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M any marine invertebrate 
species have complex life 
cycles, in which one or 

more free-living developmental 
stages eventually metamorphoses to 
a morphologically-and often eco- 
logically and physiologically-dis- 
tinct juvenile stage. Such life cycles 
are also common among insects, 
amphibians, and marine fishes. 
Among marine invertebrates, com- 
plex life cycles are widely distributed 
among such diverse animals as 
sponges; turbellarian and trematode 
flatworms; gastropod and bivalved 
mollusks; polychaete worms; lob- 
sters, crabs, barnacles, and other 
crustaceans; bryozoans; and echino- 
derms (Thorson 1950). Marine in- 
vertebrate larvae may feed on phyto- 
plankton and other particulates or 
subsist entirely on yolk or other nu- 
trients provided by the mother. They 
may spend as little as a few minutes 
or as long as several to many months 
in the plankton before metamorphos- 
ing to adult form and habitat (Pech- 
enik 1990). 

Marine invertebrate larvae are 
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Only recently have 
biologists considered 
the impact that larval 
experience can have 
on postmetamorphic 

vulnerability to 
environmental stresses 

microscopic, using either cilia or spe- 
cialized appendages to swim and, for 
feeding individuals, to collect food. 
As with the larvae of at least some 
fish species (Victor 1986, Sweatman 
1988, Cowen 1991, Sponaugle and 
Cowen 1994), the larvae of most 
marine invertebrates become physi- 
ologically competent to metamor- 
phose during development but do 
not necessarily metamorphose at that 
time (Figure 1; Pechenik 1990). In- 
stead, metamorphosis occurs only 
after competent larvae encounter 
certain environmental cues that are 
associated with habitat appropriate 
for the juvenile (Pechenik 1990, 
Pawlik 1992). Following convention 
(Scheltema 1961, Crisp 1974) we 
refer to this retention of larval form 
after the onset of competence as "de- 
layed metamorphosis." 

It is not yet clear whether larvae 
actively delay their metamorphosis, 
for example by secreting some sub- 
stance that inhibits metamorphosis 
in the absence of particular external 
cues, or whether the metamorphic 

pathway is simply not stimulated 
until the appropriate cue(s) is en- 
countered (Pechenik and Qian 1998). 
In any event, delayed metamorpho- 
sis is not a developmental arrest 
analogous to insect diapause (Nij- 
hout 1994). Rather, competent ma- 
rine invertebrate larvae remain ac- 
tive in the plankton, often continuing 
to feed and grow (Pechenik 1990). 
During this time, the larval form and 
lifestyle may be maintained for days, 
weeks, or even months (Pechenik 
1990), allowing larvae of some spe- 
cies to disperse across entire ocean 
basins (Scheltema 1971). 

Although delayed metamorphosis 
is known primarily from laboratory 
studies, there is at least indirect evi- 
dence that marine invertebrate lar- 
vae also delay their metamorphosis 
in the field (Scheltema 1971, Pechenik 
1990). Despite several decades of 
active research, biologists understand 
little about what makes larvae com- 
petent to metamorphose or what 
determines how long they can delay 
metamorphosis, nor do we fully un- 
derstand the sequence of events that 
occurs internally once the external 
stimulus for metamorphosis is per- 
ceived (Degnan and Morse 1995, 
Cooper and Leise 1996, Pechenik 
and Qian 1998). 

In marine species with complex 
life cycles, adult population size de- 
pends to a large extent on the trans- 
port of larvae into and away from 
adult populations (Thorson 1950, 
Jackson and Strathmann 1981, Bailey 
and Houde 1989, Hill 1991, Shanks 
1995, Alexander and Roughgarden 
1996), the number of larvae that 
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During this time, the larval form and
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1990), allowing larvae of some spe­
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is known primarily from laboratory
studies, there is at least indirect evi­
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Figure 1. Complex life cycle of a typical marine invertebrate. Larvae develop for a time 
in the plankton before becoming competent to metamorphose. Metamorphosis is 
triggered by contact with chemical or physical cues that are typically associated with the 
appropriate juvenile habitat. The larva at the right is a veliger of the gastropod Crepidula 
fornicata (slipper shell snail). The suspension-feeding adults of this species aggregate to 
form stacks, as shown. Gastropod veligers are typically 250-750 ,um in shell length. 

survive to metamorphose (Thorson 
1950, Istock 1967, Bailey and Houde 
1989, Berven 1990, Kerrigan 1996), 
and the extent of postmetamorphic 
mortality (Gosselin and Qian 1997, 
Hunt and Scheibling 1997). Many 
studies have considered the roles of 
predators, temperature, food condi- 
tions, pollutants, and other environ- 
mental factors on larval mortality 
(reviewed by Pechenik 1987, Young 
and Chia 1987, Bailey and Houde 
1989, Morgan 1995) and the influ- 
ence of various biological and physi- 
cal stresses on juvenile mortality (re- 
viewed by Gosselin and Qian 1997, 
Hunt and Scheibling 1997). How- 
ever, only recently have biologists 
considered the impact that larval 
experience can have on postmeta- 

morphic vulnerability to these 
stresses. 

In hindsight it should come as no 
surprise that experiences in one part 
of marine invertebrate development 
can influence the performance of later 
stages. It is well known, for example, 
that various stresses experienced 
early in the development of mamma- 
lian embryos can affect many as- 
pects of postbirth performance, in- 
cluding enzyme function, learning 
capacity, behavior, and the likeli- 
hood of coronary heart disease and 
obesity (Ravelli et al. 1976, Barker 
1995, Rice 1996a, 1996b, Desai and 
Hales 1997). Similarly, incubation 
temperature and humidity have been 
shown to influence hatching size, 
growth rates, locomotory ability, 

behavior, and juvenile survival in 
some reptiles (Miller et al. 1987, 
Janzen and Paukstis 1991, Janzen 
1995, O'Steen 1998), and poor food 
conditions early in development can 
influence both survival and fecun- 
dity in birds (Haywood and Perrins 
1992, Merila and Svensson 1997). 
Even the prolonged storage of plant 
seeds can reduce the tolerance of 
seedlings to environmental stress 
(Priestly 1994). 

