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Abstract Let D ⊂ C and 0 ∈ D. A set D is circularly symmetric if, for each � ∈ R
+,

a set D ∩ {ζ ∈ C : |ζ | = �} is one of three forms: an empty set, a whole circle, a
curve symmetric with respect to the real axis containing �. A function f analytic in
the unit disk � ≡ {ζ ∈ C : |ζ | < 1} and satisfying the normalization condition
f (0) = f ′(0) − 1 = 0 is circularly symmetric, if f (�) is a circularly symmetric
set. The class of all such functions is denoted by X . In this paper, we focus on the
subclass X ′ consisting of functions in X which are locally univalent. We obtain the
results concerned with omitted values of f ∈ X ′ and some covering and distortion
theorems. For functions in X ′ we also find the upper estimate of the n-th coefficient, as
well as the region of variability of the second and the third coefficients. Furthermore,
we derive the radii of starlikeness, convexity and univalence for X ′.
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1616 L. Koczan, P. Zaprawa

1 Introduction

LetA denote the class of all functions analytic in the unit disk � ≡ {ζ ∈ C : |ζ | < 1}
which satify the condition f (0) = f ′(0) − 1 = 0. A function f is said to be typically
real if the inequality (Im z)(Im f (z)) ≥ 0 holds for all z ∈ �. The class of functions
which are typically real is denoted by T̃ and the class of typically real functions which
belong to A is denoted by T . For a typically real function f , z ∈ �+ ⇔ f (z) ∈ C

+
and z ∈ �− ⇔ f (z) ∈ C

−. The symbols �+, �−, C+, C− stand for the following
sets: the upper and the lower halves of the disk �, the upper halfplane and the lower
halfplane, respectively.

Jenkins [3] established the following definitions.

Definition 1 Let D ⊂ C, 0 ∈ D. A set D is circularly symmetric if, for each � ∈ R
+,

a set D∩{ζ ∈ C : |ζ | = �} is one of three forms: an empty set, a whole circle, a curve
symmetric with respect to the real axis containing �.

Definition 2 A function f ∈ A is circularly symmetric if f (�) is a circularly sym-
metric set. The class of all such functions is denoted by X .

In fact Jenkins considered only those circularly symmetric functions which are uni-
valent. This assumption is rather restrictive. A number of interesting problems appear
while discussing non-univalent circularly symmetric functions. For these reasons, we
decided to define a circularly symmetric function as in Definition 2. In this paper, we
focus on the set X ′ consisting of locally univalent circularly symmetric functions.

According to Jenkins (see, [3]), if f ∈ X is univalent then z f ′(z)
f (z) is a typically real

function. Additionally, he observed that the property z f ′(z)
f (z) ∈ T̃ does not guarantee

the univalence of f . In fact, we have

f ∈ X ⇔ z f ′(z)
f (z)

∈ T̃ . (1)

Jenkins also gave a nice geometric property of f in X . He proved that f ∈ X if and
only if, for a fixed r ∈ (0, 1), a function | f (reiϕ)| is nonincreasing for ϕ ∈ (0, π)

and nondecreasing for ϕ ∈ (π, 2π). From (1), all coefficients of the Taylor series
expansion of f ∈ X are real.

In [9] the following relation between X ′ and T was proved:

f ∈ X ′ ⇔ z f ′(z)
f (z)

= (1 + z)2
h(z)

z
, h ∈ T . (2)

It is known that each function of the class T can be represented by the formula

h(z) =
∫ 1

−1

z

1 − 2t z + z2
dμ(t), (3)

where μ is a probability measure on [−1, 1] (see, [7]). Applying (3) in (2) and inte-
grating it, one can write a function f ∈ X ′ in the form
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Circularly Symmetric Locally Univalent Functions 1617

f (z) = z exp

(∫ z

0

∫ 1

−1

2(1 + t)

1 − 2tζ + ζ 2 dμ(t) dζ

)
. (4)

Putting cosψ instead of t in (4) and integrating it with respect to ζ , we get the
integral representation of a function in X ′:

f ∈ X ′ ⇔ f (z) = z exp

(∫ π

0
i cot

ψ

2
log

1 − zeiψ

1 − ze−iψ
dμ(ψ)

)
, (5)

where μ is a probability measure on [0, π ].
Applying the well-known equivalence

f ∈ T ⇔ 1 − z2

z
f (z) ∈ PR, (6)

we obtain the relation between X ′ and the set PR of functions with positive real part
which have real coefficients:

f ∈ X ′ ⇔ z f ′(z)
f (z)

= 1 + z

1 − z
p(z), p ∈ PR. (7)

It is known (Robertson, [6]) that the set of extreme points for T has the form{
z

1−2zt+z2
: t ∈ [−1, 1]

}
. Putting these functions into formula (2) as h, we get

z f ′(z)
f (z)

= (1 + z)2

1 − 2zt + z2
. (8)

It is easy to check that the functions f , which satisfy (8), are of the form

ft (z) = z exp

(
i cot

ψ

2
log

1 − zeiψ

1 − ze−iψ

)
, t ∈ [−1, 1), (9)

where t = cosψ . Obviously, t ∈ [−1, 1) ⇔ ψ ∈ (0, π ]. Furthermore,

lim
ψ→0+

(
i cot

ψ

2
log

1 − zeiψ

1 − ze−iψ

)
= 4z

1 − z
,

so we can write

f1(z) = z exp

(
4z

1 − z

)
. (10)

Besides ft , we need another family of functions belonging to X ′. Since the set T
is convex, every linear combination of any two functions from T also belongs to T .
Hence, taking 1+t

2
z

(1−z)2
+ 1−t

2
z

(1+z)2
, t ∈ [−1, 1] as h in (2), we obtain

z f ′(z)
f (z)

= 1 + 2zt + z2

(1 − z)2
. (11)
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1618 L. Koczan, P. Zaprawa

Let us denote by gt the solutions of Eq. (11). From this equation

gt (z) = z exp

(
2(1 + t)z

1 − z

)
, t ∈ [−1, 1]. (12)

In particular, we have

g−1(z) = f−1(z) = z and g1(z) = f1(z) = z exp

(
4z

1 − z

)
.

