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Abstract In this paper, we introduce a cyclic subgradient extragradient algorithm and its modified form for
finding a solution of a system of equilibrium problems for a class of pseudomonotone and Lipschitz-type
continuous bifunctions. The main idea of these algorithms originates from several previously known results
for variational inequalities. The proposed algorithms are extensions of the subgradient extragradient method
for variational inequalities to equilibrium problems and the hybrid (outer approximation) method. The paper
can help in the design and analysis of practical algorithms and gives us a generalization of the most convex
feasibility problems.

Mathematics Subject Classification 65J15 · 47H05 · 47J25 · 91B50

1 Introduction

Let H be a real Hilbert space andCi , i = 1, . . . , N be closed convex subsets of H such thatC = ∩N
i=1Ci �= ∅.

Let fi : H × H → �, i = 1, . . . , N be bifunctions with fi (x, x) = 0 for all x ∈ Ci . The common solutions
to equilibriums problem (CSEP) [14] for the bifunctions fi , i = 1, . . . , N is to find x∗ ∈ C such that

fi (x
∗, y) ≥ 0, ∀y ∈ Ci , i = 1, . . . , N . (1)

We denote F = ∩N
i=1EP( fi ,Ci ) by the solution set of CSEP (1), where EP( fi ,Ci ) is the solution set of

each equilibrium subproblem for fi on Ci . CSEP (1) is very general in the sense that it includes, as special
cases, many mathematical models: common solutions to variational inequalities, convex feasibility problems,
common fixed point problems, see for instance [2,8,10,11,14,21,34,37]. These problems have been widely
studied both theoretically and algorithmically over the past decades due to their applications to other fields
[5,10,15,29]. The following are three very special cases of CSEP. Firstly, if fi (x, y) = 0 then CSEP is reduced
to the following convex feasibility problem (CFP):

find x∗ ∈ C = ∩N
i=1Ci �= ∅,
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that is to find an element in the intersection of a family of given closed convex sets. CFP has received a lot of
attention because of its broad applicable ability to mathematical fields, most notably, as image reconstruction,
signal processing, approximation theory and control theory, see in [5,10,15,29] and the references therein.

Next, if fi (x, y) = 〈x − Si x, y − x〉 for all x, y ∈ C where Si : C → C is amapping for each i = 1, . . . , N
then CSEP becomes the following common fixed point problem (CFPP) [8] for a family of the mappings Si ,
i.e.,

find x∗ ∈ F := ∩N
i=1F(Si ),

where F(Si ) is the fixed point set of Si . Finally, if fi (x, y) = 〈Ai (x), y − x〉, where Ai : H → H is a
nonlinear operator for each i = 1, . . . , N , then CSEP becomes the following common solutions to variational
inequalities problem (CSVIP): find x∗ ∈ C = ∩N

i=1Ci such that

〈
Ai (x

∗), y − x∗〉 ≥ 0, ∀y ∈ Ci , i = 1, . . . , N (2)

which was introduced and studied in [11,21,36].
In 2005, Combettes and Hirstoaga [14] introduced a general procedure for solving CSEPs. After that,

many methods were also proposed for solving CSVIPs and CSEPs, see for instance [4,21,30,32–35] and the
references therein. However, the general procedure in [14] and the most existing methods are frequently based
on the proximal point method (PPM) [22,28], i.e., at the current step, given xn , the next approximation xn+1
is the solution of the following regularized equilibrium problem (REP).

Find x ∈ C such that: f (x, y) + 1

rn
〈y − x, x − xn〉 ≥ 0, ∀y ∈ C, (3)

or xn+1 = Jrn f (xn) where rn is a suitable parameter, J f is the resolvent [14] of the bifunction f and C
is a nonempty closed convex subset of H . Note that, when f is monotone, REP (3) is strongly monotone,
hence its solution exists and is unique. However, if the bifunction f is generally monotone [7], for instance,
pseudomonotone then REP (3), in general, is not strongly monotone. So, the existence and uniqueness of the
solution of (3) is not guaranteed. In addition, its solution set is not necessarily convex. Therefore, PPM can
not be applied to the class of equilibrium problems for pseudomonotone bifunctions.

In 1976, Korpelevich [23] introduced the following extragradient method (or double projection method)
for solving saddle point problem for L-Lipschitz continuous and monotone operators in Euclidean spaces,

{
yn = PC (xn − λA(xn)),
xn+1 = PC (xn − λA(yn)),

(4)

where λ ∈ (0, 1
L ). In 2008, Quoc et al. [30] extended Korpelevich’s extragradient method to equilibrium

problems for pseudomonotone and Lipschitz-type continuous bifunctions in which two strongly convex opti-
mization programs are solved at each iteration. The advantage of extragradient method is that two optimization
problems are numerically easier than non-linear inequality (3) in PPM.

In 2011, in order to improve the second projection in Korpelevich’s extragradient method on the feasible
set C , Censor et al. [13] proposed the following subgradient extragradient method,

{
yn = PC (xn − λA(xn)),
xn+1 = PTn (xn − λA(yn)),

(5)

where the second projection is performed on the specially constructed half-space Tn as Tn =
{
v ∈ H :

〈(xn − λA(xn)) − yn, v − yn〉 ≤ 0
}
. It is clear that the second projection on the half-space Tn in the sub-

gradient extragradient method is inherently explicit. Figures 1 and 2 (see [13]) illustrate the iterative steps of
Korpelevich’s extragradient method and the subgradient extragradient method, respectively.
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Fig. 1 Iterative step of the Korpelevich’s extragradient method

Fig. 2 Iterative step of the subgradient extragradient method

For the special case, when CSEP (1) is CSVIP (2), Censor et al. [11] used Korpelevich’s extragradient
method and the hybrid (outer approximation) method to propose the following hybrid method for CSVIPs,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yin = PCi (xn − λin Ai (xn)), i = 1, . . . , N ,

zin = PCi (xn − λin Ai (yin)), , i = 1, . . . , N ,

Hi
n = {

z ∈ H : 〈
xn − zin, z − xn − γ i

n(z
i
n − xn)

〉 ≤ 0
}
,

Hn = ∩N
i=1H

i
n,

Wn = {z ∈ H : 〈x1 − xn, z − xn〉 ≤ 0} ,
xn+1 = PHn∩Wn x1.

