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Abstract Real time, or quantitative, PCR typically starts from a very low concentra-
tion of initial DNA strands. During iterations the numbers increase, first essentially
by doubling, later predominantly in a linear way. Observation of the number of DNA
molecules in the experiment becomes possible only when it is substantially larger than
initial numbers, and then possibly affected by the randomness in individual replica-
tion. Can the initial copy number still be determined? This is a classical problem and,
indeed, a concrete special case of the general problem of determining the number of
ancestors, mutants or invaders, of a population observed only later. We approach it
through a generalised version of the branching process model introduced in Jagers and
Klebaner (J Theor Biol 224(3):299–304, 2003. doi:10.1016/S0022-5193(03)00166-
8), and based onMichaelis–Menten type enzyme kinetical considerations fromSchnell
and Mendoza (J Theor Biol 184(4):433–440, 1997). A crucial role is played by the
Michaelis–Menten constant being large, as compared to initial copy numbers. In a
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strange way, determination of the initial number turns out to be completely possible if
the initial rate v is one, i.e all DNA strands replicate, but only partly so when v < 1,
and thus the initial rate or probability of succesful replication is lower than one. Then,
the starting molecule number becomes hidden behind a “veil of uncertainty”. This is
a special case, of a hitherto unobserved general phenomenon in population growth
processes, which will be adressed elsewhere.

Keywords Population dynamics · PCR · Initial number · Michaelis–Menten ·
Branching processes · Population size dependence

Mathematics Subject Classification 60J80 · 62F10 · 92D20 · 92D25

1 Introduction

In the polymerase chain reaction a molecule replicates with a probability p(z), which
will be of the form

p(z) = C

K + z
,

under the asumption of Michaelis–Menten kinetics. Here, K is the Michaelis–Menten
constant, large in terms of molecule numbers, z the number of DNA molecules at the
actual round, and C a constant, which can be written as vK , where v is the maximal
rate or speed of the reaction, corresponding to z = 0. Then, v = p(0) is the probability
of successful replication under the most benign circumstances, and the decrease of
p(z), as the number z of DNA strands present increases, mirrors that the latter are
being synthesized fromDNA building blocks, which disappear as the number of DNA
molecules increases. As has been observed recently, though this is the general pattern,
there are exceptions where the replication probability actually increases in the very
first generation, due to impurities in templates (Ståhlberg et al. 2016).

In this paper we disregard this and rely upon theMichaelis–Menten based approach
in Jagers and Klebaner (2003), where it was used to explain the first exponential but
later linear growth ofmolecule numbers, see alsoBest et al. (2015), Lalam et al. (2004),
Lievens et al. (2012). For a statistical analysis, where PCR is modeled by branching
processes without environmental change due to growth but with random effects and
starting numbers cf. Hanlon and Vidyashankar (2011).

Here we turn to the important task of determining the initial number, viewed as
unknownbut fixed, ofmolecules in aPCRamplification, i.e. classical quantitativePCR.
In literature, it has been treated under the simplifying assumption of constant replica-
tion probabilities p(z), cf. Olofsson (2003), Vikalo et al. (2007). For an experimental
approach based on differentiation see Swillens et al. (2004) and for a mathematical
paper, focussing however on mutations in an abstract formulation see Piau (2005).
Through the use of digital PCR (Vogelstein and Kinzler 1999) and barcoding (Best
et al. 2015; Ståhlberg 2016, personal communication) new possibilities and techniques
have been introduced. We hope to be able to treat such frameworks. The present work
should be suitable for calibration and interpolation of density values in realtime PCR
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What can be observed in real time PCR 681

(Kubista 2016, personal communication) in the usual way. Observed values yield
model parameter estimates. Thus specified, the model delivers predictions of missing
values.