But such effects of early experi- 
ence on later performance have gen- 
erally not been sought among ma- 
rine species with complex life cycles, 
possibly because either the larval 
stage or the juvenile stage of many 
species is difficult to maintain in the 
laboratory or monitor in the field. In 
addition, the lack of such studies 
may reflect the general view of meta- 
morphosis as a new beginning: a 
morphological, ecological, and physi- 
ological revolution followed by a 
fresh start with a new body and a 
new lifestyle in a new habitat. In this 
article, we review the evidence that 
certain larval experiences can limit 
postmetamorphic performance in a 
variety of marine invertebrates, con- 
sider some of the mechanisms 
through which the effects may be 
mediated and some of the ramifica- 
tions of those effects, and suggest 
directions for future research. Al- 
though we focus on marine inverte- 
brates, we also include studies on 
insects, amphibians, and fishes to 
emphasize the apparent generality of 
the phenomenon: Metamorphosis is 
not necessarily a new beginning. 

Larval feeding influences 
postmetamorphic performance 

Many marine invertebrate larvae 
probably experience fluctuations in 
both food quantity and food quality 
(Pechenik 1987, Fenaux et al. 1994, 
Morgan 1995) because of the patchy 
distribution of phytoplankton in both 
space and time (e.g., Cowles et al. 
1993). Although effects of low food 
concentrations and poor food qual- 
ity on larval growth and survival 
have been well documented for the 
larvae of many marine invertebrate 
species (reviewed by Pechenik 1987, 
Boidron-Metairon 1995, Morgan 
1995), few studies have considered 
that food limitation experienced dur- 
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form stacks, as shown. Gastropod veligers are typically 250-750 f.lm in shell length.
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ing larval life might interfere with 
postmetamorphic performance. 

Such detrimental effects on juve- 
nile growth potential have recently 
been documented for a marine gas- 
tropod, the slipper shell snail (Crepi- 
dula fornicata; Figure 1). This snail 
feeds on suspended phytoplankton 
both before and after metamorpho- 
sis, so that all stages in the life cycle 
can be reared in the laboratory on 
the same diet; larvae capture food 
particles using a specialized ciliated 
organ (the velum) that is lost at meta- 
morphosis, whereas juveniles cap- 
ture particulate food using ciliated 
gills. Transferring larvae of C. 
fornicata from seawater with a high 
phytoplankton concentration (18 x 
104 cells/ml of Isochrysis galbana, 
clone T-ISO) to either filtered sea- 
water or to seawater with a dramati- 
cally lower concentration of phy- 
toplankton (1 x 104 cells/ml or less) 
for several days significantly reduced 
average juvenile growth rates, even 
though individuals were transferred 
back to the high phytoplankton con- 
centration after metamorphosis (Pech- 
enik et al. 1996a, 1996b). 

Juvenile growth rates were re- 
duced even when larvae were starved 
for only a few days very early in 
development and then returned to 
control conditions for the next 8 
days before metamorphosis. Al- 
though growth rates of starved lar- 
vae soon returned to those of control 
individuals, juvenile growth rates for 
at least the first 3-4 days after meta- 
morphosis were significantly below 
those of control individuals that had 
never been starved as larvae (Figure 
2). Thus, even short periods of re- 
duced food availability during larval 
life may constrain juvenile growth 
rates, potentially increasing vulner- 
ability to predators and altering key 
life history characteristics (Gosselin 
and Qian 1997). 

Duration of larval life affects 
juvenile performance 
The functional and temporal separa- 
tion between becoming competent 
to metamorphose and the actual pro- 
cess of metamorphosis has long been 
viewed as beneficial: The ability to 
delay metamorphosis in the absence 
of specific environmental cues in- 
creases the likelihood that individu- 
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Figure 4. Recruitment of the barnacle Semibalanus balanoides at Nahant, Massachusetts. 
Note the large adults to the left and the many attached cyprids interspersed among the 
newly metamorphosed individuals. The tendency of cyprid larvae to attach gregariously 
creates considerable intraspecific competition for space as the barnacles grow. 

1991, Pechenik et al. 1993, Wendt 
1996). In such cases, the presumed 
advantages of a prolonged stay in the 
plankton will not be fully realized. 

Fitness costs associated with de- 
layed metamorphosis are especially 
clear for species that cannot feed as 
larvae. Barnacles, for example, first 
develop in the plankton as feeding 
nauplius larvae but eventually meta- 
morphose to a nonfeeding, terminal 
larval stage, the cyprid (Figure 3). 
Cyprids cannot feed in the plankton 
but must subsist instead on lipids 
and protein accumulated by the pre- 
ceding naupliar stages. Cyprids at- 
tach to substrata and metamorphose 
into juvenile barnacles when they 
encounter specific chemical cues as- 
sociated with other individuals of 
their own species (Knight-Jones 1953, 
Crisp and Meadows 1963, Yule and 
Walker 1985). 

The well-developed tendency of 
cyprids to attach near other indi- 
viduals of the same species creates 
impressive intraspecific competition 
for space (Figure 4; Connell 1961, 
Bertness 1989). Delaying cyprid 
metamorphosis can reduce juvenile 
competitive ability. Balanus amphi- 
trite, for example, can metamorphose 
within hours of attaining the cyprid 
stage, but metamorphosis can be 
prevented for at least 5 days by vari- 

ous means in the laboratory. In ex- 
periments conducted by Pechenik et 
al. (1993), growth rates of newly 
metamorphosed barnacles were 
slowed significantly if B. amphitrite 
cyprids were prevented from meta- 
morphosing for as few as 3 days. 
Such reduced growth rates would 
compromise the ability of juvenile 
barnacles to compete for space 
(Connell 1961) and seriously reduce 
their likelihood of successfully re- 
cruiting to the adult population. 