(6)

Then, they proved that the sequence {xn} generated by (6) converges strongly to the projection of x1 on the
solution set of CSVIP.

The purpose of this paper is triple. Firstly, we extend the subgradient extragradient method [13] to equi-
librium problems, i.e., REP (3) is replaced by two optimization programs

yn = argmin

{
λn f (xn, y) + 1

2
||xn − y||2 : y ∈ C

}
, (7)

xn+1 = argmin

{
λn f (yn, y) + 1

2
||xn − y||2 : y ∈ Tn

}
, (8)

where {λn} is a suitable parameter sequence and Tn is the specially constructed half-space as

Tn = {v ∈ H : 〈(xn − λnwn) − yn, v − yn〉 ≤ 0} ,

and wn ∈ ∂2 f (xn, yn) := ∂ f (xn, .)(yn). The advantages of the subgradient extragradient method (7)–(8) are
that two optimization problems are not only numerically solved more easily than non-linear inequality (3),
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but also optimization program (8) is performed onto the half-space Tn . There are many class of bifunctions in
which the program (8) can be effectively solved in many cases, for example, if f (x, .) is a convex quadratic
function then problem (8) can be computed by using the available methods of convex quadratic programming
[9, Chapter 8] or if f (x, y) = 〈A(x), y − x〉 then problem (8) is an explicit projection on the halfspace Tn

Secondly, based on the subgradient extragradient method (7)–(8) and hybrid method (6) we introduce
a cyclic algorithm for CSEPs, so-called the cyclic subgradient extragradient method (see, Algorithm 3.1 in
Sect. 3). Note that, hybrid method (6) is parallel in the sense that the intermediate approximations yin are
simultaneously computed at each iteration, and zin are too. A disadvantage of hybrid method (6) is that in order
to compute the next iteration xn+1 we must solve a distance optimization program onto the intersection of
N + 1 sets H1

n , H2
n , . . . , HN

n ,Wn . This might be costly if the number of subproblems N is large. This is the
reason which explains why we design the cyclic algorithm in which xn+1 is expressed by an explicit formula
(see, Remarks 3.2 and 3.7 in Sect. 3). Finally, we present a modification of the cyclic subgradient extragradient
method for finding a common element of the solution set of CSEP and the fixed point set of a nonexpansive
mapping. Strongly convergent theorems are established under standard assumptions imposed on bifunctions.
Some numerical experiments are implemented to illustrate the convergence of the proposed algorithm and
compare it with a parallel hybrid extragradient method.

The paper is organized as follows: in Sect. 2, we collect some definitions and preliminary results for
proving the convergence theorems. Section 3 deals with the proposed cyclic algorithms and analyzing their
convergence. In Sect. 4, we illustrate the efficiency of the proposed cyclic algorithm in comparison with a
parallel hybrid extragradient method by considering some preliminary numerical experiments.

2 Preliminaries

In this section, we recall some definitions and results for further use. LetC be a nonempty closed convex subset
of a real Hilbert space H . A mapping S : C → H is called nonexpansive on C if ||S(x) − S(y)|| ≤ ||x − y||
for all x, y ∈ C . The fixed point set of S is denoted by F(S). We begin with the following properties of a
nonexpansive mapping.

Lemma 2.1 [17] Assume that S : C → H is a nonexpansive mapping. If S has a fixed point, then

(i) F(S) is closed convex subset of C.
(ii) I − S is demiclosed, i.e., whenever {xn} is a sequence in C weakly converging to some x ∈ C and the

sequence {(I − S)xn} strongly converges to some y, it follows that (I − S)x = y.

Next, we present some concepts of the monotonicity of a bifunction and an operator (see [8,26]).

Definition 2.2 A bifunction f : C × C → � is said to be

(i) strongly monotone on C if there exists a constant γ > 0 such that

f (x, y) + f (y, x) ≤ −γ ||x − y||2, ∀x, y ∈ C;
(ii) monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;
(iii) pseudomonotone on C if

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0, ∀x, y ∈ C.

From definitions above, it is clear that a strongly monotone bifunction is monotone and a monotone
bifunction is pseudomonotone.

Definition 2.3 [23] An operator A : C → H is called

(i) monotone on C if

〈A(x) − A(y), x − y〉 ≥ 0, ∀x, y ∈ C;
(ii) pseudomonotone on C if

〈A(x), y − x〉 ≥ 0 �⇒ 〈A(y), x − y〉 ≤ 0, ∀x, y ∈ C;
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(iii) L-Lipschitz continuous on C if there exists a positive number L such that

||A(x) − A(y)|| ≤ L||x − y||, ∀x, y ∈ C.

For solving CSEP (1), we assume that the bifunction f : H × H → � satisfies the following conditions,
see [30].

(A1) f is pseudomonotone on C and f (x, x) = 0 for all x, y ∈ C ;
(A2) f is Lipschitz-type continuous on H , i.e., there exist two positive constants c1, c2 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2, ∀x, y, z ∈ H ;
(A3) f is weakly continuous on H × H ;
(A4) f (x, .) is convex and subdifferentiable on H for every fixed x ∈ H.