In our setup, the value of v turns out to be crucial, the cases 0 < v < 1 and v = 1
yielding quite different situations. If the starting efficiency v ∈ (0, 1), then individual
molecules replicate randomly and essentially independently during an intitial phase.
By branching process theory their number will therefore, to begin with, grow like the
product of a random factor and the famous exponential population growth. Random-
ness is therefore an essential part of the initial conditions of later phases with more
of interaction with the environment but also more of deterministic structure, due to
law of large numbers effects. It is in this sense, the original starting number has been
hidden by a ’veil of uncertainty’.

If, on the other hand, v = 1, the first observable process size can be inverted to
yield the starting number.

This phenomenon is what we investigate, for PCR in the present paper and for
populations in habitatswith a finite carrying capacity in a companion paper (Chigansky
et al. 2017), cf. also Barbour et al. (2015, 2016). For somewhat related early examples
from epidemic processes and a recent from population genetics, cf. Kendall (1956),
Whittle (1955), Martin and Lambert (2015).

2 Mathematical setup

Denote the number of molecules in the n-th PCR cycle by Zn , n = 0, 1, 2, . . ., so that
Zn can be viewed as generated by the recursion

Zn = Zn−1 +
Zn−1∑

j=1

ξn, j , (1)

started at Z0, where the ξn, j ’s are Bernoulli random variables taking values 1 and 0
with complementary probabilities, and

P
(
ξn, j = 1|Zn−1

) = P
(
ξn, j = 1|Fn−1

) = vK

K + Zn−1
,

where Fn−1 denotes the sigma-algebra of the events, observable before time n.
Consider the process Xn = Zn/K , which we shall call the density process. An

important role in its behaviour is played by the function

f (x) = x + vx

1 + x
, (2)

which is, indeed, the conditional expectation of Xn given Xn−1 = x ,

E(Xn|Xn−1 = x) = f (x).
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682 P. Chigansky et al.

The following result is known, see Kurtz (1970), Klebaner (1993).

Theorem 1 Suppose that X0 → x0, as K → ∞. Then, for any n,

Xn
P−−−−→

K→∞ fn(x0)

where fn denotes the n-th iterate of f .

If the PCR starts from a fixed number Z0 of molecules, clearly Z0/K → 0. Since
f (0) = 0, also fn(0) = 0, for any n, and it follows that limK→∞ Xn = 0, for
any n. In other words, the limiting reaction is not observable at any fixed number
of repetitions. The main result of this paper is that it becomes observable when the
number of iterations is n = logb K , where b = 1 + v.

To arrive at the result we make use of a linear replication process Yn , in which the
probability of successfulmolecular replication is constant and equal to v. In each round
each molecule is thus replaced by two with probability v, but remains there alone with
probability 1−v. The expected number of successors is thus 1−v +2v = 1+v = b.
Mathematically, this process is given recursively by [see e.g. Haccou et al. (2007),
Harris (2002) or Jagers (1975)]

Yn = Yn−1 +
Yn−1∑

j=1

ηn, j , (3)

where the ηn, j are independent Bernoulli random variables with

P(ηn, j = 1) = v.

Since the Yn/bn constitute a uniformly integrable martingale, it has an a.s. limit

W := lim
n→∞ b−nYn (4)

with E[W ] = 1, provided Y0 = Z0 = 1.
If the process starts from Z0 molecules, then in view of the branching property, the

corresponding limit is

W (Z0) =
Z0∑

i=1

Wi ,

where the Wi are i.i.d. with the same continuous distribution as W . As is well known
from branching process theory (see e.g. Theorem 8.2 in Harris (2002)), the moment
generating function of the latterφ(s) = E[e−sW ], is unique amongmoment generating
functions satisfying the functional equation

φ(ms) = h(φ(s)), s ≥ 0
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What can be observed in real time PCR 683

subject to φ′(0) = −1, where h(s) = E(sY1 |Y0 = 1) and m = E(Y1|Y0 = 1). In our
case, it takes the form

φ((1 + v)s) = (1 − v)φ(s) + vφ(s)2.

The random variable W (Z0) appears in the main result as an argument of the
deterministic function H obtained as the limit

H(x) = lim
n→∞ fn(x/b

n). (5)

Its existence and some properties are studied in the next section. Here we formulate
the main result and an important corollary.