2 Properties of ft and gt

Firstly, we shall describe the sets ft (�) and gt (�), where ft , gt are defined by (9)
and (12), respectively.

For ft , t ∈ (−1, 1) (i.e. for ψ ∈ (0, π)), from (9) we obtain

∣∣∣ ft (eiϕ)

∣∣∣ = exp

(
cot

ψ

2
arg

1 − ei(ϕ−ψ)

1 − ei(ϕ+ψ)

)
.

We shall derive the argument which appears in the above expression. To do this, we
need the following identity:

arg
(
1 + eiα

)
= α

2
− π ·

⌊
α + π

2π

⌋
for α 
= (1 + 2k)π, k ∈ Z.

Hence ∣∣∣ ft (eiϕ)

∣∣∣ = exp

(
−ψ cot

ψ

2

)
for ϕ ∈ (ψ, 2π − ψ) (13)

and

∣∣∣ ft (eiϕ)

∣∣∣ = exp

(
(π − ψ) cot

ψ

2

)
for ϕ ∈ [0, ψ) ∪ (2π − ψ, 2π ]. (14)

From the above expressions, it follows that a function | ft (eiϕ)|, with fixed t ∈
(−1, 1), does not depend on the variable ϕ. Moreover, | ft (eiϕ)| in (13) is less than 1
and | ft (eiϕ)| in (14) is greater than 1. Additionally,

arg
(
ft (e

iϕ)
)

= ϕ + cot
ψ

2
log

∣∣∣∣∣
sin ϕ+ψ

2

sin ϕ−ψ
2

∣∣∣∣∣ , (15)

which means that the curves { ft (eiϕ), ϕ ∈ [0, φ)} and { ft (eiϕ), ϕ ∈ (φ, π ]} wind
around circles given by (13) and (14) infinitely many times. Hence, for t ∈ (−1, 1),

ft (�) ⊂
{
w ∈ C : |w| < exp

(
(π − ψ) cot

ψ

2

)}
. (16)
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Circularly Symmetric Locally Univalent Functions 1619

It is easily seen that f−1(�) = �.
Now, we shall show that f1 omits only one point on the real axis.

Theorem 1 The condition f1(z) 
= −e−2 holds for all z ∈ �.

Proof On the contrary, suppose that there exists z ∈ � such that f1(z) = −e−2. In
fact, we can assume that arg z ∈ [0, π ] because the coefficients of f1 are real. For this
reason,

z exp

(
2(1 + z)

1 − z

)
= −1, (17)

or equivalently,
1 + z

1 − z
= 1

2

(
− log |z| + i arg

−1

z

)
. (18)

Let z = reiϕ , ϕ ∈ [0, π ]. Comparing the arguments of both sides of this equality, we
get

2r sin ϕ

1 − r2
= π − ϕ

− log r
. (19)

For a fixed r ∈ (0, 1), let us consider a function

h(ϕ) = 2r

1 − r2
sin ϕ + 1

log r
(π − ϕ), ϕ ∈ [0, π ].

For ϕ ∈ [0, π ] the function h′(ϕ) decreases and

h′(ϕ) ≥ − 2r

(1 − r2) log r
· g(r), (20)

where

g(r) = log r + 1 − r2

2r
.

Since g′(r) = −(1 − r)2/2r2, the function g(r) decreases for r ∈ (0, 1) and

g(r) ≥ g(1) = 0.

Both factors on the right-hand side of (20) are positive. Consequently, h(ϕ) increases
for ϕ ∈ (0, π), so h(ϕ) ≤ h(π) = 0.

Taking into account the last inequality, we can see that ϕ = π is the only solution
of (19). It means that Eq. (18) is satisfied only for z = reiπ = −r ; so

1 − r

1 + r
+ 1

2
log r = 0. (21)

Let us denote the left-hand side of (21) by k(r). Since k is increasing for r ∈ (0, 1),

sup{k(r) : r ∈ (0, 1)} = k(1) = 0.
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1620 L. Koczan, P. Zaprawa

Therefore, (21) has no solutions in the open set (0, 1), which contradicts (18), and,
consequently we obtain the desired result. �

Applying a similar argument, one can prove the following more general theorem.

Theorem 2 For gt , t ∈ (−1, 1] given by (12),

(i) gt (z) 
= −e−1−t for z ∈ �,
(ii) the equation gt (z) = −�e−1−t has a solution for any � > 1,
(iii) the equation gt (z) = −e−1−t eiθ has a solution for any θ ∈ (−π, π).

