the order matters.

The condition of addability is somewhat cumbersome, but essential for what

follows. We may express it alternatively as follows.
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Lemma 4.3. A k-tuple (x1, . . . , xk) of elements of Zn, where k � 2, is addable

if and only if for every i = 1, . . . , k, xi + · · ·+ xk � (x1 + · · ·+ xk) ∨ 0̄.

Proof. Note first that condition (4.2) always holds if i = k; for, the left side

equals (x1 + · · ·+ xk)
+ in this case.

Putting z = x1 + · · · + xk, (x1, . . . , xk) is hence addable if and only if

z− + x1 + · · ·+ xi � 0̄ for all i = 0, . . . , k − 1. This is in turn is equivalent to

saying that z− + x1 + · · ·+ xk � xi+1 + · · ·+ xk for all i = 0, . . . , k − 1. But

z− + x1 + · · ·+ xk = z− + z = z+ = z ∨ 0̄, and the assertion follows. �

The next lemma contains the characteristic properties of direction cones.

Lemma 4.4. The direction cone of a monomial preorder on Nn is a set C ⊆
Zn fulfilling the following conditions.

(C1) Let z ∈ Nn. Then z ∈ C, and if z �= 0̄, then −z /∈ C.

(C2) Let (x1, . . . , xk) for k � 2 be an addable k-tuple of elements of C. Then

x1 + · · ·+ xk ∈ C.

(C3) Let z ∈ Zn. Then z ∈ C or −z ∈ C.

Proof. (C1): We have Nn ⊆ C because � is positive. Assume that −z ∈ C,

where z ∈ Nn. Then z = (−z)− � (−z)+ = 0̄ and the positivity of � implies

z = 0̄.

Recall next that by (4.1), a � b for any a, b ∈ Nn such that b− a ∈ C.

(C2): Let (x1, . . . , xk) be as indicated, and put z = x1 + · · · + xk. Then

z−, z−+x1, . . . , z
−+x1+ · · ·+xk ∈ Nn. By assumption, x1, . . . , xk ∈ C; thus,

z− � z− + x1 � · · · � z− + x1 + · · ·+ xk = z− + z = z+.

(C3): This holds because � is total. �

A further property of direction cones is the following.

Lemma 4.5. Let � be a monomial preorder on Nn. Then z ∈ C� and a � 0̄

imply z + a ∈ C�.

Proof. Let z ∈ C� and a � 0̄. Then

(z+ a)− = (−z− a)∨ 0̄ � −z ∨ 0̄ = z− � z+ = z ∨ 0̄ � (z+ a)∨ 0̄ = (z+ a)+;

hence, z + a ∈ C�. �

A preorder gives rise to a direction cone; conversely, we can assign a preorder

to a set fulfilling (C1)–(C3).

Definition 4.6. Let C ⊆ Zn fulfil (C1)–(C3). Let �C be the smallest preorder

on Nn such that

(O) a �C b for any a, b ∈ Nn such that b− a ∈ C.

Then we call �C the monomial preorder induced by C.

More explicitly, given C ⊆ Zn and a, b ∈ Nn, we have a �C b if and only if

there are k � 1 elements z1, . . . , zk ∈ C such that a, a + z1, a + z1 + z2, . . . ,

a+ z1 + · · ·+ zk � 0̄ and a+ z1 + · · ·+ zk = b. Note that if b− a is the sum

of elements of C, it is not automatic that a � b.
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Lemma 4.7. Let C ⊆ Zn fulfil (C1)–(C3). Then �C , the monomial preorder

induced by C, is in fact a monomial preorder.

Proof. By construction, �C is a preorder, and by (C3), �C is total. It is

furthermore clear that �C is compatible with the addition.

Assume next that for some a ∈ Nn, a �C 0̄ holds according to the prescrip-

tion (O). Then a = 0̄ by (C1). It follows that 0̄ ≺C a for all a ∈ Nn\{0̄},
that is, �C is positive. This completes the proof that �C is a monomial

preorder. �

We now show that the properties (C1)–(C3) of Lemma 4.4 exactly charac-

terise monomial preorders.