Theorem 2 Let v ∈ (0, 1] and start the PCR amplification from Z0 molecules. Then
X logb K converges in distribution

X logb K
D−−−−→

K→∞ H(W (Z0)),

along any subsequence, such that logb K are integers.

Remark 1 With v = 1, the process Zn grows deterministically at the geometric rate
b = 2 and in this case W (Z0) = Z0. As will be increasingly clear, there are, however
reasons to treat v = 1 separately.

Corollary 1 For v ∈ (0, 1] and any fixed n

X logb K+n
D−−−−→

K→∞ fn(X̃0), (6)

where fn denotes the n-th iterate of f and

X̃0 = H(W (Z0)).

This assertion extends to weak convergence of the sequences regarded as random
elements in RZ:

{X logb K+n}∞−∞
D−−−−→

K→∞ { fn(X̃0)}∞−∞.

Remark 2 The limits increase strictly with respect to n. If 0 < v < 1, their entries are
continuous random variables with positive variance, whereas if v = 1 they are positive
reals. If the limit in (6) is taken along an arbitrary subsequence K , then X[logb K ] is
asymptotic to the same limit up to a deterministic correction, which emerges in the
rounding:

X[logb K ] − H
(
W (Z0)b

[logb K ]−logb K
)

D−−−−→
K→∞ 0.
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684 P. Chigansky et al.

3 The limit function H(x)

3.1 Existence

Write the two expressions for f , (2) and

f (x) = bx − vx2

1 + x
= bx − g(x), (7)

where g(x) = vx2
1+x . This expression is more suitable for analysis of iterates of f near

zero.
It is easy to establish that f is increasing, which yields that all fn are increasing.

Since g(x) > 0 for any x > 0,

f (x/b) < x .

Hence

fn+1(x/b
n+1) = fn( f (x/b

n+1)) < fn(x/b
n),

and the sequence fn(x/bn) is monotone decreasing in n for any positive x . Therefore
the following limit in (5) exists,

H(x) = lim
n→∞ fn(x/b

n).

3.2 Continuity

Weshownext that the convergence in (5) is uniformon bounded intervals. First observe
that

f ′(x) = 1 + v

(1 + x)2
≤ 1 + v = b.

It is now easy to see by induction, that for any n and x

f ′
n(x) ≤ bn .

Next, by (7) the Taylor expansion reads

fn+1(x) = fn( f (x)) = fn(bx − g(x)) = fn(bx) − f ′
n(θn)g(x),

for an appropriate θn . Replace now x by x/bn+1 to have

fn+1(x/b
n+1) = fn(x/b

n) − f ′
n(θn)g(x/b

n).
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What can be observed in real time PCR 685

Hence we obtain

fn(x/b
n) − fn+1(x/b

n+1) = f ′
n(θn)g(x/b

n) ≤ bng(x/bn) ≤ vx2b−n, (8)

where we have used that g(x) = vx2/(1 + x) ≤ vx2. The bound (8) shows that the
series

∞∑

n=0

fn+1(x/b
n+1) − fn(x/b

n)

converges uniformly on compacts. As a consequence of uniform convergence, we have
that H is continuous.

3.3 The functional equation

Further, since fn+1(x/bn+1) = f ( fn((x/b)/bn)), by taking the limit as n → ∞, we
obtain that H solves Schröder’s functional equation

H(x) = f (H(x/b)). (9)

However, since the zero function is a solution, we must show that H is not identically
zero. H(x) = ∞ is also a solution, it is however directly excluded, since convergence
is from above, fn(x/bn) > H(x).