Proof ad (i) Suppose that there exists z ∈ � such that gt (z) = −e−1−t . Then

z exp

(
(1 + t)

1 + z

1 − z

)
= −1, (22)

and putting z = reiϕ , we have

1 + reiϕ

1 − reiϕ
= 1

1 + t
(− log r + i(π − ϕ)) . (23)

Comparing the arguments on both sides, we obtain the same function h as in the proof
for Theorem 4; consequently h(ϕ) ≤ 0. Therefore, Eq. (23) holds only if z = −r , but
in this case

1 − r

1 + r
+ 1

1 + t
log r = 0. (24)

Let the left-hand side of (24) be denoted by k(r), which is an increasing and nonpositive
function of r ∈ (0, 1). It yields that (24) has no solutions in the open set (0, 1), which
contradicts the assumption.
ad (ii) Consider an equation gt (z) = −�e−1−t with fixed � > 1. It takes the following
form

z exp

(
(1 + t)

1 + z

1 − z

)
= −�. (25)

Putting z = reiϕ into (25), we have

1 + reiϕ

1 − reiϕ
= 1

1 + t

(
log

�

r
+ i(π − ϕ)

)
. (26)

Hence
2r sin ϕ

1 − r2
− π − ϕ

log �
r

= 0. (27)

Let h(ϕ) denote the left-hand side of this equality. The function h′(ϕ) is decreasing;
h′(0) = 2r

1−r2
+ 1

log �
r

> 0 and h′(π) = −2r
1−r2

+ 1
log �

r
. One can easily prove that there

exists only one number r0 ∈ (0, 1) such that h′(π) > 0 for r ∈ (0, r0) and h′(π) < 0
for r ∈ (r0, 1).

Hence, for suitably taken r , the functionh first increases and thendecreases. Further-
more, h(0) = −π/ log �

r < 0 and h(π) = 0. Consequently, there exists ϕ0 ∈ (0, π)
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Circularly Symmetric Locally Univalent Functions 1621

such that h(ϕ0) = 0. It means that (26) is satisfied by z0 = reiϕ0 ; so (25) holds for
z = z0.
ad (iii) The proof of this part is similar to the proof of (ii). �
Corollary 1 gt (�) = C\{−e−1−t } for all t ∈ (−1, 1].
Proof Let t ∈ (−1, 1] be fixed. For r ∈ (0, 1), we have gt (−r) = −r exp(−2(1 +
t)r/(1 + r)). Observe that |gt (−r)| is a continuous and increasing function of r ∈
[0, 1). For this reason, gt (−r) achieves all values in (−e−1−t , 0]. From the definition
of circularly symmetric function it follows that if c belongs to the negative real axis and
c ∈ gt (�), then the whole circle with radius |c| centered at the origin is also contained
in this set. Hence, for each � in [0, 1) we have {w ∈ C : |w| = �e−1−t } ⊂ gt (�).

By Theorem 2, part (ii), (−∞,−e−1−t ) is contained in gt (�). Let−�e−1−t , � > 1
be an arbitrary point of this ray. Applying the same argument as above, we conclude
that for any � > 1, {w ∈ C : |w| = �e−1−t } ⊂ gt (�).

Combining these facts with points (i) and (iii) of Theorem 2 completes the proof.
�

Let us consider a function b(ϕ) = arg gt (reiϕ), ϕ ∈ (0, π) where t ∈ [−1, 1] and
r ∈ (0, 1) are fixed. Analyzing the derivative of this function it can be observed that
if t − 3 + 4σ 2 ≤ 0, where σ = 2r

1+r2
, then b(ϕ) increases in (0, π). On the other

hand, if t − 3 + 4σ 2 > 0 then, for ϕ ∈ (0, π), the function b(ϕ) increases at the
beginning, then it decreases, only to increase again at the end. From this observation
we conclude that for small r , a set gt ({z ∈ C : |z| < r, Im z ≥ 0}) is contained in the

upper halfplane. If r is greater than rt =
√
3−t

2+√
1+t

, then this set is not contained in the
upper halfplane; its boundary is wound around the origin.

If r = 1, then

gt (e
iϕ) = exp

(
−1 − t + i

(
ϕ + (1 + t) cot

ϕ

2

))
. (28)

Hence ∣∣∣gt (eiϕ)

∣∣∣ = exp (−1 − t) (29)

and
arg

(
gt (e

iϕ)
)

= ϕ + (1 + t) cot
ϕ

2
. (30)

Therefore, gt (�) is wound around the origin infinitely many times, or, more precisely,
it is wound around the circle with radius e−1−t .

3 Coefficients of Functions in X ′

To start with, let us look into the coefficients of f1 given by (10). Although it is
complicated to find an explicit formula for the n-th coefficient of this function, the
formula of the logarithmic coefficients γn of f1 can be easily derived. Indeed,

1

2
log

f1(z)

z
=

∞∑
k=1

2zk,
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1622 L. Koczan, P. Zaprawa

thus

γn = 2 for all n ∈ N.

The Taylor series expansion of f1 is given by

f1(z) = z +
∞∑
k=1

4k

k! z
k+1(1 − z)−k = z +

∞∑
k=1

4k

k! z
k+1

∞∑
j=0

(
j + k − 1

k − 1

)
z j

= z +
∞∑
j=0

∞∑
k=1

b j,k z
k+ j+1,

where

b j,k = 4k

k!
(
j + k − 1

k − 1

)
, k ≥ 1, j ≥ 0.

Denoting the n-th coefficient of f1 by An , we can write

An =
n−2∑
s=0

bs,n−1−s =
n−2∑
s=0

4n−1−s

(n − 1 − s)!
(

n − 2

n − 2 − s

)
,

and consequently,

An =
n−1∑
j=1

4 j

j !
(
n − 2

j − 1

)
. (31)

The first four values of An are

A2 = 4, A3 = 12, A4 = 92

3
, A5 = 212

3
.