Similar results have been obtained 
in the laboratory for several bryo- 
zoan species (Woollacott et al. 1989, 
Orellana and Cancino 1991, Wendt 
1996). Bryozoans are colonial ani- 
mals that grow through asexual bud- 
ding of modular units, called zooids, 
that remain attached to the parental 
colony (Figure 5). Competition for 
space is therefore mediated by rapid 
increases in zooid numbers, and the 
competitive advantage should go to 
colonies that bud the fastest. The 
microscopic, ciliated larvae (Figure 
5) cannot ingest phytoplankton or 
other particulates. Although the lar- 
vae can take up dissolved organic 
materials from surrounding seawa- 
ter (Jaeckle 1994), there is as yet no 
direct evidence that such dissolved 
materials play a major nutritional 
role during larval life. Thus, the lar- 

vae probably subsist solely on nutri- 
ents acquired from the parent during 
embryogenesis. 

In the laboratory, bryozoan lar- 
vae metamorphose preferentially in 
response to certain microbial films 
on hard surfaces (Brancato and 
Woollacott 1982). Without those 
cues, the larvae may continue swim- 
ming for at least 10-12 hours; how- 
ever, they will metamorphose nor- 
mally during that time if appropriate 
substrates are introduced to the ex- 
perimental containers. In experi- 
ments conducted with Bugula 
stolonifera (Woollacott et al. 1989), 
prolonging larval life by as little as 
6-8 hours at 20 ?C led to signifi- 
cant-and often dramatic-reduc- 
tions in rates of colony development. 

The effects of delayed metamor- 
phosis were similar for Bugula 
neritina: The rate of postmeta- 
morphic development varied in- 
versely with swimming duration 
(Wendt 1996). Because bryozoans 
reproduce only after reaching a mini- 
mum colony size (e.g., after seven 
bifurcations in B. neritina; Keough 
1989), slowing early colony growth 
should delay the onset of reproduc- 
tion and decrease long-term repro- 
ductive output. Indeed, when young 
colonies of B. neritina were trans- 
planted from the laboratory to the 
field and examined 14 days later, 
those established from larvae with 
long swimming periods (24 hours) 
had, on average, fewer zooids, fewer 
bifurcations, and fewer reproductive 
structures than those established 
from larvae that were kept swim- 
ming for less than 1 hour (Table 1; 
Wendt in press). Thus, delaying meta- 
morphosis can substantially alter the 
fitness of bryozoans and barnacles. 
However, not all species with 
nonfeeding larvae are equally sus- 
ceptible to the effects of delayed 
metamorphosis: Significantly fewer 
individuals of the polychaete Capi- 
tella sp. I survived after settlement 
when metamorphosis was postponed 
for more than 3 days (at 20 ?C), but 
prolonged swimming did not signifi- 
cantly affect mean juvenile growth 
rate, time to reproductive maturity, 
or fecundity of the survivors (Pech- 
enik and Cerulli 1991). 

Species with feeding larvae do not 
generally show reduced fitness when 
metamorphosis is delayed, although 
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Figure4. Recruitment of the barnacle Semibalanus balanoides at Nahant, Massachusetts.
Note the large adults to the left and the many attached cyprids interspersed among the
newly metamorphosed individuals. The tendency of cyprid larvae to attach gregariously
creates considerable intraspecific competition for space as the barnacles grow.

1991, Pechenik et at. 1993, Wendt
1996). In such cases, the presumed
advantages of a prolonged stay in the
plankton will not be fully realized.

Fitness costs associated with de­
layed metamorphosis are especially
clear for species that cannot feed as
larvae. Barnacles, for example, first
develop in the plankton as feeding
nauplius larvae but eventually meta­
morphose to a nonfeeding, terminal
larval stage, the cyprid (Figure 3).
Cyprids cannot feed in the plankton
but must subsist instead on lipids
and protein accumulated by the pre­
ceding naupliar stages. Cyprids at­
tach to substrata and metamorphose
into juvenile barnacles when they
encounter specific chemical cues as­
sociated with other individuals of
their own species (Knight-Jones 1953,
Crisp and Meadows 1963, Yule and
Walker 1985).

The well-developed tendency of
cyprids to attach near other indi­
viduals of the same species creates
impressive intraspecific competition
for space (Figure 4; Connell 1961,
Bertness 1989). Delaying cyprid
metamorphosis can reduce juvenile
competitive ability. Balanus amphi­
trite, for example, can metamorphose
within hours of attaining the cyprid
stage, but metamorphosis can be
prevented for at least 5 days by vari-
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ous means in the laboratory. In ex­
periments conducted by Pechenik et
at. (1993), growth rates of newly
metamorphosed barnacles were
slowed significantly if B. amphitrite
cyprids were prevented from meta­
morphosing for as few as 3 days.
Such reduced growth rates would
compromise the ability of juvenile
barnacles to compete for space
(Connell 1961) and seriously reduce
their likelihood of successfully re­
cruiting to the adult population.

Similar results have been obtained
in the laboratory for several bryo­
zoan species (Woollacott et at. 1989,·
Orellana and Cancino 1991, Wendt
1996). Bryozoans are colonial ani­
mals that grow through asexual bud­
ding of modular units, called zooids,
that remain attached to the parental
colony (Figure 5). Competition for
space is therefore mediated by rapid
increases in zooid numbers, and the
competitive advantage should go to
colonies that bud the fastest. The
microscopic, ciliated larvae (Figure
5) cannot ingest phytoplankton or
other particulates. Although the lar­
vae can take up dissolved organic
materials from surrounding seawa­
ter (Jaeckle 1994), there is as yet no
direct evidence that such dissolved
materials play a major nutritional
role during larval life. Thus, the lar-

vae probably subsist solely on nutri­
ents acquired from the parent during
embryogenesis.

In the laboratory, bryozoan lar­
vae metamorphose preferentially in
response to certain microbial films
on hard surfaces (Brancato and
Woollacott 1982). Without those
cues, the larvae may continue swim­
ming for at least 10-12 hours; how­
ever, they will metamorphose nor­
mally during that time if appropriate
substrates are introduced to the ex­
perimental containers. In experi­
ments conducted with Bugula
stolonifera (Woollacott et at. 1989),
prolonging larval life by as little as
6-8 hours at 20 °C led to signifi­
cant-and often dramatic-reduc­
tions in rates of colony development.