To show that H is positive, use (7) to obtain the following formula for the n-th
iterate

fn(x) = bnx −
n−1∑

i=0

bn−1−i g( fi (x)),

where, as usual, f0(x) = x . Replacing x with xb−n , we have

fn(xb
−n) = x −

n−1∑

i=0

bn−1−i g( fi (xb
−n)). (10)

Clearly, fi (x) ≤ bi x , and g(x) ≤ vx2, therefore

bn−1−i g( fi (xb
−n)) ≤ vbn−1−i (bi xb−n)2 = vx2b−n+i−1,

and

n−1∑

i=0

bn−1−i g( fi (xb
−n)) ≤ vx2

n−1∑

i=0

b−n+i−1 ≤ x2.
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686 P. Chigansky et al.

Hence from (10), for any n

fn(xb
−n) ≥ x − x2,

which is strictly positive for 0 < x < 1. Therefore H(x) > 0 in this domain.

3.4 Monotonicity

We show next that H is increasing. Let Hn(x) = fn(x/bn). Then each Hn(x) is
increasing and thus H(x) = limn→∞ Hn(x) does not decrease. Further, recall that

f ′(x) = 1 + v

(1 + x)2
= b − vx

2 + x

(1 + x)2
> b − 2x

and f j (x/b j ) ≤ x for all j ≥ 0. Hence for any x ≤ b2/2,

H ′
n(x) = b−n f ′

n(x/b
n) = b−n

n−1∏

j=0

f ′( f j (x/bn)) ≥ b−n
n−1∏

j=0

(
b − 2 f j (x/b

n)
)

≥ b−n
n−1∏

j=0

(
b − 2xb j−n) ≥

n−1∏

j=0

(
1 − b− j ) ≥ e−v, ∀ n ≥ 0,

and

Hn(x2) − Hn(x1) =
∫ x2

x1
H ′
n(x)dx > (x2 − x1)e

−v > 0, x1 < x2 < b2/2.

Taking the limit n → ∞, we see that H(x) is a strictly increasing function on an open
vicinity of the origin.

Suppose now that H is constant on an interval [x1, x2] with x2 > x1. Then, by
(9), H(x1/bk) = H(x2/bk) for any integer k ≥ 1 and, since H(x) does not decrease,
it must be constant on all the intervals [x1/bk, x2/bk]. In particular, H(x) cannot be
strictly increasing on any open vicinity of the origin. The obtained contradiction shows
that H is strictly increasing everywhere on R+.

Next, since we have shown that the Hn converge uniformly,

Hn(x + on(1)) → H(x),

for any on(1) → 0 as n → ∞. Thus we have the following corollary needed in the
proofs to come.

Corollary 2

lim
n→∞ fn(x/b

n + o(b−n)) = H(x).
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What can be observed in real time PCR 687

We shall also need the inverseG := H−1. It is easy to see that it solves the functional
equation

G(x) = 1

b
G( f (x)).

4 Proofs

Let us start with the fundamental recursive equation for the stochastic density process
Xn (cf. Klebaner 1993)

Xn = f (Xn−1) + 1√
K

εn, (11)

with

εn = 1√
K

K Xn−1∑

j=1

(ξn, j − E(ξn, j |Fn−1)).

Note that εn is a martingale difference sequence E(εn|Fn−1) = 0 and

E

(
ε2n|Fn−1

)
= vXn−1

1 + Xn−1

(
1 − v

1 + Xn−1

)
≤ v. (12)

The corresponding deterministic recursion, obtained by omitting the martingale
difference term, is

xn = f (xn−1) = fn(x0). (13)

4.1 Proof of Theorem 2

In what follows bar denotes the density processes, i.e., Z̄n = Zn/K , Ȳn = Yn/K .
Consider first the case v < 1. Define times

n1 = c logb K and n2 = logb K ,

where c ∈ ( 12 , 1) is an arbitrary fixed constant and K is such that both n1 and n2 are
integers.

The crux of the proof is to approximate the density process Xn = Z̄n := Zn/K in
two steps. First, on the interval [0, n1] by the linear process Ȳ , and then on the interval
[n1, n2] by the nonlinear deterministic recursion, however started from the random
point Ȳn1 , resulting from the first step.