On the other hand, for An the formula

nAn+1 = (2n + 2)An − (n − 2)An−1 (32)

holds for n ≥ 2. Indeed, expanding both sides of the equality

z f ′
1(z) = f1(z)

(
1 + z

1 − z

)2

,

we get

∞∑
n=1

nAnz
n =

∞∑
n=1

Anz
n ·

(
1 +

∞∑
k=1

2zk
)2

.
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Circularly Symmetric Locally Univalent Functions 1623

Comparing the coefficients at zn , we obtain (32).
We shall now prove that the upper bound of n-th coefficient of a function f ∈ X ′

is achieved when f is equal to f1. To do this, we apply the relation (7).
Suppose that functions f ∈ X ′ and p ∈ PR are of the form f (z) = ∑∞

n=1 anz
n

and p(z) = ∑∞
n=0 pnz

n with a1 = 1, p0 = 1. Equation (7) yields

z +
∞∑
n=2

nanz
n =

(
z +

∞∑
n=2

anz
n

)
·
(
1 +

∞∑
n=1

cnz
n

)
,

where

cn = pn + 2
n−1∑
k=0

pk .

Comparing the coefficients at zn , n ≥ 2, we obtain

(n − 1)an =
n−1∑
j=1

a j cn− j =
n−1∑
j=1

a j

⎛
⎝pn− j + 2

n− j−1∑
k=0

pk

⎞
⎠ . (33)

Taking into account (33) and the coefficient estimates of a function in PR, we
conclude

(n − 1)an ≤ 4
n−1∑
j=1

|a j |(n − j), n ≥ 2. (34)

Equality in (34) holds only if all pi in (33) are equal to 2,whichmeans that p(z) = 1+z
1−z .

From (34), when n = 2, there is a2 ≤ 4|a1| = 4. Equality in this estimate holds
for f1 only. Now, it is sufficient to apply mathematical induction in order to prove that
successive coefficients an of any f ∈ X ′ are bounded by corresponding coefficients
An of f1. Hence

Theorem 3 Let f ∈ X ′ have the form f (z) = z +∑∞
n=2 anz

n and let An be given by
(31). Then, for n ≥ 2,

an ≤ An .

Our next problem is to find the set of variability of (a2, a3) for a function in X ′. For a
given class of analytic functions A, let Ai, j (A) denote a set {(ai ( f ), a j ( f )) : f ∈ A}.

For the class PR of functions with positive real part and having real coefficients,
the following result is known:

A1,2(PR) = {(x, y) : −2 ≤ x ≤ 2, x2 − 2 ≤ y ≤ 2}. (35)

Based on this result, we can prove
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1624 L. Koczan, P. Zaprawa

Theorem 4

A2,3(X
′) =

{
(x, y) : 0 ≤ x ≤ 4, x2 − x ≤ y ≤ 1

2
x2 + x

}

and

Corollary 2 Let f ∈ X ′ have the form f (z) = z + ∑∞
n=2 anz

n. Then a3 ≥ − 1
4 .

Proof of Theorem 4 Let f (z) = z + ∑∞
n=2 anz

n ∈ X ′ and p(z) = 1+ ∑∞
n=1 pnz

n ∈
PR. It follows from (33) that

a2 = p1 + 2,

2a3 = p2 + 2p1 + 2 + a2(p1 + 2),

or equivalently,

p1 = a2 − 2,

p2 = 2a3 − a2
2 − 2a2 + 2.

Combining these relations with the estimates given in (35) completes the proof. �
The points of intersection of two parabolas described in Theorem 4, i.e.: (0, 0)

and (4, 12) correspond to the functions f−1(z) = z and f1(z) = z exp
(

4z
1−z

)
=

z + 4z2 + 12z3 + · · · , respectively.
Observe that the class X ′ is not convex. Indeed, if X ′ is a convex set, then, for every

fixed α ∈ (0, 1), a function α f1(z) + (1 − α) f−1(z) = αz exp
(

4z
1−z

)
+ (1 − α)z =

z + 4αz2 + 12αz3 + · · · , would be in X ′. This will imply that (4α, 12α) ∈ A2,3(X ′),
a contradiction with Theorem 4.

4 Distortion Theorems

Directly from the definition of a circularly symmetric function, it follows that

| f (−r)| ≤ | f (reiϕ)| ≤ | f (r)| (36)

for every function f ∈ X ′ and for all ϕ ∈ [0, 2π ] and r ∈ (0, 1).
From (4), for any function f ∈ X ′ and any number r ∈ (0, 1),

f (r) = r exp

(∫ r

0

∫ 1

−1

2(1 + t)

1 − 2t x + x2
dμ(t)dx

)

≤ r exp

(∫ r

0

4

(1 − x)2
dx

)
= r exp

(
4r

1 − r

)
= f1(r). (37)
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Circularly Symmetric Locally Univalent Functions 1625

Similarly,

| f (−r)| = r exp

(∫ −r

0

∫ 1

−1

2(1 + t)

1 − 2t x + x2
dμ(t)dx

)

= r exp

(
−

∫ r

0

∫ 1

−1

2(1 + t)

1 + 2t y + y2
dμ(t)dy

)

≥ r exp

(
−

∫ r

0

4

(1 + y)2
dy

)
= r exp

( −4r

1 + r

)
= | f1(−r)|. (38)

Equalities in the above estimates hold only if μ is a measure concentrated in point 1;
it means that h(z) = z

(1−z)2
. We have proved

Theorem 5 For any f ∈ X ′ and r = |z| ∈ (0, 1),

r exp

( −4r

1 + r

)
≤ | f (z)| ≤ r exp

(
4r

1 − r

)
, (39)

Equalities in the above estimates hold only for f1 and points z = −r and z = r .

Corollary 3 For any f ∈ X ′, we have f (�) ⊃ �e−2 .

The estimates of | f ′(z)| for f ∈ X ′ can be obtained from (2) and Theorem 5.