Hypothesis (A2) was introduced by Mastroeni [25]. It is necessary to imply the convergence of the auxiliary
principle method for equilibrium problems. Now, we give some cases for bifunctions satisfying hypotheses
(A1) and (A2). Firstly, we consider the following optimization problem,

min {ϕ(x) : x ∈ C} ,

where ϕ : H → � is a convex function. Then, the bifunction f (x, y) = ϕ(y)−ϕ(x) satisfies conditions (A1)
and (A2) automatically. Secondly, let A : H → H be a L-Lipschitz continuous and pseudomonotone operator.
Then, the bifunction f (x, y) = 〈A(x), y − x〉 also satisfies conditions (A1) − (A2). Indeed, hypothesis (A1)
is automatically fulfilled. From the L-Lipschitz continuity of A, we have

f (x, y) + f (y, z) − f (x, z) = 〈A(x) − A(y), y − z〉 ≥ −||A(x) − A(y)||||y − z||
≥ −L||x − y||||y − z|| ≥ − L

2
||x − y||2 − L

2
||y − z||2.

This implies that f satisfies condition (A2) with c1 = c2 = L/2. Finally, a class of other bifunctions, which
is generalized from the Cournot–Nash equilibrium model [30] as

f (x, y) = 〈F(x) + Qy + q, y − x〉 , x, y ∈ �n,

where F : �n → �n , Q ∈ �n×n is a symmetric positive semidefinite matrix and q ∈ �n also satisfies
condition (A2) under some suitable assumptions on the mapping F [30].

Note that, from assumption (A2) with x = z we obtain

f (x, y) + f (y, x) ≥ −(c1 + c2)||x − y||2, ∀x, y ∈ H.

This does not imply the monotonicity, even pseudomonotonicity, of the bifunction f .
The metric projection PC : H → C is defined by PC (x) = argmin {‖y − x‖ : y ∈ C} . Since C is non-

empty, closed and convex, PC (x) exists and is unique. It is also known that PC has the following characteristic
properties, see [18].

Lemma 2.4 Let PC : H → C be the metric projection from H onto C. Then

(i) PC is firmly nonexpansive, i.e.,

〈PC (x) − PC (y), x − y〉 ≥ ‖PC (x) − PC (y)‖2 , ∀x, y ∈ H.

(ii) For all x ∈ C, y ∈ H,

‖x − PC (y)‖2 + ‖PC (y) − y‖2 ≤ ‖x − y‖2 . (9)

(iii) z = PC (x) if and only if

〈x − z, z − y〉 ≥ 0, ∀y ∈ C. (10)
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Note that any closed convex subset C of H can be represented as the sublevel set of an appropriate convex
function c : H → �,

C = {v ∈ H : c(v) ≤ 0} .

The subdifferential of c at x is defined by

∂c(x) = {w ∈ H : c(y) − c(x) ≥ 〈w, y − x〉 , ∀y ∈ H} .

For each z ∈ H and w ∈ ∂c(z), we denote T (z) = {v ∈ H : c(z) + 〈w, v − z〉 ≤ 0} . If z /∈ intC then T (z)
is a half-space whose bounding hyperplane separates the set C from the point z. Otherwise, T (z) is the entire
space H . We recall that the normal cone of C at x ∈ C is defined as follows:

NC (x) = {w ∈ H : 〈w, y − x〉 ≤ 0, ∀y ∈ C} .

Lemma 2.5 [16] Let C be a nonempty convex subset of a real Hilbert space H and g : C → � be a convex,
subdifferentiable, lower semicontinuous function on C. Then, x∗ is a solution to the following convex problem
min {g(x) : x ∈ C} if and only if 0 ∈ ∂g(x∗) + NC (x∗), where ∂g(.) denotes the subdifferential of g and
NC (x∗) is the normal cone of C at x∗.

3 Main results

In this section, we present a cyclic subgradient extragradient algorithm for solving CSEP for the pseu-
domonotone bifunctions fi , i = 1, . . . , N and its modified algorithm and analyze the strong convergence
of the obtained iteration sequences. In the sequel, we assume that the bifunctions fi are Lipschitz-type con-
tinuous with the same constants c1 and c2, i.e.,

fi (x, y) + fi (y, z) ≥ fi (x, z) − c1||x − y||2 − c2||y − z||2

for all x, y, z ∈ H and the solution set F = ∩N
i=1EP( fi ,Ci ) is nonempty. It is easy to show that if fi satisfies

conditions (A1) − (A4) then EP( fi ,Ci ) is closed and convex (see, for instance [30]). Thus, F is also closed
and convex. We denote [n] = n(mod N ) + 1 to stand for the mod function taking the values in {1, 2, . . . , N }.
We have the following cyclic algorithm:

Algorithm 3.1 (Cyclic Subgradient Extragradient Method)
Initialization. Choose x0 ∈ H and two parameter sequences {λn} , {γn} satisfying the following conditions

0 < α ≤ λn ≤ β < min
(

1
2c1

, 1
2c2

)
, γn ∈ [ε, 1

2 ], for some ε ∈ (0, 1
2 ].

Step 1 Solve two strongly convex programs

yn = argmin

{
λn f[n](xn, y) + 1

2
||xn − y||2 : y ∈ C[n]

}
,

zn = argmin

{
λn f[n](yn, y) + 1

2
||xn − y||2 : y ∈ Tn

}
,

where Tn is the half-space whose bounding hyperplane supported on C[n] at yn, i.e.,

Tn = {v ∈ H : 〈(xn − λnwn) − yn, v − yn〉 ≤ 0} ,

and wn ∈ ∂2 f[n](xn, yn) := ∂ f[n](xn, .)(yn).
Step 2 Compute xn+1 = PHn∩Wn (x0), where

Hn = {z ∈ H : 〈xn − zn, z − xn − γn(zn − xn)〉 ≤ 0} ;
Wn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0} .

Set n := n + 1 and go back Step 1.
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Remark 3.2 Two sets Hn and Wn in Algorithm 3.1 are either the half-spaces or the space H . Therefore, using
the same techniques as in [30], we can define the explicit formula of the projection xn+1 of x0 onto the
intersection Hn ∩ Wn . Indeed, let vn = xn + γn(zn − xn), we rewrite the set Hn as follows:

Hn = {z ∈ H : 〈xn − zn, z − vn〉 ≤ 0} .

