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1. Introduction

Abyssal flows, as part of the global thermohaline circulation, make a sig-
nificant contribution to the flux of heat over the earth, and therefore affect
the planet’s climate. In the Atlantic, the deepest flow consists of Antarc-
tic Bottom Water, which originates in the Weddell Sea near Antarctica
and flows northward along the western boundary of the Atlantic ocean.
While part of this flow recirculates within the Brazil Basin, remaining in
the southern hemisphere, part of the flow is observed to cross the equator
into the northern hemisphere (DeMadron & Weatherly, 1994; Friedrichs &
Hall, 1993).

Potential vorticity is conserved following the flow if friction effects are
neglected. However, the fluid is relatively quiescent before and after cross-
ing the equator, that is, planetary vorticity dominates relative vorticity.
Therefore, since the planetary vorticity changes sign over the path of the
flow, the potential vorticity of the fluid has also changed sign, and so is
certainly not conserved! This violation of potential vorticity conservation
in cross-equatorial flows and the breakdown of the geostrophic approxima-
tion at the equator constitute two significant challenges in modelling these
flows.

We present a simplified model of large-scale flow across the equator.
Edwards & Pedlosky (1998a,b) show that the presence of friction in the
dynamics is necessary for potential vorticity modification, and thus for
cross-equatorial flow to exist. Additionally, Nof & Borisov (1998; see also



Borisov & Nof, 1998) find that the geometry of the bottom topography plays
a crucial role in the equator-crossing process. Accordingly, the model we
study retains frictional and topographic effects. We compare the simplified
model to the more sophisticated shallow water theory to identify to what
extent the model captures the essential physics of the problem.

2. Frictional geostrophic model

One simple model which is geostrophic to leading order away from the
equator, yet predicts well-defined velocities at the equator, may be written
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where u = (u, v) is the horizontal velocity, h is the height of the fluid layer,
hp is the bottom topography elevation, g’ is the reduced gravity, f is the
Coriolis parameter, and r is a small damping coefficient to be specified.
Note that this mode! does, in fact, retain the effects of an arbitrary bottom
topography and parameterizes the effects of friction.

Models in which the momentum equations have been reduced to the
geostrophic relations with the addition of a linear term representing the
effects of friction have been used recently to study large-scale motions by
several authors (see Stephens & Marshall 2000; Edwards, Willmott & Kill-
worth 1998; Samelson 1998; Samelson & Vallis 1997; and further references
therein). In particular, Stephens & Marshall (2000) numerically integrate
a similar model over realistic bottom topography out to steady state in or-
der to model the path of Antarctic Bottom Water across the equator. The
resulting steady flow is found to be broadly consistent with observations.

In this model, the velocities may be solved for in a diagnostic relation
in terms of the pressure gradients,
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where p = h + hg and subscripts denote partial derivatives. Thus, the
model contains a geostrophic component (terms proportional to f in the
numerator), and a down-pressure-gradient component (terms proportional
to r in the numerator). In the limit as f — 0, the motion is that of a
potential flow.



By substituting the velbcity relations (4) into the conservation of mass
equation (3), a single evolution equation for the height field may be written
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where J(A, B) = A, By — AyB;. In this form, the model is clearly nonlinear
and diffusive, with the amount of diffusion controlled by the parameter r.
The potential vorticity equation of this model is
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where { = v, — u, is the relative vorticity. This model, then, effectively ne-
glects relative vorticity in favour of planetary vorticity, and has the feature
that it simulates the dissipation of potential vorticity by Ekman friction.

The major disadvantage of this model is its oversimplification of the
dynamics. In particular, fluid inertia has been neglected. Since the fluid
must always move down the pressure gradient, a mass of fluid flowing down
one side of a valley does not have the momentum to flow back up the other
side.

3. Frictional geostrophic versus shallow water

3.1. SCALINGS

We numerically integrate forward in time the reduced-gravity shallow water
model and the frictional geostrophic model in order to compare the two
models. The shallow water model may be written in non-dimensional form
as
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where u is the horizontal velocity vector, Fy,;. represents the friction term,
Ro = U/ foL is the Rossby number, and U, L, fo,and hq are typical scales
for the velocity, length, Coriolis parameter and fluid depth. It has been
assumed that the time variable is scaled advectively, T' = L/U, for a time
scale T, and that the scale slope for the bottom topography is the same
as the scale slope of the fluid height, hg/L. We have also employed the
geostrophic scaling U%/(g’hg) = Ro. Since f passes through zero in the
domain of interest, fp is taken to be the maximum dimensional value of f
in the domain. It is assumed that the flow is geostrophic at that latitude.