Theorem 6 For any f ∈ X ′ and |z| = r ∈ (0, 1),

(
1 − r

1 + r

)2

exp

( −4r

1 + r

)
≤ | f ′(z)| ≤

(
1 − r

1 + r

)2

exp

(
4r

1 − r

)
. (40)

Equalities in the above estimates hold only for f1 and points z = −r and z = r .

Proof Let f ∈ X ′. From (2),

f ′(z) = (1 + z)2
h(z)

z

f (z)

z
,

where h ∈ T . Therefore, if |z| = r ∈ (0, 1) then

| f ′(z)| ≤ (1 + r)2
1

(1 − r)2
f1(r)

r

and

| f ′(z)| ≥ (1 − r)2
1

(1 + r)2
| f1(−r)|

r
,

which is equivalent to (40). Moreover, equalities in both estimates appear when h is
equal to z

(1−z)2
and z is equal to r and−r , respectively. It means that f1 is the extremal

function for (40). �
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1626 L. Koczan, P. Zaprawa

Finally, we shall prove two lemmas which will be useful in our research on the
convexity of functions in X ′.

Lemma 1 For a fixed point z ∈ �+, the set (z) of variability of the expression
z f ′(z)
f (z) , while f varies in X ′, is of the form

(z) = conv γ (z),

where γ (z) is an upper halfplane located arc of a circle containing three nonlinear
points: z0 = 0, z1 = 1, z2 = ( 1+z

1−z )
2, with endpoints z1 and z2.

Lemma 2 For any f ∈ X ′ and z ∈ �,

Re
z f ′(z)
f (z)

≥
⎧⎨
⎩
Re

(
1+z
1−z

)2
for Re(z + 1/z) ≤ 2

1 for Re(z + 1/z) ≥ 2.
(41)

Proof of Lemma 1 Let z ∈ �+. Applying (2) and the representation formula for a
function in T , we have

z f ′(z)
f (z)

=
∫ 1

−1

(1 + z)2

1 − 2zt + z2
dμ(t), (42)

where μ is a probability measure on [−1, 1].
With a fixed z ∈ �, we denote by qz(t) an integrand in (42). The image set {qz(t) :

t ∈ R} coincides with a circle going through the origin. Furthermore, qz(−1) = 1 and
qz(1) = ( 1+z

1−z )
2.

For z such that Im z > 0,

Im

(
1 + z

1 − z

)2

= Im

(
1 + 4

w − 2

)
= −4 Imw

|w − 2|2 = 4(1/|z|2 − 1) Im z

|w − 2|2 > 0,

where w = z + 1/z.
Hence, the set {qz(t) : t ∈ [−1, 1]} is an arc of the circle with endpoints qz(−1)

and qz(1), which does not contain the origin. For this reason, this set coincides with
γ (z) and one endpoint of this arc is always 1, independent of z. Finally, (z) is a
section of the disk bounded by γ (z) and the line segment with endpoints qz(−1) and
qz(1). �
Proof of Lemma 2 Every function f in X ′ has real coefficients, so f (�) is symmetric
with respect to the real axis. Hence, it is sufficient to prove (41) only for z ∈ �+. But
Lemma 1 leads to

inf

{
Re

z f ′(z)
f (z)

: f ∈ X ′
}

=
{
Re qz(1) for Re(z + 1/z) ≤ 2

Re qz(−1) for Re(z + 1/z) ≥ 2.
(43)

�
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Circularly Symmetric Locally Univalent Functions 1627

It is easy to check that for z ∈ �,

Re

(
1 + z

1 − z

)2

≤ 1 ⇔ Re(z + 1/z) ≤ 2. (44)

Consequently, (41) can be written as follows:

Re
z f ′(z)
f (z)

≥ min

{
Re

(
1 + z

1 − z

)2

, 1

}
.

5 Starlikeness and Convexity

The relation (2) and the estimates of the argument for typically real functions imply
that for z ∈ �+,

arg
z f ′(z)
f (z)

= 2 arg(1 + z) + arg
g(z)

z
≤ 2 arg(1 + z) + arg

1

(1 − z)2
= 2 arg

1 + z

1 − z
.

(45)
Furthermore, ∣∣∣∣arg 1 + z

1 − z

∣∣∣∣ ≤ arctan
2r

1 − r2
. (46)

The condition for starlikeness | arg z f ′(z)
f (z) | ≤ π

2 and the bounds given above result in

rS∗(X ′) = √
2 − 1. (47)

Equality in (45) holds for g(z) = z
(1−z)2

, and, consequently, for f = f1. This result
will be generalized in two ways.

First, we estimate Re z f ′(z)
f (z) for z in H = {z ∈ � : |1+ z2| > 2|z|}. This set appears

in the research on typically real functions. It is the domain of univalence and local
univalence in T (see, [2]). The set H , called the Golusin lens, is the common part of
two disks with radii

√
2 which have the centers in points i and −i . Moreover,

H =
{
z ∈ C : Re

(
1 + z

1 − z

)2

> 0

}
.

From Lemma 2, we obtain

Theorem 7 For each f ∈ X ′ and z ∈ H,

Re
z f ′(z)
f (z)

≥ 0.
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1628 L. Koczan, P. Zaprawa

It is worth noticing that this theorem is still true even if X ′ is replaced by T . This
property is very interesting because the classes X ′ and T have a non-empty intersection,
but one is not included in the other.

As a corollary, from Theorem 7 we obtain (47).
Another generalization of (47) refers to the radius of starlikeness of order α and the

radius of strong starlikeness of order α (for definitions and other details the reader is
referred to [1,5,8]).