Therefore, by the same arguments as in [30], we obtain

xn+1 := PHn x0 = x0 − 〈xn − zn, x0 − vn〉
||xn − zn||2 (xn − zn)

if PHn x0 ∈ Wn . Otherwise,

xn+1 = x0 + t1(xn − zn) + t2(x0 − xn),

where t1, t2 is the solution of the system of linear equations with two unknowns
{

t1||xn − zn||2 + t2 〈xn − zn, x0 − xn〉 = − 〈x0 − vn, xn − zn〉 ,

t1 〈xn − zn, x0 − xn〉 + t2||x0 − xn||2 = −||x0 − xn||2.
We need the following results for proving the convergence of Algorithm 3.1.

Lemma 3.3 Assume that x∗ ∈ F. Let {xn} , {yn} , {zn} be the sequences defined as in Algorithm 3.1. Then,
there holds the relation

||zn − x∗||2 ≤ ||xn − x∗||2 − (1 − 2λnc1) ||yn − xn||2 − (1 − 2λnc2) ||zn − yn||2.
Proof Since zn ∈ Tn , we have

〈(xn − λnwn) − yn, zn − yn〉 ≤ 0.

Thus
〈xn − yn, zn − yn〉 ≤ λn 〈wn, zn − yn〉 . (11)

From wn ∈ ∂2 f[n](xn, yn) and the definition of subdifferential, we obtain

f[n](xn, y) − f[n](xn, yn) ≥ 〈wn, y − yn〉 , ∀y ∈ H.

The last inequality with y = zn and (11) imply that

λn
{
f[n](xn, zn) − f[n](xn, yn)

} ≥ 〈xn − yn, zn − yn〉 . (12)

By Lemma 2.5 and

zn = argmin

{
λn f[n](yn, y) + 1

2
||xn − y||2 : y ∈ Tn

}
,

one has

0 ∈ ∂2

{
λn f[n](yn, y) + 1

2
||xn − y||2

}
(zn) + NTn (zn).

Thus, there exist w ∈ ∂2 f[n](yn, zn) and w̄ ∈ NTn (zn) such that

λnw + zn − xn + w̄ = 0. (13)

From the definition of the normal cone and w̄ ∈ NTn (zn), we get 〈w̄, y − zn〉 ≤ 0 for all y ∈ Tn . This together
with (13) implies that

λn 〈w, y − zn〉 ≥ 〈xn − zn, y − zn〉
for all y ∈ Tn . Since x∗ ∈ Tn ,

λn
〈
w, x∗ − zn

〉 ≥ 〈
xn − zn, x

∗ − zn
〉

(14)
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By w ∈ ∂2 f[n](yn, zn),

f[n](yn, y) − f[n](yn, zn) ≥ 〈w, y − zn〉 , ∀y ∈ H.

This together with (14) implies that

λn
{
f[n](yn, x∗) − f[n](yn, zn)

} ≥ 〈
xn − zn, x

∗ − zn
〉
. (15)

Note that x∗ ∈ EP( f[n],C[n]) and yn ∈ C[n], so f[n](x∗, yn) ≥ 0. The pseudomonotonicity of f[n] implies
that f[n](yn, x∗) ≤ 0. From (15), we get

〈
xn − zn, zn − x∗〉 ≥ λn f[n](yn, zn). (16)

The Lipschitz-type continuity of f[n] leads to

f[n](yn, zn) ≥ f[n](xn, zn) − f[n](xn, yn) − c1||xn − yn||2 − c2||zn − yn||2. (17)

Combining relations (16) and (17), we obtain
〈
xn − zn, zn − x∗〉 ≥ λn

{
f[n](xn, zn) − f[n](xn, yn)

}

−λnc1||xn − yn||2 − λnc2||zn − yn||2. (18)

By (12), (18), we obtain
〈
xn − zn, zn − x∗〉 ≥ 〈xn − yn, zn − yn〉 − λnc1||xn − yn||2

−λnc2||zn − yn||2. (19)

We have the following facts

2 〈xn − zn, zn − x∗〉 = ||xn − x∗||2 − ||zn − xn||2 − ||zn − x∗||2. (20)

2 〈xn − yn, zn − yn〉 = ||xn − yn||2 + ||zn − yn||2 − ||xn − zn||2. (21)

Relations (19)–(21) lead to the desired conclusion of Lemma 3.3. ��
Lemma 3.4 Let {xn} , {yn} , {zn} be the sequences generated by Algorithm 3.1. Then

(i) F ⊂ Wn ∩ Hn and xn+1 is well-defined for all n ≥ 0.
(ii) limn→∞ ||xn+1 − xn|| = limn→∞ ||yn − xn|| = limn→∞ ||zn − xn|| = 0.

Proof (i). From the definitions of Hn,Wn , we see that these sets are closed and convex. We now show that
F ⊂ Hn ∩ Wn for all n ≥ 0. For each i = 1, . . . , N , let

Bn =
{
z ∈ H :

〈
xn − zn, z − xn − 1

2
(zn − xn)

〉
≤ 0

}
.

By γn ∈ [ε, 1
2 ], Bn ⊂ Hn . From Lemma 3.3 and the assumption of λn , we obtain ||zn − x∗|| ≤ ||xn − x∗|| for

all x∗ ∈ F . This inequality is equivalent to the following inequality
〈
xn − zn, x

∗ − xn − 1

2
(zn − xn)

〉
≤ 0, ∀x∗ ∈ F.

Therefore, F ⊂ Bn for all n ≥ 0. Next, we show that F ⊂ Bn ∩ Wn for all n ≥ 0 by the induction. Indeed,
we have F ⊂ B0 ∩ W0. Assume that F ⊂ Bn ∩ Wn for some n ≥ 0. From xn+1 = PHn∩Wn (x0) and (10), we
obtain

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀z ∈ Hn ∩ Wn .