The numerical methods used are based upon the methods of Hallberg
& Rhines (1996). For brevity, the details are not reported here, but may be
found in Choboter & Swaters (2000).

The simple model and the shallow water model are compared for flow
over simplified bottom topography. The topography takes the shape of
a meridional channel. Simulations were performed with the fluid initially
south of the equator, flowing northward along the western half of the chan-
nel, in the form of an eddy, i.e. the height field initially has compact support
in the domain. These initial conditions were chosen, in part, to simulate the
Antarctic Bottom Water flow, which flows northward along the western
slope toward the equator.

The bottom topography and functional form of Coriolis parameter are
chosen in a particular way to provide a clean testing ground for the com-
parison of the two models. In particular, we are interested in diagnosing
how well the propagation speed of the eddy agrees with the Nof (1983)
speed, g's/ f, where s is the bottom slope. A nearly constant bottom slope
and Coriolis parameter away from the channel bottom and equator fa-
cilitates computing this diagnostic. Therefore, the bottom topography is
chosen to be a simplified meridional channel of hyperbolic cross section,
hp = V&% + 1, which has a slope approaching £1 away from z = 0, and
the Coriolis parameter is chosen to be f = tanh(foLy/ fo), which tends to a
non-dimensional f-plane value of unity away from y = 0, and has a slope at
y = 0 of BoL/ fo. For simulations reported here, SoL/ fo = 1, which, for fy
evaluated at 5° latitude, corresponds to choosing a horizontal length scale
of L = 500 km.

3.2. RESULTS

Several simulations of an isolated abyssal dome of fluid approaching the
equator from the south have been carried out varying only the damping
parameter r in the case of the simple model, or the Rossby number Ro
in the case of the shallow water model. In figure 1, we show snapshots
from a typical simulation employing the shallow water equations. The eddy
is observed to propagate along the shelf without losing much height until
almost at the equator, when fluid starts to accelerate downhill. Part of
the fluid is located slightly north of the equator while flowing downhill.
The fluid rises up the other side of the channel, and ultimately splits into
two eddies, one flowing north and one flowing south. This is qualitatively
consistent with the simulations of Borisov & Nof (1998), who investigated
eddies crossing the equator in a meridional channel.

Figure 2 displays the simulation of the motion of the same initial eddy,
but as predicted by the simple model. The eddy is seen to initially travel
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Figure 1. The results of a shallow water simulation, Ro = 0.02 The contour spacing is
0.02.
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Figure 2. The results of a frictional geostrophic simulation, r = 0.02. The contour
spacing is 0.02.

along the slope, as in the shallow water simulation, but upon reaching the
equator, flows directly downhill, with very little fluid found north of the
equator as it does so. The fluid pools at the bottom of the channel at the
equator, and then proceeds to split into two parts, one flowing north, and
the other recirculating back south. Despite the simplicity of the model, it
captures the characteristic splitting of the fluid into northward and south-
ward flowing parts seen in the shallow water simulation. The lack of inertia
in the model is seen in both the sharp turn from along-slope flow to down-
hill low and the immediate deceleration from fast downhill flow to nearly
stationary fluid pooling at the equatorial channel bottom. Thus the net
result of the lack of inertia in the model is that the north-south splitting of
the flow is very symmetric, and that the final flow is very near the bottom
of the channel.

Further analysis of this model (Choboter & Swaters 2000) shows that
the simple model simulations capture well the along-shelf Nof (1983) speed.
For all the simple model runs, the fluid does not flow as high onto the
opposite bank as for the shallow water runs, and a very symmetric north-
south splitting of the fluid is predicted. This further points to the lack of
fluid inertia in the simple model.



4. Concluding remarks

The model studied here parameterizes frictional and other ageostrophic
effects into a simple Rayleigh damping term. We have investigated the vi-
ability of this model by comparing its predictions to the predictions of
shallow water theory. Despite the simplicity of the model, it broadly cap-
tures certain aspects of shallow water flow quite well, such as the Nof (1983)
along-slope eddy speed and the north-south splitting of the fluid. However,
the model neglects the inertia of the fluid, which restricts the motion.

The bottom topography of the Atlantic Ocean is certainly more compli-
cated than a meridional channel. It remains for future research to compare
the predictions of these models over more realistic topography.
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