Theorem 8 The radius of starlikeness of order α, α ∈ [0, 1), in X ′ is equal to

rS∗(α)(X
′) =

⎧⎨
⎩

√
2

1−2α −
√

1+2α
1−2α for α ∈ [0, 1/3],

1−√
α

1+√
α

for α ∈ [1/3, 1).

Corollary 4 rS∗(1/2)(X ′) = (
√
2 − 1)2 = 0.171 . . . .

Theorem 9 The radius of strong starlikeness of order α, α ∈ (0, 1], in X ′ is equal to

rSS∗(α)(X
′) = tan

(π

8
α
)

.

Corollary 5 rSS∗(2/3)(X ′) = 2 − √
3.

Proof of Theorem 8 By Lemma 2,

Re
z f ′(z)
f (z)

≥
{
1 + 4 Re z

(1−z)2
for Re(z + 1/z) ≤ 2,

1 for Re(z + 1/z) ≥ 2.
(48)

Let r = |z| be a fixed number, 0 < r ≤ 2 − √
3. It is known that h(z) = z

(1−z)2
is

convex for |z| ≤ 2 − √
3. Hence

Re
z

(1 − z)2
≥ −r

(1 + r)2
(49)

with equality for z = −r .
From (48) and (49) it follows that

Re
z f ′(z)
f (z)

≥
{
1 − 4r

(1+r)2
for Re(z + 1/z) ≤ 2,

1 for Re(z + 1/z) ≥ 2,

and so

Re
z f ′(z)
f (z)

≥
(
1 − r

1 + r

)2

, (50)

with equality for z = −r . For this z, the condition Re(z + 1/z) ≤ 2 is satisfied.
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Circularly Symmetric Locally Univalent Functions 1629

Now, suppose that r ∈ (2−√
3, 1). The real part of z

(1−z)2
for z = reiϕ canbewritten

as a function h(cosϕ), ϕ ∈ [0, 2π ], where h(x) = r(1+r2)x−2r2

(1−2r x+r2)2
. If r ∈ (2 − √

3, 1),
one can check that

min{h(x) : x ∈ [−1, 1]} = h(x0) = − (1 + r2)2

8(1 − r2)2
,

where

x0 = −1 − 6r2 + r4

2r(1 + r2)
.

Thus

Re
z f ′(z)
f (z)

≥
{
1 − (1+r2)2

2(1−r2)2
for Re(z + 1/z) ≤ 2,

1 for Re(z + 1/z) ≥ 2.

Consequently

Re
z f ′(z)
f (z)

≥ 1 − 6r2 + r4

2(1 − r2)2
, (51)

with equalities for points z0 = reiϕ0 and z0, where ϕ0 = arccos x0. Furthermore,

Re(z0 + 1/z0) − 2 = (1/r + r) cosϕ0 − 2 = (1/r + r)x0 − 2 = − (1 − r2)2

2r2
.

The condition Re(z0 + 1/z0) ≤ 2 is satisfied in this case also.
Combining (50) and (51), we get

Re
z f ′(z)
f (z)

≥

⎧⎪⎨
⎪⎩

(
1−r
1+r

)2
for r ∈ (0, 2 − √

3],
1−6r2+r4

2(1−r2)2
for r ∈ [2 − √

3, 1).
(52)

In the first case, substituting
(
1−r
1+r

)2
by α, we obtain r = 1−√

α

1+√
α
. The condition

r ∈ (0, 2 − √
3] is equivalent to α ∈ [1/3, 1).

While discussing the second possibility in (52), we should remember that the radius
of starlikeness in X ′ is equal to

√
2 − 1. For this reason, we substitute 1−6r2+r4

2(1−r2)2
= α

only for r ∈ [2−√
3,

√
2−1]. This results in r =

√
2

1−2α −
√

1+2α
1−2α and α ∈ [0, 1/3].

The bound in (52) is sharp; equality holds for f satisfying z f ′(z)
f (z) = z

(1−z)2
, so for

f1. �

123



1630 L. Koczan, P. Zaprawa

The proof of Theorem 9 is easier. In fact, we need the condition for strong starlike-
ness and inequality (46). Thus we obtain

2 arctan
2r

1 − r2
≤ π

2
α,

and hence

r2 + 2r cot
(π

4
α
)

− 1 ≤ 0.

Solving this inequality with respect to r , the assertion of Theorem 9 follows.
The next theorem is concerned with the problem of convexity of a function in X ′.

Theorem 10 The radius of convexity for X ′ is equal to rCV (X ′) = r0, where r0 =
0.139 . . . is the only solution of equation 1− 7r − r2 − r3 = 0. The extremal function
is f1.

In the proof of this theorem, we need the following result of Todorov for h ∈ T
(see [10]):

Re
zh′(z)
h(z)

≥
{

1−r
1+r , 0 ≤ r ≤ 2 − √

3,
1−6r2+r4

1−r4
, 2 − √

3 ≤ r < 1.
(53)

Proof From (2), if f ∈ X ′ then z f ′(z)
f (z) = (1 + z)2 h(z)

z , where h ∈ T . Hence

1 + z f ′′(z)
f ′(z)

= z f ′(z)
f (z)

+ zh′(z)
h(z)

− 1 − z

1 + z
. (54)

In further calculation, we shall apply Lemma 2.
Let r ≤ 2 − √

3. For z such that Re(z + 1/z) ≥ 2,

Re

(
1 + z f ′′(z)

f ′(z)

)
≥ 1 + Re

(
zh′(z)
h(z)

− 1 − z

1 + z

)
= Re

(
zh′(z)
h(z)

+ 2z

1 + z

)
.

Estimate (53) and the inequality Re 2z
1+z ≥ − 2r

1−r result in

Re

(
1 + z f ′′(z)

f ′(z)

)
≥ 1 − 4r − r2

1 − r2
.