Theorem 4.8. A set C ⊆ Zn is the direction cone of a monomial preorder if

and only if C fulfils (C1)–(C3). In this case, C is the direction cone of �C .

Proof. A direction cone fulfils (C1)–(C3) by Lemma 4.4.

Conversely, let C fulfil (C1)–(C3). Let �C be the induced preorder. By

Lemma 4.7, �C is a monomial preorder.

It remains to show that C�C
, the direction cone of �C , coincides with C,

that is, for z ∈ Zn, z− �C z+ if and only if z ∈ C. The “if” part holds by

construction. For the “only if” part, assume that z− �C z+ = z− + z. Then

z = x1 + · · ·+ xk for some x1, . . . , xk ∈ C such that z− + x1 + · · ·+ xi � 0̄ for

i = 0, . . . , k. Then (x1, . . . , xk) is addable, hence z ∈ C by (C2). �

In the sequel, when speaking about direction cones without reference to a

monomial preorder, we mean a subset of Zn that fulfils conditions (C1)–(C3).

A direction cone induces a preorder. As seen next, any preorder contains a

preorder arising in this way.

Theorem 4.9. Let � be a monomial preorder. Then � extends �C� , the

monomial preorder induced by the direction cone of �.

Moreover, the direction cone of �C� is C� again.

Proof. Let a, b ∈ Nn and assume that a �C� b holds according to the pre-

scription (O). Then b− a ∈ C�, that is, z
− � z+, where z = b− a. In view of

Lemma 4.1, it follows a � b. We conclude that �C� ⊆ �.

The second part holds by Theorem 4.8. �

A Galois connection between monomial preorders and direction cones. For a

given n � 1, let P be the set of all monomial preorders on Nn and let C be the

set of all direction cones in Zn. Note that the two mappings

P → C, � �→ C�, C → P, C �→ �C

are order-preserving, with respect to set-theoretic inclusion. The mappings

are not one-to-one; in fact, the former is surjective but not injective, and the

latter is injective but not surjective. But Theorems 4.8 and 4.9 indicate the

result of applying the mappings successively: any � ∈ P is an extension of
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�C� ; and any C ∈ C is equal to C�C
. We conclude that there is a Galois

connection between P and C. Namely, for any � ∈ P and C ∈ C,

�C ⊆ � if and only if C ⊆ C�.

We apply the shown facts to tomonoids.

Definition 4.10. Let C ⊆ Zn be a direction cone. Then we call the tomonoid

represented by �C a cone tomonoid.

Theorem 4.11. Each finitely generated p.c. tomonoid L is the quotient of a

cone tomonoid.

Proof. This holds by Theorem 4.9 and Lemma 2.8. �

Example. Let us present an example illustrating the results of this section.

Let L be the 9-element p.c. tomonoid specified as follows. Let L be generated

by its two elements a and b; assume that

0 < a < b < 2a < a+ b < 2b < 3a

< 2a+ b = a+ 2b = 4a < 2a+ 2b = 3a+ b = 5a = 3b

and that the last indicated element is the top element. In accordance with

Proposition 2.7, let ι : N2 → L be the surjective monoid homomorphism such

that ι((1, 0)) = a and ι((0, 1)) = b, and endow N2 with the preorder � accord-

ing to (2.3). Then we have

(0, 0) ≺ (1, 0) ≺ (0, 1) ≺ (2, 0) ≺ (1, 1) ≺ (0, 2)

≺ (3, 0) ≺ (2, 1) ≈ (1, 2) ≈ (4, 0) ≺ (m,n),

where (m,n) is any of the remaining elements of N2. A graphical representation

of (L;�,+, 0) can be found in Figure 1.

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(4,1) (5,1)(0,1)

(0,2)

(0,3)

Figure 1. The example tomonoid L. The simple arrows in-

dicate the immediate-successor relation with respect to �; the

double arrows indicate �-equivalence.