The effects of delayed metamor­
phosis were similar for Bugula
neritina: The rate of postmeta­
morphic development varied in­
versely with swimming duration
(Wendt 1996). Because bryozoans
reproduce only after reaching a mini­
mum colony size (e.g., after seven
bifurcations in B. neritina; Keough
1989), slowing early colony growth
should delay the onset of reproduc­
tion and decrease long-term repro­
ductive output. Indeed, when young
colonies of B. neritina were trans­
planted from the laboratory to the
field and examined 14 days later,
those established from larvae with
long swimming periods (24 hours)
had, on average, fewer zooids, fewer
bifurcations, and fewer reproductive
structures than those established
from larvae that were kept swim­
ming for less than 1 hour (Table 1;
Wendt in press). Thus, delaying meta­
morphosis can substantially alter the
fitness of bryozoans and barnacles.
However, not all species with
nonfeeding larvae are equally sus­
ceptible to the effects of delayed
metamorphosis: Significantly fewer
individuals of the polychaete Capi­
tella sp. I survived after settlement
when metamorphosis was postponed
for more than 3 days (at 20 oq, but
prolonged swimming did not signifi­
cantly affect mean juvenile growth
rate, time to reproductive maturity,
or fecundity of the survivors (Pech­
enik and Cerulli 1991).

Species with feeding larvae do not
generally show reduced fitness when
metamorphosis is delayed, although
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Figure 5. The life cycle of bryozoans in the 
genus Bugula. Each colony is composed of 
hundreds or thousands of zooids, which 
release nonfeeding ciliated larvae that are 
capable of metamorphosing within ap- 
proximately 2 hours of their release. Each 
larva attaches and metamorphoses to form 
a polyp (the ancestrula), which soon be- 
gins to feed and to bud off the second 
member of the colony. 

few such species have been studied. 
Delaying the metamorphosis of C. 
fornicata until larvae metamor- 
phosed spontaneously on clean glass- 
ware did not significantly alter juve- 
nile survival, respiration rate, feeding 
rate, or growth rate (Pechenik and 
Eyster 1989). Similarly, delaying 
metamorphosis of the echinoids 
Dendraster excentricus and Strongy- 
locentrotus droebachiensis did not 
significantly increase juvenile mor- 
tality or decrease juvenile growth 
rates, although it may have reduced 
the tolerance of juvenile D. excen- 
tricus to physical stress (Highsmith 
and Emlet 1986). Based on data pre- 
served in the growth rings of otoliths 
from the tropical reef fishes Thalas- 
soma bifasciatum and Semicossyphus 
pulcher, delaying metamorphosis in 
the field did not significantly reduce 
juvenile growth rates (Victor 1986, 
Cowen 1991). 

Together, these findings show that 
delaying metamorphosis, although 
increasing the likelihood of recruit- 
ment into appropriate areas, can 
clearly carry costs that will poten- 
tially reduce fitness, particularly for 
species that produce nonfeeding lar- 
vae. It is equally clear that the conse- 
quences of delaying metamorphosis 
differ substantially among species, 
both in kind and in magnitude. Spe- 
cies with nonfeeding larvae seem 
most likely to be affected. 

Evidence for reduced fitness 
effects in the field 

To date, relationships between lar- 
val experience and postmetamorphic 
performance have been documented 
almost entirely in laboratory stud- 
ies. Victor (1986) and Cowen (1991) 
found no evidence from field samples 
that postsettlement growth rates of 
reef fish are affected by prolonged 
larval life. However, larval experi- 
ence may be affecting growth and 
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competitive ability of barnacles in 
the field. The growth capacity of 
metamorphosed individuals of the 
barnacle Semibalanus balanoides dif- 
fered significantly among groups of 
larvae recruiting on different days at 
a particular intertidal site in Massa- 
chusetts; in general, individuals re- 
cruiting later in the season had lower 
mean growth rates than those re- 
cruiting earlier in the season (Figure 6; 
Jarrett and Pechenik 1997). In those 
studies, cyprids were allowed to at- 
tach to artificial substrata deployed in 
the field and were then transplanted 

on those substrata to the laboratory, 
to be reared at constant temperature 
and food concentration. 

Thus, the documented differences 
in mean barnacle growth rates can 
reflect only intrinsic differences in 
physiological growth capacity of the 
different cohorts. The results are con- 
sistent with the hypotheses that lar- 
vae of this species delay their meta- 
morphosis more frequently later in 
the season, perhaps as suitable habi- 
tat fills up with juvenile barnacles, 
or that they experience substantial 
reductions in food quality or quan- 

Table 1. Mean (? SE) number of zooids, bifurcations, and brood chambers 14 days 
after metamorphosis in colonies of the bryozoan Bugula neritina.a 

Growth parameters 1 h colonyb 24 h colonyc 

Zooids 115 + 7 72 +? 5 
Bifurcations 12 + 0.7 8 ? 0.6 
Brood chambers 16 + 3 3 + 1 

aData from Wendt (in press). 
b1 h colonies developed from larvae swimming less than 1 hour. 
c24 h colonies developed from larvae swimming approximately 24 hours before metamorphosis. 
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Figure 5. The life cycle of bryozoans in the
genus Bugula. Each colony is composed of
hundreds or thousands of zooids, which
release nonfeeding ciliated larvae that are
capable of metamorphosing within ap­
proximately 2 hours of their release. Each
larva attaches and metamorphoses to form
a polyp (the ancestrula), which soon be­
gins to feed and to bud off the second
member of the colony.
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few such species have been studied.
Delaying the metamorphosis of C.
fornicata until larvae metamor­
phosed spontaneously on clean glass­
ware did not significantly alter juve­
nile survival, respiration rate, feeding
rate, or growth rate (Pechenik and
Eyster 1989). Similarly, delaying
metamorphosis of the echinoids
Dendraster excentricus and Strongy­
locentrotus droebachiensis did not
significantly increase juvenile mor­
tality or decrease juvenile growth
rates, although it may have reduced
the tolerance of juvenile D. excen­
tricus to physical stress (Highsmith
and Emlet 1986). Based on data pre­
served in the growth rings of otoliths
from the tropical reef fishes Thalas­
soma bifasciatum and Semicossyphus
pulcher, delaying metamorphosis in
the field did not significantly reduce
juvenile growth rates (Victor 1986,
Cowen 1991).