This estimate is not sharp because equalities in the two previous inequalities appear
only if z = −r , but in this case Re(z + 1/z) < 2. From the above, we conclude that

if Re(z + 1/z) ≥ 2 and r ∈ [0,√5 − 2) then Re
(
1 + z f ′′(z)

f ′(z)

)
> 0.
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Circularly Symmetric Locally Univalent Functions 1631

Assume now that Re(z + 1/z) ≤ 2. In this case

Re

(
1 + z f ′′(z)

f ′(z)

)
≥ Re

((
1 + z

1 − z

)2

+ zh′(z)
h(z)

− 1 − z

1 + z

)

= Re
zh′(z)
h(z)

+ Re
2z

1 + z
+ Re

4z

(1 − z)2
.

(55)

The first two components can be estimated as above. Based on (49), the third one is
greater than or equal to −4r

(1+r)2
. Since each estimate is sharp (with equality for z = −r ),

the estimate of the expression Re
(
1 + z f ′′(z)

f ′(z)

)
is also sharp. Consequently,

Re

(
1 + z f ′′(z)

f ′(z)

)
≥ 1 − 7r − r2 − r3

(1 + r)2(1 − r)
.

The function in the numerator of the right-hand side of this inequality is decreasing
for t ∈ R. For this reason, it has in (0, 1) the only solution r0. We have proven that if

Re(z + 1/z) ≤ 2 and r ∈ [0, r0] then Re
(
1 + z f ′′(z)

f ′(z)

)
≥ 0. But r0 <

√
5 − 2.

Taking into account both parts of the proof, we obtain the assertion. Equality in
(53) holds for h(z) = z

(1−z)2
and z = −r . It means that (55) is sharp, with equality

for f1 and z = −r . �

6 Univalence

The problems of the univalence of functions in X ′ are more complicated. Based on the
already proved results, we know that the radius of univalence rS(X ′) is greater than or
equal to

√
2 − 1. On the other hand, one can easily find the upper estimate of rS(X ′).

Namely, discuss a function F(z) = 1
r∗ f1(r∗z), where f1 is given by (10) and r∗ is

equal to rS(X ′) which we want to derive. The function F is univalent in � and it has
normalization F(0) = F ′(0)−1 = 0. From (31) it follows that F(z) = z+4r∗z2+. . ..
The estimate of the second coefficient of functions in S results in r∗ ≤ 1/2.

The main theorem of this section is as follows.

Theorem 11 The radius of univalence in X ′ is equal to rS(X ′) = r1, where r1 =
0.454 . . . is the only solution of equation

arcsin
1 − r2

2r
+ 2(1 − r2)

1 + r2 − √−1 + 6r2 − r4
= π (56)

in (
√
2 − 1, 1). The extremal function is f1.

In the proof of this theorem we need two lemmas.

Lemma 3 For each ft , t ∈ [−1, 1] given by (9) and for each r ∈ (0,
√
3/3) and

ϕ ∈ [0, π ] the following inequality is true:
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1632 L. Koczan, P. Zaprawa

arg ft (re
iϕ) ≤ arg f1(re

iϕ). (57)

Lemma 4 The function f1 is univalent in the disk |z| < r1, where r1 is the only
solution of (56).

Proof of Lemma 3 Let t ∈ [−1, 1] and r ∈ (0,
√
3/3) be fixed. Let us denote by g(ψ)

the argument of ft (reiϕ) with a fixed ϕ ∈ [0, π ], where ψ and t are connected by
t = cosψ . Applying (9), g can be written as

g(ψ) = ϕ + cot
ψ

2
k(ψ),

where

k(ψ) = log

∣∣∣∣∣
1 − rei(ϕ+ψ)

1 − rei(ϕ−ψ)

∣∣∣∣∣ .

Since
∣∣∣∣∣
1 − rei(ϕ+ψ)

1 − rei(ϕ−ψ)

∣∣∣∣∣ ≥ 1,

for ϕ and ψ in [0, π ], we conclude that k(ψ) ≥ 0 for all ψ ∈ [0, π ].
Now, we shall show that g(ψ) is a decreasing function of the variable ψ . We have

g′(ψ) = −1

2 sin2 ψ
2

· h(ψ),

where

h(ψ) = k(ψ) − k′(ψ) sinψ.

A long and tedious calculation shows that

h′(ψ) = sin ϕ(1 − cosψ)

[(q cosψ − cosϕ)2 + (q2 − 1) sin2 ψ]2 · W (ψ),

with q = (1 + r2)/2r, q > 1 and

W (ψ) = [(1 − 2q2) cosϕ − q] cos2 ψ + 2[q cos2 ϕ + cosϕ + q(q2 − 1)] cosψ

− cos3 ϕ − q cos2 ϕ − (q2 − 1) cosϕ + q(q2 − 1).

Hence

W (0) = (q − cosϕ)(3q2 − 4 + cos2 ϕ) and W (π) = −(q + cosϕ)3.
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It is obvious that W (π) < 0. On the other hand, W (0) > 0, providing that r ∈
(0,

√
3/3), or equivalently, q2 > 4/3. From these observations, taking into account

thatW is a quadratic function of cosψ , we can see thatW (ψ) has exactly one solution
in [0, π ]; let us denote it byψ0. Hence, h′(ψ) has only one solutionψ0 in (0, π). Thus,
h′(ψ) for ψ ∈ (0, ψ0) increases, and for ψ ∈ (ψ0, π) decreases. Combining it with
h(0) = h(π) = 0, we obtain h(ψ) ≥ 0 for ψ ∈ [0, π ]. This implies g′(ψ) ≤ 0 for
ψ ∈ (0, π); so g(ψ) is decreasing in (0, π).