The direction cone is, by Definition 4.2,

C� = { (p, q) ∈ Z2 : (−p ∨ 0,−q ∨ 0) � (p ∨ 0, q ∨ 0) }.
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Thus, for m,n ∈ N, we have (m,n) ∈ C�; (−m,n) ∈ C� if (m, 0) � (0, n);

and (m,−n) ∈ C� if (0, n) � (m, 0). We get

C� = { (p, q) ∈ Z2 : p, q � 0 }
∪ {(−2, 2), (−1, 1), (−1, 2), (2,−1), (3,−2), (3,−1), (4,−2), (4,−1)}

∪ { (p, q) ∈ Z2 : p � 0 and q � 3 } ∪ { (p, q) ∈ Z2 : p � 5 and q � 0 },

depicted in Figure 2.

Figure 2. The direction cone C� of the monomial preorder

� representing L. Each element of C� is depicted as a vector

based at (0, 0).

Finally, we calculate �C� , the preorder representing a cone tomonoid whose

quotient is L. The preorder �C� can most easily be read off directly from

Figure 1. Namely, we collect the order relations that hold between elements of

the form (m, 0) and (0, n), where m,n � 1; then we translate and concatenate

them. The result is depicted in Figure 3. From �C� , we get L by requiring

the elements (2, 1), (1, 2), and (4, 0) of N2 to be equivalent.

5. Formally integral tomonoids

In this section, we briefly reconsider group cone tomonoids and we then see

what in the present context the condition of formal integrality means.

Proposition 5.1. A group cone tomonoid is a cone tomonoid.

Proof. The direction cone of a monomial preorder � representing a group cone

tomonoid is its positive cone P�, and P� induces �. �
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(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(4,1) (5,1)(0,1)

(0,2)

(0,3)

Figure 3. The cone tomonoid represented by �C� , whose

quotient is L.

Proposition 5.2. Let C ⊆ Zn be a direction cone. Then the cone tomonoid

represented by �C is a group cone tomonoid if and only if C is closed under

addition if and only if �C is cancellative.

Proof. By Proposition 3.3, �C represents a group cone tomonoid if and only

if �C is cancellative.

Assume that C is closed under addition. Then, for a, b ∈ Nn, a �C b is

equivalent to b− a ∈ C, and it follows that �C is cancellative.

Furthermore, assume that �C is cancellative. To see that C is closed under

addition, let x, y ∈ C. Then x− �C x+ = x+x− and y− �C y+y−, and hence

x−+ y− �C x−+ y−+x+ y. From (x+ y)− � x−+ y− and the cancellativity

of �C , we conclude (x+ y)− �C (x+ y)− + x+ y; hence, x+ y ∈ C. �

We now turn to the topic of formal integrality. For a detailed discussion of

this property, we refer to [4]; see also [9].

Definition 5.3. Let (L;�,+, 0) be a p.c. tomonoid. If there is a total order

� on Nn such that (Nn;�,+, 0) is a p.c. tomonoid and L is isomorphic to a

tomonoid quotient of Nn, then L is called formally integral.

We note that formal integrality is usually defined in a more general context,

namely, without the assumption of positivity. It is not difficult to check that

our definition is consistent with the definition given, e.g., in [4].

If we want to avoid the explicit reference to some Nn, we may characterise

formal integrality also as follows.

Proposition 5.4. Let (L;�,+, 0) be a finitely generated p.c. tomonoid. Then

L is formally integral if and only if L is the quotient of a group cone tomonoid.

Proof. Let (Nn;�,+, 0̄) be a p.c. tomonoid. Then Nn is a group cone tomonoid

because � is cancellative. The “only if” part follows.

Conversely, let L be a group cone tomonoid. Then L is cancellative, and

hence by [4, Cor. 4.5], formally integral. The “if” part follows as well. �

We will call a monomial preorder that is actually a partial order a monomial

order, in accordance with the common meaning of this notion [2]. Furthermore,
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we will call a subset P ⊆ Zn a Zn cone if P fulfils (GC1), (GC2), and the

following strengthening of (GC3): for each z ∈ Zn, exactly one of z and −z is

in P .

Theorem 5.5. Let L be a finitely generated p.c. tomonoid. Then the following

conditions are pairwise equivalent.

(i) L is formally integral.