Since F ⊂ (Bn ∩ Wn) ⊂ (Hn ∩ Wn),

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀z ∈ F.
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This together with the definition of Wn+1 implies that F ⊂ Wn+1, and so F ⊂ (Bn ∩ Wn) ⊂ (Hn ∩ Wn) for
all n ≥ 0. Since F is nonempty, xn+1 is well-defined.

(ii). From the definition Wn , we have xn = PWn (x0). For each u ∈ F ⊂ Wn , from (9), one obtains

||xn − x0|| ≤ ||u − x0||. (22)

Thus, the sequence {||xn − x0||} is bounded, and so {xn} is. Moreover, the projection xn+1 = PHn∩Wn (x0)
implies xn+1 ∈ Wn . From (9) and xn = PWn (x0), we see that

||xn − x0|| ≤ ||xn+1 − x0||.
So, the sequence {||xn − x0||} is non-decreasing. Hence, there exists the limit of the sequence {||xn − x0||}.
By xn+1 ∈ Wn , xn = PWn (x0) and relation (9), we also have

||xn+1 − xn||2 ≤ ||xn+1 − x0||2 − ||xn − x0||2. (23)

Passing to the limit in inequality (23) as n → ∞, one gets

lim
n→∞ ||xn+1 − xn|| = 0. (24)

From the definition of Hn and xn+1 ∈ Hn , we have

γn||zn − xn||2 ≤ 〈xn − zn, xn − xn+1〉 ≤ ||xn − zn||||xn − xn+1||.
Thus, γn||zn − xn|| ≤ ||xn − xn+1||. From γn ≥ ε > 0 and (24), one has

lim
n→∞ ||zn − xn|| = 0. (25)

From Lemma 3.3 and the triangle inequality, we have

(1 − 2λnc1) ||yn − xn||2 ≤ ||xn − x∗||2 − ||zn − x∗||2
≤ (||xn − x∗|| + ||zn − x∗||)(||xn − x∗|| − ||zn − x∗||)
≤ (||xn − x∗|| + ||zn − x∗||)||xn − zn||.

The last inequality together with (25), the hypothesis of λn and the boundedness of {xn} , {zn} implies that

lim
n→∞ ||yn − xn|| = 0.

The proof of Lemma 3.4 is complete. ��
Theorem 3.5 Let Ci , i = 1, 2, . . . , N be nonempty closed convex subsets of a real Hilbert space H such
that C = ∩N

i=1Ci �= ∅. Assume that the bifunctions fi , i = 1, . . . , N satisfy all conditions (A1) − (A4). In
addition, the solution set F is nonempty. Then, the sequences {xn} , {yn} , {zn} generated by Algorithm 3.1
converge strongly to PF (x0).

Proof By Lemma 3.4, we see that the sets Hn,Wn are closed and convex for all n ≥ 0. Besides, the sequence
{xn} is bounded. Assume that p is some weak cluster point of the sequence {xn}. From Lemma 3.4(ii) and [6,
Theorem 5.3], for each fixed i ∈ {1, 2, . . . , N }, there exists a subsequence {

xn j

}
of {xn} weakly converging to

p, i.e., xn j ⇀ p as j → ∞ such that [n j ] = i for all j . We now show that p ∈ F . Indeed, from the definition
of yn j and Lemma 2.5, one gets

0 ∈ ∂2

{
λn j f[n j ](xn j , y) + 1

2
||xn j − y||2

}
(yn j ) + NC[n j ](yn j ).

Thus, there exist w̄ ∈ NC[n j ](yn j ) and w ∈ ∂2 f[n j ](xn j , yn j ) such that

λn jw + xn j − yn j + w̄ = 0. (26)

From the definition of the normal cone NC[n j ](yn j ), we have
〈
w̄, y − yn j

〉 ≤ 0 for all y ∈ C[n j ]. Taking into
account (26), we obtain

λn j

〈
w, y − yn j

〉 ≥ 〈
yn j − xn j , y − yn j

〉
(27)
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for all y ∈ C[n j ]. Since w ∈ ∂2 f[n j ](xn j , yn j ),

f[n j ](xn j , y) − f[n j ](xn j , yn j ) ≥ 〈
w, y − yn j

〉
, ∀y ∈ H. (28)

Combining (27) and (28), one has

λn j

(
f[n j ](xn j , y) − f[n j ](xn j , yn j )

) ≥ 〈
yn j − xn j , y − yn j

〉
(29)

for all ∀y ∈ C[n j ]. From Lemma 3.4(ii) and xn j ⇀ p, we also have yn j ⇀ p. Passing to the limit in inequality
(29) and employing assumption (A3), we conclude that f[n j ](p, y) ≥ 0 for all y ∈ C[n j ]. Since [n j ] = i for
all j , p ∈ EP( fi ,Ci ). This is true for all i = 1, . . . , N . Thus, p ∈ F . Finally, we show that xn j → p. Let
x† = PF (x0). Using inequality (22) with u = x†, we get

||xn j − x0|| ≤ ||x† − x0||.

By the weak lower semicontinuity of the norm ||.|| and xn j ⇀ p, we have

||p − x0|| ≤ lim inf
j→∞ ||xn j − x0|| ≤ lim sup

j→∞
||xn j − x0|| ≤ ||x† − x0||.