Finally,

g(ψ) ≤ g(0+) for all ψ ∈ [0, π ],

where

g(0+) = lim
ψ→0+ g(ψ) = ϕ + lim

ψ→0+
k(ψ)

tan ψ
2

= ϕ + 2k′(0) = ϕ + 2 sin ϕ

q − cosϕ
.

Moreover, if ϕ = 0 then g(ψ) = 0, and, if ϕ = π then g(ψ) = π for allψ ∈ [0, π ].
Consequently, (57) holds also for ϕ = 0 and ϕ = π . �

Proof of Lemma 4 Consider a level curve f1({z ∈ C : |z| = r})with afixed r ∈ (0, 1).
Since f1 is a circularly symmetric function, f1(reiϕ) decreases for ϕ from 0 to π .
Hence, f1 is univalent when the level curves has no self-intersection points. It happens
at small r , ie. when r <

√
2 − 1, because f1 is starlike in this case. So it is enough to

discuss for which r ∈ [√2 − 1, 1/2] the level curve f1({z ∈ C : |z| = r}) is tangent
to the real axis. Denoting the point of tangency by w0, and denoting by z0 = reiϕ0 the
corresponding point on circle |z| = r forwhich f (z0) = w0, we obtain arg f (z0) = π .

The tangency of the level curve to the real axis in w0 ensures that arg f1(reiϕ) is
increasing for ϕ ∈ (0, ϕ0), decreasing for ϕ ∈ (ϕ0, ϕ1), and once again increasing for

ϕ ∈ (ϕ1, π), where ϕ1 is a number from the interval (ϕ0, π). Hence, Re
z0 f ′

1(z0)
f1(z0)

= 0.
For this reason, we need to solve the system

{
Re

z0 f ′
1(z0)

f1(z0)
= 0,

arg f1(z0) = π.
(58)

The first equation can be written, using (8), as Re
(
1+z0
1−z0

)2 = 0. Since z0 = reiϕ , we

obtain

ϕ0 = arcsin
1 − r2

2r
. (59)

But

f1(re
iϕ0) = reiϕ0 exp

(
4reiϕ0 − 4r2

1 − 2r cosϕ0 + r2

)
,
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1634 L. Koczan, P. Zaprawa

so

arg f1(re
iϕ0) = ϕ0 + 4r sin ϕ0

1 − 2r cosϕ0 + r2
,

which, together with the second equation of (58), proves that r is a solution of (56).
Finally, it can be observed that the right-hand side of the equality given above, let

us denote it by b(r), satisfies

b′(r) = (1 + r2)(−1 + 6r2 − r4) + 8r2
√−1 + 6r2 − r4 + 4r2(1 + r2)

r(1 − r2)2
√−1 + 6r2 − r4

.

This means that b(r) increases from π/2+ √
2 to infinity, while r ∈ (

√
2− 1, 1). For

this reason, (56) has only one solution. �
Proof of Theorem 11 Let L = {log f (z)

z , f ∈ X ′}. In the paper [9], the authors showed
that the extreme points of the class L are as follows:

lψ(z) = i cot
ψ

2
log

1 − zeiψ

1 − ze−iψ
, ψ ∈ [0, π ].

A functional L � l → Im(l(z)) is linear, so for a fixed z ∈ �, there is

max {Im l(z) : l ∈ L} = max
{
Im lψ(z) : ψ ∈ [0, π ]} . (60)

But Im l(z) = arg f (z)
z for l ∈ L . Therefore

max

{
arg

f (z)

z
: f ∈ X ′

}
= max

{
arg

ft (z)

z
: t ∈ [−1, 1]

}
, (61)

where ft is given by (9). Hence, for z ∈ �\{0},

max
{
arg f (z) : f ∈ X ′} = max {arg ft (z) : t ∈ [−1, 1]} . (62)

Applying Lemma 3, we conclude that for every f ∈ X ′, r ∈ (0,
√
3/3) and ϕ ∈ [0, π ],

the following inequality holds:

arg f (reiϕ) ≤ arg f1(re
iϕ). (63)

Consequently, for every function f ∈ X ′, from
∣∣arg f1(reiϕ)

∣∣≤ π , it yields that∣∣arg f (reiϕ)
∣∣ ≤ π , which combined with Lemma 4 gives the assertion. �

In the paper [4], the class T of semi-typically real functions was defined. Namely,
f ∈ T if

z ∈ (0, 1) if and only if f (z) > 0.
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This equivalence means that the values of f belonging to T are positive real numbers
if and only if z ∈ � is positive and real. According to this definition, T ⊂ T .

Based on the proof of Theorem 11, one can anticipate that functions f ∈ X ′ are
semi-typically real at most in the disk with radius rT . The number rT is chosen such
that the level curves f ({z ∈ C : |z| = r}) for r < rT and f ∈ X ′ maywind around the
origin, yet they do not touch the positive real halfaxis. Moreover, one can anticipate
that the extremal function is still f1.
Conjecture. The radius of semi-typical reality in X ′ is equal to rT (X ′) = r2, where
r2 = 0.718 . . . is the only solution of equation

arcsin
1 − r2

2r
+ 2(1 − r2)

1 + r2 − √−1 + 6r2 − r4
= 2π. (64)

It is worth emphasizing that in the proof of Lemma 3 we did apply the assumption
r ∈ (0,

√
3/3), which is equivalent to q2 > 4/3. The number

√
3/3 in this expression

is not necesserily sharp. Hence, the argument given in the proof of Theorem 11 is not
sufficient to prove this conjecture.
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