(ii) L is represented by a monomial preorder that contains a monomial order.

(iii) L is represented by a monomial preorder � such that C� contains a

Zn cone.

Proof. (i) =⇒ (ii): Let L be a quotient of the p.c. tomonoid (Nn;�,+, 0̄).

Without loss of generality, we can assume that the quotient is pure. Moreover,

� is a monomial order. By Lemma 2.8, there is a monomial preorder � ⊇ �
on Nn that represents L; (ii) follows.

(ii) =⇒ (iii): Let � be a monomial preorder on Nn representing L, and

let � ⊆ � be a monomial order. Then (Nn;�,+, 0̄) is a p.c. tomonoid whose

direction cone is C� = { z ∈ Zn : z− � z+ } ⊆ C�. Since (Nn;�,+, 0̄) is a

group cone tomonoid, C� fulfils (GC1)–(GC3). Moreover, for any z ∈ Zn\{0̄},
z ∈ C� contradicts −z ∈ C�. Hence, C� is a Zn cone; (iii) follows.

(iii) =⇒ (i): Let � be a monomial preorder on Nn representing L, and let

C ⊆ C� be a Zn cone. Then the monomial preorder induced by C is in fact a

monomial order �, and (Nn;�,+, 0̄) is a p.c. tomonoid. Furthermore, � ⊆ �;

hence, by Lemma 2.8, L is a tomonoid quotient of Nn, and (i) is proved. �

Let us briefly summarise what we have established so far. Cone tomonoids

are those p.c. tomonoids that are represented by direction cones. Group cone

tomonoids are the cancellative cone tomonoids and they are represented by

positive cones, which are those direction cones that are closed under addition.

Furthermore, the quotients of cone tomonoids comprise all p.c. tomonoids. The

quotients of group cone tomonoids are the formally integral p.c. tomonoids.

Example. Theorem 5.5 provides an easily verifiable sufficient criterion that a

tomonoid is not formally integral. Assume that some direction cone C contains

the elements x and y, but neither −x nor −y nor x + y. If C represented

a formally integral p.c. tomonoid, it would contain a Zn cone; but this is

impossible as the latter would contain x and y and thus also x+ y.

As an example, consider the well-known 9-element non-formally integral

tomonoid presented in [4]. Let L be generated by the three elements a, b, and

c such that

0 < a < b < c < 2a < a+ b = 2b < 3a = a+ c < b+ c = 2c < 4a,

and all non-indicated sums are equal to the top element, which is 4a.
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(0,0,0) (1,0,0) (2,0,0) (3,0,0)

(0,0,1) (1,0,1)

(0,0,2)

(0,1,0)

(0,1,1)

(1,1,0) (2,1,0)

(0,2,0)

Figure 4. The 9-element example tomonoid from [4].

To represent L by a preorder in N3, we assign (1, 0, 0) to a, (0, 1, 0) to b, and

(0, 0, 1) to c. Then the direction cone C of the representing preorder contains

x = (1,−2, 1) because 2b < a+ c,

y = (−3, 1, 1) because 3a < b+ c,

z = (2, 1,−2) because 2c < 2a+ b,

and C does not contain any of −x,−y,−z because the inequalities are strict.

Thus, C contains x and y but neither −x nor −y nor −z = x + y. An

illustration of L can be found in Figure 4.

Note furthermore that the absence of x+ y in C implies that neither (x, y)

nor (y, x) are addable. In fact, starting from (x + y)− = (2, 1, 0) and adding

x and then y, or y and then x, we arrive at (x + y)+ = (0, 0, 2), and in both

cases, we pass through an element outside N3.

6. Nilpotent finite tomonoids

By Theorem 4.11, any finitely generated p.c. tomonoid is the quotient of

a cone tomonoid. Cone tomonoids are in turn completely described by their

direction cones, which are subsets of Zn characterised by Theorem 4.8.

Finite p.c. tomonoids are, in particular, included in our discussion. How-

ever, the direction cone associated with a finite p.c. tomonoid is in general not

finite. We shall see in the present section that this drawback can be overcome

quite easily if the tomonoid in question is nilpotent.