Denote by φk,�(x) the flow, generated by the nonlinear deterministic recursion (13),
i.e. its solution at time �, when started from x at time k, x� = φk,�(xk) = fl−k(xk).
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688 P. Chigansky et al.

Further, write Φk,�(x) for the stochastic flow generated by the nonlinear process X ,
that is, the random map defined by the solution of the equation, cf. (1),

Xn = Xn−1 +
K Xn−1∑

j=1

ξn, j , n = k + 1, . . . , �

subject to Xk = x , at the terminal time n := �. In particular, Xk = Φk,�(X�) for any
k > � > 0, and

Xn2 = Φn1,n2(Xn1) = φn1,n2(Xn1) + (Φn1,n2(Xn1) − φn1,n2(Xn1))

= φn1,n2(Ȳn1) + (Φn1,n2(Xn1) − φn1,n2(Xn1)) + (φn1,n2(Xn1) − φn1,n2(Ȳn1)).

Let us stress that all the random objects here are defined on the same probability space
and by construction coupled as described at the beginning of the proof.

In the next steps we show that

φn1,n2(Ȳn1)
a.s.−−−−→

K→∞ H(W (Z0)), (14)

Φn1,n2(Xn1) − φn1,n2(Xn1)
P−−−−→

K→∞ 0, (15)

and

φn1,n2(Xn1) − φn1,n2(Ȳn1)
P−−−−→

K→∞ 0. (16)

By (4), with W = W (Z0), we may write

Yn1 = Wbn1 + o(bn1) = Wbc logb K + o
(
bc logb K

)
,

and hence

Ȳn1 = 1

K
Yn1 = Wb−(1−c) logb K + o

(
b−(1−c) logb K

)
.

Therefore, (14) follows from Corollary 2,

φn1,n2(Ȳn1) = fn2−n1(Ȳn1)

= f(1−c) logb K

(
Wb−(1−c) logb K + o

(
b−(1−c) logb K

))
a.s.−−−−→

K→∞ H(W ).

To show (15) let for n > n1

δn = E|Φn1,n(Xn1) − φn1,n(Xn1)|.
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What can be observed in real time PCR 689

Subtracting the deterministic recursion (13) from the stochastic one (11) we have

Xn − xn = Xn−1 − xn−1 + v
Xn−1 − xn−1(

1 + Xn−1
)(
1 + xn−1

) + 1√
K

εn .

Thus the sequence δn satisfies

δn ≤ bδn−1 + 1√
K

√
v,

where we have used (12) to bound E|εn|. Note that δn1 = 0, as both recursions start
at the same point Xn1 at time n1. Therefore

δn2 ≤ √
v

1√
K

n2−n1−1∑

j=0

b j ≤ CK− 1
2 bn2−n1 ≤ CK

1
2−c −−−−→

K→∞ 0,

since c > 1
2 and (15) now follows.

The proof of (16) is more delicate and is done by coupling. We construct the
nonlinear and linear replication processes Zn and Yn on the same probability space as
follows. LetUn, j n, j ∈ N be i.i.d. random variables with the uniform distribution on
[0, 1]. Define

ξn, j = 1{
Un, j≤ vK

K+Zn−1

} and ηn, j = 1{Un, j≤v}.

Then Zn and Yn are realized by the formulae (1) and (3) with ξn, j and ηn, j as above.
Since vK

K+Zn−1
< v, we have ξn, j ≤ ηn, j for all n, j and therefore the linear process

Y is always greater than the nonlinear process Z ,

Zn ≤ Yn, for all n.

Construct an auxilliary linear process Vn , which bounds Zn from below until Zn gets
larger than K γ for γ ∈ (0, 1). Actually we require that c < γ < 1. Let

ζn, j = 1{
Un, j≤ vK

K+Kγ

},

and

Vn = Vn−1 +
Vn−1∑

j=1

ζn, j .

Then clearly, ζn, j < ξn, j as long as Zn−1 < K γ . Hence

Vn ≤ Zn, for n < τ = inf{k : Zk > K γ }.
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690 P. Chigansky et al.