By the definition of x†, p = x† and lim j→∞ ||xn j − x0|| = ||x† − x0||. Since xn j − x0 ⇀ x† − x0 and
the Kadec–Klee property of the Hilbert space H , we have xn j − x0 → x† − x0. Thus xn j → x† = PF (x0)
as j → ∞. Now, assume that p̄ is any weak cluster point of the sequence {xn}. By above same arguments,
we also get p̄ = x†. Therefore, xn → PF (x0) as n → ∞. From Lemma 3.4(ii), we also see that {yn} , {zn}
converge strongly to PF (x0). This completes the proof of Theorem 3.5. ��
Remark 3.6 The proof of Theorem 3.5 is different from one of Theorem 3.3(ii) in [14]. We emphasize that the
proof of Theorem 3.3(ii) in [14] is based on the resolvent Jr f : H → 2C of the bifunction r f as

Jr f (x) = {z ∈ C : r f (z, y) + 〈z − x, y − z〉 ≥ 0, ∀y ∈ C} , x ∈ H,

where r > 0. If f is monotone then J f is single valued, strongly monotone and firmly nonexpansive, i.e.,

||Jr f (x) − Jr f (y)||2 ≤ 〈
Jr f (x) − Jr f (y), x − y

〉
,

which implies that Jr f is nonexpansive. However, if f is pseudomonotone then Jr f , in general, is set-valued.
Moreover, Jr f is not necessarily convex and nonexpansive. Thus, the arguments in the proof of Theorem 3.3(ii)
in [14] which use the characteristic properties of Jr f can not be applied to the proof of Theorem 3.5.

Remark 3.7 In the special case, CSEP (1) is CSVIP (2) then Algorithm 3.1 becomes the following cyclic
algorithm,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = PC[n](xn − λn A[n](xn)),
zn = PTn (xn − λn A[n](yn)),
Hn = {z ∈ H : 〈xn − zn, z − xn − γn(zn − xn)〉 ≤ 0} ,
Wn = {z ∈ H : 〈x1 − xn, z − xn〉 ≤ 0} ,
xn+1 = PHn∩Wn (x0),

(30)

where Tn = {
v ∈ H : 〈

(xn − λn A[n](xn)) − yn, v − yn
〉 ≤ 0

}
. The character of the projection zn is explicit

and it is defined by

zn =
{
un if un ∈ Tn,
un + vn−yn

||vn−yn ||2 〈vn − yn, yn − un〉 if un /∈ Tn,
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where un = xn − λn A[n](yn) and vn = xn − λn A[n](xn)). Using the same techniques as in [19] then xn+1 in
(30) is also expressed by an explicit formula and we rewrite the algorithm (30) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC[n](xn − λn A[n](xn)),
set un = xn − λn A[n](yn), vn = xn − λn A[n](xn)),

zn =
{
un if 〈vn − yn, un − yn〉 ≤ 0,
un + vn−yn

||vn−yn ||2 〈vn − yn, yn − un〉 if 〈vn − yn, un − yn〉 > 0,

set πn = 〈x0 − xn, γn(xn − zn)〉 , μn = ||x0 − xn||2,
νn = ||γn(xn − zn)||2, and ρn = μnνn − π2

n .

xn+1 =

⎧
⎪⎨

⎪⎩

γn(xn + zn), if ρn = 0 and πn ≥ 0,

x0 + γn

(
1 + πn

νn

)
(zn − xn), if ρn > 0 and πnνn ≥ ρn,

yn + νn
ρn

(πn(x0 − xn) + γnμn(zn − xn)) , if ρn > 0 and πnνn < ρn .

(31)

Thus, algorithm (30) (or (31)) can be considered as an improvement of Algorithm 3.1 in [11] for CSVIPs.

Next, we propose a modification of Algorithm 3.1 which combines the subgradient extragradient method
and Mann’s iteration for finding a common solution of CSEP which is also a fixed point of a nonexpansive
mapping S. Some algorithms for finding a common element of the solution set of EPs (or VIPs) and the fixed
point set of nonexpansive mappings can be found, for example, in [1, Algorithm 1], [4, Methods A and B],
[13, Algorithm 6.1], [35, Algorithms 1, 2 and 3], [31, Theorem 3.2], [32, Theorems 3.1, 3.6 and 3.7], [38,
Theorems 3.1 and 3.6].

Algorithm 3.8 (Modified Cyclic Subgradient Extragradient Method)
Initialization Choose x0 ∈ H and three control parameter sequences {λn}, {γn}, {αn} satisfying the following
conditions.

(i) 0 < α ≤ λn ≤ β < min
(

1
2c1

, 1
2c2

)
, γn ∈ [ε, 1

2 ], for some ε ∈ (0, 1
2 ].

(ii) {αn} ⊂ (0, 1) such that limn→∞ supαn < 1.

Step 1 Solve two strongly convex programs

yn = argmin

{
λn f[n](xn, y) + 1

2
||xn − y||2 : y ∈ C[n]

}
.

zn = argmin

{
λn f[n](yn, y) + 1

2
||xn − y||2 : y ∈ Tn

}
,

where Tn is defined as in Algorithm 3.1.
Step 2 Calculate un = αnxn + (1 − αn)Szn.
Step 3 Compute xn+1 = PHn∩Wn (x0), where

Hn = {z ∈ H : 〈xn − un, z − xn − γn(un − xn)〉 ≤ 0} ;
Wn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0} .

Set n := n + 1 and go back Step 1.

Three algorithms in [35] used the extragradient method [30] for equilibrium problems while the idea
of Algorithm 3.8 comes from the subgradient extragradient method. The hybrid step for finding projec-
tion xn+1 = PHn∩Wn (x0) in Algorithm 3.8 is explicit, but that one for the algorithms in [35] still deals
with the feasible set C . The approximation zn in Step 1 belongs to the halfspace Tn and it, in general,
is not in C . Thus, we assume here that S is defined on the whole space H . For N = 1, the author in
[1] proposed a strongly convergent hybrid extragradient algorithm for an equilibrium problem and a fixed
point problem which does not use cutting-halfspaces. However, its convergence requires a strong assump-
tion that ||xn+1 − xn|| → 0 as n → ∞. We have the following result for the convergence of
Algorithm 3.8.