Together, these findings show that
delaying metamorphosis, although
increasing the likelihood of recruit­
ment into appropriate areas, can
clearly carry costs that will poten­
tially reduce fitness, particularly for
species that produce nonfeeding lar­
vae. It is equally clear that the conse­
quences of delaying metamorphosis
differ substantially among species,
both in kind and in magnitude. Spe­
cies with nonfeeding larvae seem
most likely to be affected.

Evidence for reduced fitness
effects in the field

Table 1. Mean (± SE) number of zooids, bifurcations, and brood chambers 14 days
after metamorphosis in colonies of the bryozoan Bugula neritina. a

aData from Wendt (in press).
b1 h colonies developed from larvae swimming less than 1 hour.
c24 h colonies developed from larvae swimming approximately 24 hours before metamorphosis.

To date, relationships between lar­
val experience and postmetamorphic
performance have been documented
almost entirely in laboratory stud­
ies. Victor (1986) and Cowen (1991)
found no evidence fromfield samples
that postsettlement growth rates of
reef fish are affected by prolonged
larval life. However, larval experi­
ence may be affecting growth and

Growth parameters

Zooids
Bifurcations
Brood chambers

1 h colonyb

115 ± 7
12 ± 0.7
16 ± 3

24 h colonyc

72 ± 5
8 ± 0.6
3±1
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Figure 6. Mean growth 
rates (? SEM) of young 
barnacles (Semibalanus 
balanoides) attaching to 
substrata at Nahant, 
Massachusetts, on seven 
different dates in 1995. 
The larvae are found in 
the plankton between 
March and May of each 
year. For each sampling 
date, 12 attachment 
plates were deployed in 
the field for 24 hours 
and then returned to the 
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laboratory, where newly attached barnacles were reared under uniform conditions of 
temperature (16 ?C) and food (18 x 104 phytoplankton cells/ml) for 7 days. Juvenile 
growth rates were deduced from changes in basal diameter. Each point represents the 
mean growth rate of 13-29 animals after adjusting for differences in average attachment 
size. Identical letters above each bar indicate means that do not differ significantly (P > 
0.05; GT2 test following analysis of covariance). Data from Jarrett and Pechenik (1997). 

tity at different times during the re- 
productive season. 

Mechanisms of action 
in marine animals 

The inverse relationship between lar- 
val feeding regime and mean muscle 
fiber diameter in juvenile reef fish 
(McCormick and Molony 1992) is 
easily explained through effects of 
feeding regime on growth. In most 
other cases, however, it is not yet 
clear why the effects of larval expe- 
rience carry over into juvenile life. 
Detrimental effects of delayed meta- 
morphosis on juvenile performance 

in marine invertebrates have so far 
been documented almost entirely for 
species with nonfeeding larvae, sug- 
gesting that its effects are at least 
partially mediated by limited energy 
reserves or nutritional status. Larvae 
of the gastropod C. fornicata, for 
example, never lose their feeding ca- 
pability, even during a prolonged 
extension of time in the plankton 
(Pechenik 1980). As described ear- 
lier, postmetamorphic growth rates 
were affected for this species only if 
larvae were starved or given insuffi- 
cient food for a number of days be- 
fore metamorphosis (Pechenik 
1996a, 1996b). 

Figure 7. Mean height 500 - 4.1x + 470 r2 .97 
of the juvenile feeding T 

apparatus (lophophore) a 
as a function of larval 
swimming duration in E 450- 
the bryozoan Bugula T 
neritina. Larvae were 
sampled every 4 hours 

' 

and induced to meta- 400- a 
morphose by exposing \ | 
them to 10 mM excess \ h T 
KCl in seawater; el- 4 \ ]/ I1 \ I 
evated concentrations of b 
potassium induce meta- ; S 
morphosis of bryozoan - 
larvae (Wendt and: ,| 
Woollacott 1995). For 
each juvenile, the top 300 T 

diameter (a), bottom di- ? 4 8 12 16 20 24 28 

ameter (b), and tentacle 
length (c) were mea- Larval Swimming Duration (hours) 
sured. Based on these 
measurements, lophophore height was calculated using the equation: Height = 
4/c2 - (1/4) (a - b)2. Each point is the mean (? SEM) of 8-32 individuals pooled from 
five replicates. Modified from Wendt (1996). 

For species with nonfeeding lar- 
vae, there is also some direct evi- 
dence that the effects of delayed 
metamorphosis are caused by over- 
use of energy reserves during the 
extended larval swimming period. 
For the bryozoan B. neritina, pro- 
longed larval swimming was associ- 
ated with significantly reduced size 
of the juvenile feeding structure, the 
lophophore: The first juvenile 
(ancestrula) lophophore was 25% 
smaller in height (Figure 7) and had 
40% less surface area and 50% less 
volume when larvae were kept swim- 
ming for 28 hours at 20 ?C than 
control individuals that were allowed 
to metamorphose immediately after 
their release from the parental colony 
(Wendt 1996). Larvae that had a 
longer planktonic period probably 
consumed a larger proportion of their 
energy reserves while swimming, 
leaving a smaller proportion avail- 
able for constructing postmeta- 
morphic feeding structures (Wendt 
1996). The reduced mean lophophore 
sizes probably account for the re- 
duced rates of colony growth de- 
scribed earlier (Woollacott et al. 1989), 
because food particle collection rates 
are known to vary with lophophore 
dimensions in other bryozoan species 
(Best and Thorpe 1986). 