Definition 6.1. A p.c. tomonoid (L;�,+, 0) is called nilpotent if L possesses

a greatest element τ and there is a k � 1 such that any sum of at least k

elements distinct from 0 equals τ.

We note that nilpotency is a notion applicable to monoids in general; see,

e.g., [7]. A monoid (L; +, 0) is called nilpotent if for some k � 1, the sums

of at least k non-zero elements are all equal. We further note that, in our

context, nilpotency is closely related to the Archimedean property. In contrast
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to nilpotency, Archimedeanicity is an order-theoretic notion; see, e.g., [5]. A

p.c. tomonoid (L;�,+, 0) is called Archimedean if for any a, b ∈ L\{0}, a � b

implies that b � k a for some k � 1. Here, we shall discuss finitely generated

nilpotent p.c. tomonoids. Such tomonoids are finite, and a finite p.c. tomonoid

is obviously nilpotent if and only if it is Archimedean.

Nilpotent finite commutative monoids have been studied by several authors

and several ways for their description have been proposed. Our own procedure

is inspired by P.A. Grillet’s method, which is explained in [7, Chapter IX].

The starting point is the following. Congruences on Nn inducing a nilpotent

monoid have exactly one infinite class, namely the class of the top element,

whereas all other classes are finite. To describe a nilpotent tomonoid, it is

therefore sufficient to consider the finite congruence classes only, and this is

what we will do here.

A monomial preorder representing a nilpotent tomonoid will be called nilpo-

tent as well. Our topic is, accordingly, the nilpotent monomial preorders.

In what follows, a �-ideal will be a non-empty subset A of Nn such that

a ∈ A and b � a imply b ∈ A. Furthermore, A ⊆ Nn is said to be closed under

translations by some z ∈ Zn if a ∈ A and a+ z ∈ Nn always imply a+ z ∈ A.

Finally, given a monomial preorder � representing a finite tomonoid, we

will, for simplicity, denote the top congruence class by 〈τ〉�.

Definition 6.2. Let � be a nilpotent monomial preorder on Nn. Then we

call S� = { a ∈ Nn : a ≺ a+ u for some u ∈ U(Nn) } the support of �.

In what follows, we denote the set-theoretic complement in Nn by the sym-

bol �.

Lemma 6.3. Let � be a nilpotent monomial preorder on Nn; the following

hold.

(i) Each finite �-class is a subset of S� consisting of pairwise �-incomparable

elements.

(ii) The union of the finite �-classes is S�, and S� is a finite �-ideal in Nn.

(iii) The top congruence class 〈τ〉� is the only infinite class and equals �S�.

Moreover, there are pairwise �-incomparable elements a1, . . . , ak ∈ Nn

such that 〈τ〉� =
⋃k

i=1(ai + Nn).

Proof. Let a /∈ S�. Then a ≈ a + u for any u ∈ U(Nn), and consequently

a ≈ a+ u ≈ a+ 2u ≈ · · · . By nilpotency, there is a k � 1 such that the sum

of at least k non-zero elements of the tomonoid represented by � is the top

element. It follows that a is contained in the top equivalence class 〈τ〉�.
Conversely, let a ∈ 〈τ〉�. Then 〈a〉� = 〈a〉� + 〈u〉� = 〈a+ u〉�, that is,

a ≈ a+ u for any u ∈ U(Nn). It follows that a /∈ S�.

We have shown that �S� = 〈τ〉�. As a ∈ 〈τ〉� and a � b implies b ∈ 〈τ〉�, it
also follows that S� is a �-ideal. Moreover, as the sums of at least k elements

of U(Nn) is in 〈τ〉�, S� is finite. In particular, S� is the union of the finite

�-classes.
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We have shown (ii) and the first parts of (i) and (iii). If a ≈ a+ b for some

a, b ∈ Nn, we have a ≈ a+ b ≈ a+ 2b ≈ · · · , and hence a ∈ 〈τ〉�. The second

part of (i) follows as well.

Finally, 〈τ〉� = �S� contains finitely many �-minimal elements; the second

part of (iii) follows as well. �

We summarise that a nilpotent monomial preorder has finitely many finite

equivalence classes, whose union is its support. Furthermore, it has exactly

one infinite equivalence class, which is the complement of its support.