Theorem 3.9 Let Ci , i = 1, . . . , N be nonempty closed convex subsets of a real Hilbert space H such that
C = ∩N

i=1Ci �= ∅. Assume that the bifunctions fi , i = 1, . . . , N satisfy all conditions (A1) − (A4) and
S : H → H is a nonexpansive mapping. In addition, the solution set F ∩ F(S) is nonempty. Then, the
sequences {xn} , {yn} , {zn} , {un} generated by Algorithm 3.8 converge strongly to PF∩F(S)(x0).
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Proof From Lemma 2.1, F(S) is closed and convex. Therefore, the sets F ∩ F(S), Hn,Wn are closed and
convex for all n ≥ 0. By arguing similarly to the proof of Lemma 3.4, we also have F ∩ F(S) ⊂ Hn ∩ Wn for
all n ≥ 0. We next show that

lim
n→∞ ||xn+1 − xn|| = lim

n→∞ ||yn − xn|| = lim
n→∞ ||zn − xn|| = 0,

lim
n→∞ ||un − xn|| = lim

n→∞ ||S(xn) − xn|| = 0.

Indeed, by arguing similarly to (24), (25) we obtain

lim
n→∞ ||xn+1 − xn|| = lim

n→∞ ||un − xn|| = 0. (32)

By the triangle inequality, we have
∣∣||xn − x∗||2 − ||un − x∗||2∣∣ ≤ ||xn − un||(||xn − x∗|| + ||un − x∗||). The

last inequality together with (32), the boundedness of {xn} , {un} one has
lim
n→∞

(||xn − x∗||2 − ||un − x∗||2) = 0. (33)

For each x∗ ∈ F ∩ F(S), from the convexity of ||.||2 and Lemma 3.3 we get

||un − x∗||2 = ||αn(xn − x∗) + (1 − αn)(Szn − x∗)||2
≤ αn||xn − x∗||2 + (1 − αn)||Szn − x∗||2
≤ αn||xn − x∗||2 + (1 − αn)||zn − x∗||2
= ||xn − x∗||2 + (1 − αn)

{
zn − x∗||2 − ||xn − x∗||2}

≤ ||xn − x∗||2 − (1 − αn)
{
(1 − 2λnc1)||xn − yn||2 + (1 − 2λnc2)||zn − yn||2

}
.

Therefore,

(1 − 2λnc1)||xn − yn||2 + (1 − 2λnc2)||zn − yn||2 ≤ ||xn − x∗||2 − ||un − x∗||2
1 − αn

.

Combining this inequality with relation (33) and the hypotheses (i), (ii), we obtain

lim
n→∞ ||xn − yn|| = lim

n→∞ ||zn − yn|| = 0. (34)

Thus, from ||xn − zn|| ≤ ||xn − yn|| + ||yn − zn|| and (34), we obtain

lim
n→∞ ||xn − zn|| = 0.

Moreover, from un = αnxn + (1 − αn)Szn , we obtain

||un − xn|| = (1 − αn)||xn − Szn||. (35)

From (32), (35) and the hypothesis limn→∞ supαn < 1, we conclude that

lim
n→∞ ||xn − Szn|| = 0.

This together with the inequality ||xn − Sxn|| ≤ ||xn − Szn|| + ||Szn − Sxn|| ≤ ||xn − Szn|| + ||zn − xn||
implies that

lim
n→∞ ||xn − Sxn|| = 0. (36)

Note that {xn} is bounded. Assume that p is any weak cluster point of the sequence {xn}. From Lemma 3.4(ii)
and [6, Theorem 5.3] (or [3, Lemma 6]), for each fixed i ∈ {1, 2, . . . , N }, there exists a subsequence {

xn j

}
of

{xn} converging weakly to p, i.e., xn j ⇀ p as j → ∞ such that [n j ] = i for all j . Lemma 2.1 and relation
(36) ensure that p ∈ F(S). Repeating the proof of Theorem 3.5, we conclude that p ∈ F , hence p ∈ F ∩ F(S)
and xn → p as n → ∞. The proof of Theorem 3.9 is complete. ��

Theorem 3.9 with N = 1 gives us the following result.
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Fig. 3 Behavior of Dn in Experiment 1 for Algorithm 3.1 and PHEGM with λn = 1/4c1

Corollary 3.10 LetC be a nonempty closed convex subset of a realHilbert space H. Assume that the bifunction
f satisfies all conditions (A1) − (A4) and S : H → H is a nonexpansive mapping. In addition, the solution
set E P( f,C) ∩ F(S) is nonempty. Let {xn} , {yn} , {zn} , {un} be the sequences generated by the following
manner

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H,

yn = argmin{λn f (xn, y) + 1
2 ||xn − y||2 : y ∈ C},

zn = argmin{λn f (yn, y) + 1
2 ||xn − y||2 : y ∈ Tn},

un = αnxn + (1 − αn)Szn,
Hn = {z ∈ H : 〈xn − un, z − xn − γn(un − xn)〉 ≤ 0} ,
Wn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0} ,
xn+1 = PHn∩Wn (x0),

where Tn is defined as in Algorithm 3.1 with wn ∈ ∂2 f (xn, yn) and 0 < α ≤ λn ≤ β < min
(

1
2c1

, 1
2c2

)
,

0 < ε ≤ γn ≤ 1/2, 0 < αn < 1, limn→∞ supαn < 1. Then, the sequences {xn} , {yn} , {zn} , {un} converge
strongly to PEP( f,C)∩F(S)x0.