Similarly, the variation in juvenile 
growth potential documented for the 
barnacle Semibalanus balanoides 
recruiting in the field may also have 
a nutritional basis, as suggested by 
significant fluctuations in the aver- 
age organic content of newly attached 
and metamorphosing cyprids during 
the recruitment season (Jarrett and 
Pechenik 1997). Cyprid organic con- 
tent can be influenced by the food 
conditions experienced by the feed- 
ing naupliar stages that precede the 
nonfeeding cyprid (Figure 3) and by 
how long the cyprids delay their meta- 
morphosis and remain planktonic. 

Nutritional stress is a major cause 
of the temporal variation in cyprid 
organic content (Jeremiah Jarrett, 
unpublished data). Stage VI nauplii 
were removed from plankton samples 
taken on six dates in 1996 and main- 
tained at field temperature (4-6 ?C) 
in filtered seawater. The organic con- 
tent of each individual metamorphos- 
ing to the cyprid stage during the 
next 16 hours was then measured. 
The organic content of these newly 
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For species with nonfeeding lar­
vae, there is also some direct evi­
dence that the effects of delayed
metamorphosis are caused by over­
use of energy reserves during the
extended larval swimming period.
For the bryozoan B. neritina, pro­
longed larval swimming was associ­
ated with significantly reduced size
of the juvenile feeding structure, the
lophophore: The first juvenile
(ancestrula) lophophore was 25%
smaller in height (Figure 7) and had
40% less surface area and 50% less
volume when larvae were kept swim­
ming for 28 hours at 20°C than
control individuals that were allowed
to metamorphose immediately after
their release from the parental colony
(Wendt 1996). Larvae that had a
longer planktonic period probably
consumed a larger proportion of their
energy reserves while swimming,
leaving a smaller proportion avail­
able for constructing postmeta­
morphic feeding structures (Wendt
1996). The reduced mean lophophore
sizes probably account for the re­
duced rates of colony growth de­
scribed earlier (Woollacott et al. 1989),
because food particle collection rates
are known to vary with lophophore
dimensions in other bryozoan species
(Best and Thorpe 1986).

Similarly, the variation in juvenile
growth potential documented for the
barnacle Semibalanus balanoides
recruiting in'the field may also have
a nutritional basis, as suggested by
significant fluctuations in the aver­
age organic content of newly attached
and metamorphosing cyprids during
the recruitment season (Jarrett and
Pechenik 1997). Cyprid organic con­
tent can be influenced by the food
conditions experienced by the feed­
ing naupliar stages that precede the
nonfeeding cyprid (Figure 3) and by
how long the cyprids delay their meta­
morphosis and remain planktonic.

Nutritional stress is a major cause
of the temporal variation in cyprid
organic content (Jeremiah Jarrett,
unpublished data). Stage VI nauplii
were removed from plankton samples
taken on six dates in 1996 and main­
tained at field temperature (4-6 °C)
in filtered seawater. The organic con­
tent of each individual metamorphos­
ing to the cyprid stage during the
next 16 hours was then measured.
The organic content of these newly
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in marine invertebrates have so far
been documented almost entirely for
species with nonfeeding larvae, sug­
gesting that its effects are at least
partially mediated by limited energy
reserves or nutritional status. Larvae
of the gastropod C. fornicata, for
example, never lose their feeding ca­
pability, even during a prolonged
extension of time in the plankton
(Pechenik 1980). As described ear­
lier, postmetamorphic growth rates
were affected for this species only if
larvae were starved or given insuffi­
cient food for a number of days be­
fore metamorphosis (Pechenik
1996a, 1996b).
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Figure 6. Mean growth
rates (± SEM) of young
barnacles (Semibalanus
balanoides) attaching to
substrata at Nahant,
Massachusetts, on seven
different dates in 1995.
The larvae are found in
the plankton between
March and May of each
year. For each sampling
date, 12 attachment
plates were deployed in
the field for 24 hours
and then returned to the
laboratory, where newly attached barnacles were reared under uniform conditions of
temperature (16°C) and food (18 x 104 phytoplankton cells/ml) for 7 days. Juvenile
growth rates were deduced from changes in basal diameter. Each point represents the
mean growth rate of 13-29 animals after adjusting for differences in average attachment
size. Identical letters above each bar indicate means that do not differ significantly (P >
0.05; GT2 test following analysis of covariance). Data from Jarrett and Pechenik (1997).

tity at different times during the re­
productive season.

Mechanisms of action
in marine animals

The inverse relationship between lar­
val feeding regime and mean muscle
fiber diameter in juvenile reef fish
(McCormick and Molony 1992) is
easily explained through effects of
feeding regime on growth. In most
other cases, however, it is not yet
clear why the effects of larval expe­
rience carryover into juvenile life.
Detrimental effects of delayed meta­
morphosis on juvenile performance

Figure 7. Mean height
of the juvenile feeding
apparatus (lophophore)
as a function of larval
swimming duration in S 450
the bryozoan Bugula -6
neritina. Larvae were .fn
sampled every 4 hours ~

and induced to meta- Q) 400 II::;;:J ..-........:::::..........-_J1~jl
morphose by exposing ~

them to 10 mM excess -a
KCI in seawater; el- ~
evated concentrations of ~ 350
potassium induce meta- ~
morphosis of bryozoan
larvae (Wendt and
Woollacott 1995). For
each juvenile, the top
diameter (a), bottom di­
ameter (b), and tentacle
length (c) were mea­
sured. Based on these
measurements, lophophore height was calculated using the equation: Height =
"'.)c2 - (1/4) (a - b)l. Each point is the mean (± SEM) of 8-32 individuals pooled from
five replicates. Modified from Wendt (1996).

906 BioScience Vol. 48 No. 11



metamorphosed cyprids differed sig- 
nificantly among samples collected 
on different dates, generally being 
lower later in the spring (Figure 8), 
which supports the hypothesis that 
cyprid energy content is determined 
largely by the nutritional status of 
the preceding naupliar stages of de- 
velopment. 