We note the last part of Lemma 6.3 can also be seen from a well-known

result of Eilenberg and Schützenberger on congruences on free commutative

monoids [3]. Namely, each ∼-class of a congruence ∼ on Nn is uniformly

semilinear, that is, of the form
⋃k

i=1(ai + B�), where a1, . . . , ak ∈ Nn and B�

is the submonoid generated by a finite subset B of Nn.

We next characterise the subsets of Nn that occur as the supports of nilpo-

tent monomial preorders.

Theorem 6.4. A set S ⊆ Nn is the support of a nilpotent monomial preorder

if and only if S is a finite �-ideal fulfilling the following condition:

(S) Let z ∈ Zn. Then S is closed under translations by z or S is closed under

translations by −z.

Proof. Let S� be the support of the nilpotent monomial preorder �. By

Lemma 6.3(ii), S� is a finite �-ideal. Moreover, let z ∈ Zn\{0̄}, and let S�

be not closed under translations by z. Then there is an a ∈ S� such that

a + z ∈ �S�, and it follows that a ≺ a + z; we conclude that z ∈ C� and

−z /∈ C�. If S� is not closed under translations by −z either, we conclude the

opposite statement. So, (S) follows.

For the converse direction, assume that S is a finite �-ideal fulfilling (S).

Let � be the smallest preorder such that the following holds: (1) for a, b ∈ S,

let a � b if �S is closed under translation by b− a; (2) for a ∈ Nn and b ∈ �S,
let a � b.

For any z ∈ Zn, S is closed under translations by z if and only if �S is

closed under translations by −z. Hence, (S) implies that � is a total preorder.

To see that � is compatible with the addition, let a, b, c ∈ Nn. Assume

first that a � b holds according to (1), that is, a, b ∈ S and �S is closed under

translation by b−a. If then a+c /∈ S, also b+c /∈ S because b+c = a+c+(b−a);

hence, a+ c � b+ c by (2). If b+ c /∈ S, again a+ c � b+ c by (2). If finally

a+ c, b+ c ∈ S, we have a+ c � b+ c by (1) because (b+ c)− (a+ c) = b− a.

Assume second that a � b holds according to (2), that is, b /∈ S. Then b+c /∈ S

because S is a �-ideal; hence, a + c � b + c by (2). We conclude that � is a

compatible preorder.

Finally, S is not closed under translations by any a ∈ Nn\{0̄}; hence, �S is

not closed under translations by −a for any a ∈ Nn\{0̄}. Moreover, 0̄ /∈ �S.
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We conclude that a � 0̄ implies a = 0̄, and it follows that � is a positive

preorder. The proof is complete that � is a monomial preorder.

Finally, by construction, �S is a �-class, and S is finite. We conclude that

� represents a nilpotent tomonoid, that is, � is nilpotent. �

We now adapt the definition of a direction cone to the present context. Let

us call D(S) = { z ∈ Zn : z−, z+ ∈ S } the difference set of a �-ideal S ⊆ Nn.

Definition 6.5. Let � be a nilpotent monomial preorder on Nn. Then the

direction f-cone of � is the pair (S�, F�), where S� ⊆ Nn is the support of �
and F� = { z ∈ D(S�) : z

− � z+ }.

Here, the “f” stands for “finite”.

Lemma 6.6. Let (S, F ) = (S�, F�) be the direction f-cone of a nilpotent

monomial preorder � on Nn. Then F is a subset of D(S) fulfilling the following

conditions.

(Cf1) Let z ∈ D(S) ∩ Nn. Then z ∈ F and if z �= 0̄, then −z /∈ F .

(Cf2) Let (x1, . . . , xk), for k � 2, be an addable k-tuple of elements of F

whose sum is in D(S). Then x1 + · · ·+ xk ∈ F .

(Cf3) Let z ∈ D(S). Then z ∈ F or −z ∈ F .

(Cf4) Let z ∈ F . Then S is closed under translations by −z.