4 Numerical experiments

We consider the feasible sets Ci = C for all i = 1, . . . , N and a family of bifunctions fi : C ×C → � in �m

(m = 10) by

fi (x, y) = 〈Pi x + Qi y + qi , y − x〉 , i = 1, 2, . . . , N , (N = 10),

where Pi , Qi are matrices of order m such that Qi is symmetric positive semidefinite and Qi − Pi is neg-
ative semidefinite, qi is a vector in �m for each i . The starting point x0 is x0 = (1, 1, . . . , 1)T ∈ �m . We
compare Algorithm 3.1 with the parallel hybrid extragradient method (PHEGM) [35, Algorithm 1]. The ad-
vantage of the proposed algorithms is a computational modification of an optimization program over each
iteration. Thus, we use the function Dn = ||xn − x∗||, n = 0, 1, . . . to check the convergence of {xn} gen-
erated by the algorithms when execution time elapses, where x∗ = PF (x0) is a solution of the considered
problem. The convergence of {Dn} to 0 implies that the sequence {xn} converges to the solution of the prob-
lem. We do not compare the numbers of iterations of the algorithms because this seems to be not fair. In
fact, per each step Algorithm 3.1 only computes a bifunction while PHEGM computes simultaneously N
bifunctions.
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Fig. 4 Behavior of Dn in Experiment 1 for Algorithm 3.1 and PHEGM with λn = 1/10c1
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Fig. 5 Behavior of Dn in Experiment 1 for Algorithm 3.1 and PHEGM with λn = 1/2.01c1

All the convex optimization problems over C and quadratic convex ones over polyhedral convex sets
are solved, respectively, by the functions fmincon and quadprog in Matlab 7.0 Optimization Toolbox. All the
projections onto the intersection ofC and halfspaces in [35, Algorithm 1] are rewritten equivalently to distance
optimization problems while ones onto the intersection of two halfspaces in Algorithm 3.1 are explicit. The
program is written in Matlab 7.0 and performed on a PC Desktop Intel(R) Core(TM) i5-3210M CPU @ 2.50
GHz 2.50 GHz, RAM 2.00 GB.

Experiment 1 Suppose that C = B1 ∩ B2, where B1 = {
x ∈ �m : ||x ||2 ≤ 4

}
and B2 =

{
x ∈ �m : ||x − (2,

0, . . . , 0)||2 ≤ 1
}
and qi = 0 for all i .With each i , we chose Pi = Qi is a diagonalmatrixwith the first diagonal

entry being 1 and other diagonal ones being generated randomly and uniformly in [2,m]. The bifunctions fi
satisfy all conditions (A1)–(A4) for all Lipschitz-type constants c1, c2 > 0 and we chose here c1 = c2 = 5. By
a straightforward computation, the exact solution of the problem is x∗ = (1, 0, . . . , 0). Three fixed stepsizes

of λn are chosen as λn = λ, where λ ∈
{

1
4c1

, 1
10c1

, 1
2.01c1

}
and the parameter γn in Algorithm 3.1 is γn = 1

2
for all n ≥ 0.
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Fig. 6 Behavior of Dn in Experiment 2 for Algorithm 3.1 and PHEGM with λn = 1/4c1
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Fig. 7 Behavior of Dn in Experiment 2 for Algorithm 3.1 and PHEGM with λn = 1/10c1

Figures 3, 4 and 5 show the results for {Dn} generated by Algorithm 3.1 and PHEGM [35] for the chosen
stepsizes of λn . In these figures, the y-axes represent the value of Dn while the x-axes represent elapsed time
(in second). From these figures, we see that Dn with Algorithm 3.1 decreases faster than that one with PHEGM
after the first 1000s elapses. Besides, {Dn} generated by the algorithms, in general, is not monotone and the
behavior of it also depends on the stepsize of λn .
Experiment 2 The feasible set C is the intersection of six balls with the same radius r = 2 and the centers
as a1 = (1, 0, 0, . . . , 0), a2 = (−1, 0, 0, . . . , 0), a3 = (0, 1, 0, . . . , 0), a4 = (0, −1, 0, . . . , 0), a5 =
(0, 0, 1, 0, . . . , 0), a6 = (0, 0,−1, 0, . . . , 0). Note that C �= ∅ because 0 ∈ C . In this experiment, we chose
qi is the zero vector for all i . For each i = 2, . . . , N , two matrices Pi , Qi are randomly generated1 satisfying
the conditions of the problem. Two matrices P1, Q1 are made similarly such that Q1 − P1 is negative definite.
Thus f1 is strongly monotone. From the properties of Pi and Qi , EP( f1,C) = {0} and 0 ∈ EP( fi ,C) for all
i = 2, 3, . . . , N . Hence, F = ∩N

i=1EP( fi ,C) = {0}. Each bifunction fi satisfies conditions (A1)-(A4) with

1 We randomly chose λi1k ∈ [−m, 0], λi2k ∈ [1,m], k = 1, . . . ,m, i = 2 . . . , N . Set Q̂i
1, Q̂

i
2 as two diagonal matrixes with

eigenvalues
{
λi1k

}m
k=1 and

{
λi2k

}m
k=1, respectively. Then, we make a positive definite matrix Qi and a negative semidefinite matrix

Ti by using random orthogonal matrixes with Q̂i
2 and Q̂i

1, respectively. Finally, set Pi = Qi − Ti .
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Fig. 8 Behavior of Dn in Experiment 2 for Algorithm 3.1 and PHEGM with λn = 1/2.01c1

ci1 = ci2 = ||Pi − Qi ||/2 [30, Lemma 6.1]. We chose c1 = c2 = max
{
ci1 : i = 1, 2, . . . , N

}
. The parameters

γn and λn are chosen as in Experiment 1. Figures 6, 7 and 8 describe the behaviors of {Dn} generated by the
algorithms with λn = 1

4c1
, λn = 1

10c1
and λn = 1

2.01c1
, respectively. The obtained results are similar to those

in Experiment 1.

5 Conclusions

The paper extends the subgradient extragradient method for variational inequalities to equilibrium problems.
Based on this extension, some cyclic iterative algorithms are proposed for finding a particular solution of
a system of equilibrium problems. The algorithms can be considered as modifications of the extragradient
method. Some preliminary numerical experiments are implemented to illustrate the convergence of the pro-
posed algorithm and compare it with the parallel hybrid extragradient method.
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