However, variation in cyprid en- 
ergy content does not always predict 
juvenile growth rate. For example, 
the mean energy content of individu- 
als attaching to substrates in the field 
on 20 March 1995 did not differ 
significantly (P > 0.05) from that of 
individuals attaching on 27 March 
(Jarrett and Pechenik 1997), even 
though juvenile growth rates did dif- 
fer significantly for individuals re- 
cruiting on those dates (P < 0.05; 
Figure 6). Also, delaying metamor- 
phosis of the spionid polychaete 
Polydora ligni reduced juvenile 
growth rates and adult fecundity, 
even when larvae were fed on natu- 
ral phytoplankton assemblages (Qian 
et al. 1990). Conversely, delaying 
metamorphosis of the polychaete 
Capitella sp. I had no significant 
effect on mean juvenile growth rate, 
time to reproductive maturity, or 
fecundity, as discussed earlier, even 
though the larvae are nonfeeding 
(Pechenik and Cerulli 1991). These 
findings suggest that the causes of 
variation in juvenile performance 
may sometimes be more complex 
than simple variation in larval en- 
ergy content. Perhaps some gene 
products transcribed early in devel- 
opment are needed for proper orga- 
nogenesis or physiological function 
following metamorphosis; some 
stresses might interfere with either 
the timing or the magnitude of tran- 
scriptional or translational processes 
in some species. 

Examples from other groups 
There is good reason to think that 
embryonic or larval experiences com- 
monly influence juvenile perfor- 
mance in amphibians, fishes, and 
insects, although documentation is 
surprisingly rare. Among amphib- 
ians, declines in food availability 
commonly precipitate metamorpho- 
sis at smaller than average sizes (Travis 
1984, Alford and Harris 1988, 
Semlitsch et al. 1988, Newman 1992, 

Figure 8. Mean organic 20- B 
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(Semibalanus bala- . a. T 
noides) metamorphos- o. 
ing from stage VI nau- 2 ' 

plii to cyprids within 0 ~ A,C C 
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collection from the X 1 10- A,C T 
plankton near Nahant, > , 
Massachusetts, on 6 C -. A A,C 
days during 1996. Lar- ca T -_ - 
vae of this species are E ? 
found in the plankton 
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May of each year. Dif- 0 
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each bar indicate sig- 
nificantly different Date Collected 
means (P < 0.05). Be- 
cause all individuals were collected as nauplii and metamorphosed in the laboratory 
soon after being collected, differences in mean cyprid organic content must reflect 
differences in the nutritional condition of nauplii at the time of collection 
rather than differences in the lengths of time that individuals were in the cyprid 
stage. Each bar (+ SEM) indicates the mean of measurements made on 6-14 
individual cyprids (except March 14 data, which indicates the mean of measure- 
ments made on 2 cyprids). 

Audo et al. 1995). Size at metamor- 
phosis can have important repercus- 
sions in later life, although the ef- 
fects have been documented in only 
a few studies to date. In the sala- 
mander Ambystoma talpoideum, for 
example, smaller size at metamorpho- 
sis was associated with both smaller 
size and greater age at first repro- 
duction (Semlitsch et al. 1988). Simi- 
larly, smaller body size at metamor- 
phosis correlated with longer time to 
reach reproductive maturity, smaller 
body size at reproductive maturity, 
and reduced fecundity in the wood- 
frog, Rana sylvatica (Berven 1990). 
Larval feeding history can clearly 
influence lifetime fitness of amphib- 
ians, even when juvenile survival is 
not affected (Semlitsch et al. 1988). 

Different sorts of effects of food 
stress on lifetime fitness have been 
suggested but not yet documented 
for several coral reef fish species. 
Fish larvae recruiting to reefs at dif- 
ferent times can differ dramatically 
in average biochemical composition 
(Kerrigan 1996), suggesting varied 
nutritional experiences of larvae in 
the field. Recent laboratory studies 
by McCormick and Molony (1992) 
demonstrate that reduced food sup- 
ply to larvae can decrease the aver- 
age size at settlement, average diam- 
eter of muscle fibers, and average 
feeding rates in juvenile goatfish, 
Upenaeus tragula. Although differ- 

ences in size and biochemical com- 
position at settlement do not necessar- 
ily alter the susceptibility of juvenile 
fish to predators (McCormick and 
Kerrigan 1996), other properties, 
such as juvenile growth rates, ability 
to compete successfully for food and 
mates, and time to sexual maturity, 
might be affected (Kerrigan 1996, 
McCormick and Kerrigan 1996). 

Negative effects of larval experi- 
ence on juvenile or adult performance 
have been reported for some insect 
species. In the flesh fly, Sarcophago 
bullata, prolonging larval diapause 
in the laboratory reduced fertiliza- 
tion success (Denlinger 1981). By 
crossing males that had experienced 
prolonged diapause as larvae with 
females that had not, and vice versa, 
Denlinger (1981) showed that pro- 
longing diapause affected only fe- 
male reproductive fitness. Similarly, 
prolonged diapause of the bruchid 
Kytorhinus sharpianus significantly 
reduced the average number of eggs 
deposited, in part by increasing the 
proportion of females that deposited 
no eggs at all (Ishihara and Shimade 
1995). We have not encountered com- 
parable studies for other insect species. 

These findings thus indicate that 
the influence of larval experience on 
postmetamorphic fitness is not lim- 
ited to marine invertebrates. Instead, 
it seems to be widespread among 
species with complex life cycles. 
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soon after being collected, differences in mean cyprid organic content must reflect
differences in the nutritional condition of nauplii at the time of collection
rather than differences in the lengths of time that individuals were in the cyprid
stage. Each bar (+ SEM) indicates the mean of measurements made on 6-14
individual cyprids (except March 14 data, which indicates the mean of measure­
ments made on 2 cyprids).

Audo et al. 1995). Size at metamor­
phosis can have important repercus­
sions in later life, although the ef­
fects have been documented in only
a few studies to date. In the sala­
mander Ambystoma talpoideum, for
example, smaller size at metamorpho­
sis was associated with both smaller
size and greater age at first repro­
duction (Semlitsch et al. 1988). Simi­
larly, smaller body size at metamor­
phosis correlated with longer time to
reach reproductive maturity, smaller
body size at reproductive maturity,
and reduced fecundity in the wood­
frog, Rana sylvatica (Berven 1990).
Larval feeding history can clearly
influence lifetime fitness of amphib­
ians, even when juvenile survival is
not affected (Semlitsch et al. 1988).