Proof. (Cf1)–(Cf3): These are proved similarly to the analogous statements of

Lemma 4.4.

(Cf4): This follows from the fact that S = �〈τ〉�. �

Direction cones give rise to monomial preorders; analogously, we now define

preorders associated to direction f-cones.

Definition 6.7. Let S ⊆ Nn be a finite �-ideal fulfilling (S), and let F ⊆ D(S)

fulfil (Cf1)–(Cf4). Let �S,F be the smallest preorder on Nn such that

(Of1) a �S,F b for any a, b ∈ S such that b− a ∈ F , and

(Of2) a �S,F b whenever b /∈ S.

Then we call �S,F the monomial preorder induced by (S, F ).

Lemma 6.8. Let S ⊆ Nn be a finite �-ideal fulfilling (S), and let F ⊆ D(S)

fulfil (Cf1)–(Cf4). Then �S,F is a nilpotent monomial preorder.

Proof. By construction, �S,F is a preorder. By (Cf3), �S,F is total. We

proceed analogously to the proof of Theorem 6.4 to see that �S,F is compatible

with the addition. Finally, it follows from (Cf1) that �S,F is positive. That

is, �S,F is a monomial preorder.

Finally, �S is cofinite and by (Of2), consists of pairwise �S,F -equivalent

elements. Hence, �S,F is nilpotent. �

We can now characterise the direction f-cones of nilpotent monomial pre-

orders.



 On positive commutative tomonoids 401Vol. 00, XX On positive commutative tomonoids 21

Theorem 6.9. (S, F ) ⊆ Nn × Zn is the direction f-cone of a nilpotent mono-

mial preorder if and only if S is a finite �-ideal of Nn fulfilling (S) and F

is a subset of D(S) fulfilling (Cf1)–(Cf4). In this case, (S, F ) is the direction

f-cone of �S,F .

Proof. The “only if” part follows from Theorem 6.4 and Lemma 6.6.

To see the “if” part, let (S, F ) be such that the indicated conditions hold.

By Lemma 6.8, �S,F is then a nilpotent monomial order. We have to show

that (S, F ) is its direction f-cone.

By (Of2), a ≈S,F b for all a, b ∈ �S. Moreover, for a ∈ S and b ∈ �S,
we have a �S,F b; by (Cf4), �S is closed under translation by each z ∈ F ,

so that a ≺S,F b. Hence, �S is a �S,F -class and S is the union of the finite

�S,F -classes. By Lemma 6.3(ii), S is the support of �S,F .

To see that F is the direction f-cone of �S,F , we have to show that for

z ∈ D(S), z− �S,F z+ if and only if z ∈ F . By construction, z ∈ F implies

z− �S,F z+. Conversely, assume z− �S,F z+. Then we argue as in the proof

of Theorem 4.8 that z ∈ F . �

Analogously to the case of general monomial preorders, we next see that

each nilpotent monomial preorder contains a preorder induced by a direction

f-cone.

Theorem 6.10. Let � be a nilpotent monomial preorder. Then � extends

�S�,F� , the monomial preorder induced by the direction f-cone of �.

Moreover, the direction cone of �S�,F� is (S�, F�) again.

Proof. It is clear that a �S�,F� b implies a � b for any a, b ∈ Nn; thus,

�S�,F� ⊆ � as claimed.

The second part holds by Theorem 6.9. �

A Galois connection for the nilpotent case. Analogously to the general case, let

us now formulate the correspondence between nilpotent monomial preorders

and direction f-cones.

For a given n � 1, letN be the set of all nilpotent monomial preorders on Nn

and let F be the set of all direction f-cones in Zn. We orderN by set-theoretical

inclusion. For F , we make the following definition: for (S, F ), (S′, F ′) ∈ F ,

let (S, F ) � (S′, F ′) provided (i) S ⊇ S′, (ii) for any z ∈ F , S′ is closed under

translations by −z, and (iii) F ∩ D(S′) ⊆ F ′.

We readily check that � is indeed a partial order on F and that the following

mappings are order-preserving:

N → F , � �→ (S�, F�), F → N , (S, F ) �→ �S,F

Theorems 6.9 and 6.10 indicate the result of a successive application of

the two mappings: any � ∈ N extends �S�,F� , and any (S, F ) ∈ F equals

(S�S,F
, F�S,F

). It follows that there is a Galois connection between N and F .

Namely, for any � ∈ N and (S, F ) ∈ F ,

�S,F ⊆ � if and only if (S, F ) � (S�, F�).
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We finally apply our results to nilpotent tomonoids.

Definition 6.11. Let (S, F ) ⊆ Nn × Zn be such that S is a finite �-ideal

fulfilling (S) and F ⊆ D(S) fulfils (Cf1)–(Cf4). Then we call the tomonoid

represented by �S,F an f-cone tomonoid.

Theorem 6.12. Each finite nilpotent p.c. tomonoid L is the quotient of an

f-cone tomonoid.

Proof. This holds by Theorem 6.10 and Lemma 2.8. �

Example. To illustrate Theorem 6.12, let us review the tomonoid that we

considered as an example in Section 4. Let L be the 9-element tomonoid

displayed in Figure 1. Note that L is nilpotent. Let � be its representing

monomial preorder; the direction f-cone (S�, F�) is depicted in Figure 5.

Figure 5. The tomonoid shown in Figure 1 reviewed. The

support is highlighted in dark grey; its difference set consists

of the support and the area highlighted in light grey. The
elements of the direction f-cone are shown as vectors based

at (0, 0).

Obviously, this representation of L is more “economical” than the one dis-

cussed above. Again, we get L from �S�,F� by making (2, 1), (1, 2), and (4, 0)

equivalent.

7. Conclusion

Each finitely generated commutative monoid L is a quotient of Nn. Let L

be endowed with a total order � making it into a positive tomonoid. Pulling

back � to Nn, we get a preorder � on Nn, and this preorder alone determines

both the congruence and the total order. In fact, the compatible, positive

total preorders, called monomial preorders in this paper, correspond to finitely

generated positive commutative tomonoids. In order to describe the latter, we

can describe the former. This observation was the starting point of the present

paper.

In order to describe a monomial preorder on Nn, we have defined its direc-

tion cone as the collection of all z ∈ Zn such that a � b whenever b − a = z.

Direction cones are characterised by three properties reminiscent of the case of
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positive cones of partially ordered groups. By means of a direction cone alone,
we cannot describe all tomonoids in question; but there is a Galois connection
between the set of all monomial preorders on Nn and the set of all direction
cones in Zn. A corollary of this fact is that each finitely generated positive
commutative tomonoid is a quotient of a tomonoid arising from a direction
cone.

We have considered in this context formally integral tomonoids. Further-
more, we have adapted our approach to the case of nilpotent tomonoids. The
drawback that needs to be overcome in this latter case is the fact that a direc-
tion cone is in general infinite even if the tomonoid is finite. For this reason,
we have introduced a finitary variant of direction cones and derived results in
analogy to the more general case considered before.

An advance of our work is possible in many respects. Here, we have con-
sidered the finite case only under the assumption of nilpotency. General finite
positive commutative tomonoids are the result of finitely many Archimedean
extensions of nilpotent tomonoids, and to achieve further insight, this stepwise
process should be considered.

Furthermore, we have considered one specific way of reducing an infinite
direction cone to a finite object. It might be worth to take into account other
possibilities. For instance, one could examine if finite subsets of Zn generate,
in some sense, direction cones. Another problem is to characterise direction
cones that are minimal within the set of all direction cones.

Finally, it would be desirable to relate the present approach to other ap-
proaches that aim at a classification of tomonoids. In particular, congruences
and extensions of tomonoids, which have been considered from different per-
spectives, e.g., in [14] and in [13], might be studied in the present context.
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[9] Horč́ık, R.: Solutions to some open problems on totally ordered monoids. J. Logic
Comput. 20, 977–983 (2010)

[10] Kari, L., Thierrin, G.: Languages and compatible relations on monoids. In: Paun, Gh.
(ed.) Mathematical Linguistics and Related Topics, pp. 212–220. Editura Academiei
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