Different sorts of effects of food
stress on lifetime fitness have been
suggested but not yet documented
for several coral reef fish species.
Fish larvae recruiting to reefs at dif­
ferent times can differ dramatically
in average biochemical composition
(Kerrigan 1996), suggesting varied
nutritional experiences of larvae in
the field. Recent laboratory studies
by McCormick and Molony (1992)
demonstrate that reduced food sup­
pIy to larvae can decrease the aver­
age size at settlement, average diam­
eter of muscle fibers, and average
feeding rates in juvenile goatfish,
Upenaeus tragula. Although differ-

metamorphosed cyprids differed sig­
nificantly among samples collected
on different dates, generally being
lower later in the spring (Figure 8),
which supports the hypothesis that
cyprid energy content is determined
largely by the nutritional status of
the preceding naupliar stages of de­
velopment.

However, variation in cyprid en­
ergy content does not always predict
juvenile growth rate. For example,
the mean energy content of individu­
als attaching to substrates in the field
on 20 March 1995 did not differ
significantly (P > 0.05) from that of
individuals attaching on 27 March
(Jarrett and Pechenik 1997), even
though juvenile growth rates did dif­
fer significantly for individuals re­
cruiting on those dates (P < 0.05;
Figure 6). Also, delaying metamor­
phosis of the spionid polychaete
Polydora ligni reduced juvenile
growth rates and adult fecundity,
even when larvae were fed on natu­
ral phytoplankton assemblages (Qian
et al. 1990). Conversely, delaying
metamorphosis of the polychaete
Capitella sp. I had no significant
effect on mean juvenile growth rate,
time to reproductive maturity, or
fecundity, as discussed earlier, even
though the larvae are nonfeeding
(Pechenik and Cerulli 1991). These
findings suggest that the causes of
variation in juvenile performance
may sometimes be more complex
than simple variation in larval en­
ergy content. Perhaps some gene
products transcribed early in devel­
opment are needed for proper orga­
nogenesis or physiological function
following metamorphosis; some
stresses might interfere with either
the timing or the magnitude of tran­
scriptional or translational processes
in some species.

Examples from other groups

There is good reason to think that
embryonic or larval experiences com­
monly influence juvenile perfor­
mance in amphibians, fishes, and
insects, although documentation is
surprisingly rare. Among amphib­
ians, declines in food availability
commonly precipitate metamorpho­
sis at smaller than average sizes (Travis
1984, Alford and Harris 1988,
Semlitsch et ale 1988, Newman 1992,
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Future work 

Metamorphosis does not necessarily 
signal a completely new beginning 
within the life cycles of marine inver- 
tebrates. Certain larval experiences- 
even short-term ones-can clearly 
carry over to future stages of devel- 
opment. The phenomenon is known 
mostly from laboratory studies, al- 
though even in these cases the range 
of examples is limited. Additional 
studies need to be conducted using a 
wider range of species, including in- 
sects, amphibians, and fishes. Such 
studies should consider a wider range 
of stresses and examine a wider range 
of responses, looking for effects of 
embryonic and larval experience on 
juvenile survival, age at maturity, 
growth rate, mating behavior, fe- 
cundity, and competitive ability. The 
literature reviewed in this article sug- 
gests that nutritional and other ex- 
periences during early development 
are likely to reduce juvenile perfor- 
mance in a variety of ways in a wide 
range of species across most animal 
groups, and perhaps in plants as well. 
How the effects of larval experience 
on postmetamorphic fitness are me- 
diated, and whether those effects are 
mediated by similar mechanisms in 
different species, remain to be deter- 
mined. 

The potential for embryonic and 
larval experiences to reduce juvenile 
or adult fitness has broad implica- 
tions in a wide range of areas. For 
example, many marine invertebrate 
and fish populations show great 
variation in size from year to year; 
this variation is often related to 
changes in larval mortality and in 
the numbers of larvae supplied to 
particular areas in different years 
(Thorson 1950, Bailey and Houde 
1989, Hill 1991, Shanks 1995) and 
in the extent of postmetamorphic 
mortality (Gosselin and Qian 1997, 
Hunt and Scheibling 1997). The role 
of larval experience in increasing the 
extent of postmetamorphic mortal- 
ity in the field-through reduced 
ability to compete for food or space, 
for example-has yet to be examined. 

Early experience may also affect 
sensitivity to environmental contami- 
nants. Embryonic and larval stages 
are typically far more sensitive to 
thermal, salinity, and pollutant 
stresses than are juvenile and adult 

stages of the same species (e.g., Cala- 
brese et al. 1973, Moore and Dwyer 
1974). However, studies of embry- 
onic and larval tolerance to environ- 
mental stresses have generally ended 
at or before metamorphosis. Because 
short-term food deprivation and de- 
layed metamorphosis in the larval stage 
can clearly affect juvenile and adult 
fitness, we predict that exposing lar- 
vae to sublethal pollutant concen- 
trations and other environmental 
stresses will also affect postmeta- 
morphic development in many spe- 
cies; fitness effects will probably be 
found when they are looked for. 

Early life stresses may also influ- 
ence the likelihood of successful in- 
vasion by marine species transported 
in ship ballast water. During their 
days or weeks of transport in ship 
ballast water (Ruiz et al. 1997), lar- 
vae are likely to be both delaying 
their metamorphosis and experienc- 
ing nutritional stress; species that 
are least sensitive to such stresses 
may be the most likely to invade 
successfully following their discharge 
and metamorphosis. 

Reductions in juvenile fitness due 
to delayed metamorphosis or tem- 
porary nutritional stress also have 
implications for the aquaculture in- 
dustry. Juvenile growth rates of cul- 
tured clams and oysters, for example, 
might suffer substantially if larvae 
are allowed to delay their metamor- 
phosis for too long after becoming 
competent, or if larvae experience 
nutritional stress during critical pe- 
riods before metamorphosis. 
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