It is also clear that for all n, j , ζn, j < ηn, j hence Vn ≤ Yn . Thus we obtain

Yn − Zn = Yn − Vn + Vn − Zn

≤ Yn − Vn + (Vn − Zn)1n>τ

≤ Yn − Vn + Vn1τ<n .

(17)

We show next that

lim
K→∞(Yn1 − Zn1)K

−c = 0 (18)

by using the inequality above. Since the moments of simple Galton–Watson processes
are easily computed (Theorem 5.1 in Haccou et al. (2007), Harris (2002), or Jagers
(1975))

EVn1 =
(
1+ v

1+K γ−1

)c logb K

=bc logb K
(
1 − v

b(1 + K γ−1)
K γ−1

)c logb K

∼ Kc.

Since EYn1 = bn1 = Kc also, the first term in (17) satisfies

lim
K→∞E(Yn1 − Vn1)K

−c = 0.

By the Cauchy-Schwartz inequality for the second term

EVn11τ<n1 ≤
(
EV 2

n1P(τ < n1)
)1/2

.

Since Zn < Yn for all n, it takes longer for the former process to reach K γ than the
corresponding time for the latter,

τ ≥ σ = inf{n : Yn > K γ }.

Therefore

P(τ < n1) ≤ P
(
σ < n1

)

= P

(
sup
n<n1

Yn > K γ

)
≤ P

(
b−n1 sup

n<n1
Yn > K γ b−n1

)

≤ P

(
sup
n<n1

Ynb
−n > K γ−c

)
≤ Kc−γ ,

where the last bound isDoob’s inequality for themartingaleYnb−n . Taking into account
that EV 2

n1 ∼ K 2c, we obtain from the above estimates

lim
K→∞ K−c

EVn11τ<n1 = 0.
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What can be observed in real time PCR 691

Recall that γ > c. It follows that the convergence to the limit in (18) holds in L1,
and in probability. For the corresponding densities, we have by dividing through by
K that

lim
K→∞(Ȳn1 − Xn1)K

1−c = 0 (19)

Since φn1,n2(x) = fn2−n1(x) and the function f is concave ( f ′′ < 0), its derivative
attains its maximum value at zero, f ′(0) = b and f ′

n(x) ≤ bn for any x ≥ 0. Therefore
| fn(x) − fn(y)| ≤ bn|x − y|. For y = Ȳn1 and x = Xn1 , this and (19) yields

0 ≤ fn2−n1(Ȳn1) − fn2−n1(Xn1) ≤ bn2−n1
(
Ȳn1 − Xn1

)

= K 1−c (
Ȳn1 − Xn1

) → 0,

and the proof of case v < 1 is complete.
Consider now the case v = 1. In this case, the probability of successful replication

is

P
(
ξn, j = 1|Zn−1

) = K

K + Zn−1
,

and the function f is

f (x) = x + x

1 + x
.

Here b = v + 1 = 2 and

H(x) = lim
n→∞ fn(x/2

n).

The proof is the same, except that the linear replication process Yn is in fact determin-
istic Yn = Z02n , if it starts with Z0 molecules, because the probability of replication
is 1, P(ηn, j = 1) = v = 1. Hence the limitW = Yn/2n = Z0. The theorem is proved.

4.2 Proof of Corollary 1

The result follows by induction on n from the fundamental representation (11). For
n = 0 it is the statement of the main result. For n = 1 take limits as K → ∞ in (11),
and note that the stochastic term vanishes. Similarly, having proved it for n, it follows
for n + 1. The functional limit theorem follows from finite dimensional convergence
implying convergence in the sequence space, cf. Billingsley (Billingsley 1999, p. 19).

5 The relation to actual observations

Let ρ denote the minimal observable concentration of DNA in the PCR experiment
under consideration. Assume that the latter starts from z = Z0 inititial templates,
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692 P. Chigansky et al.

where z is an unknown number and x = X0 = z/K < ρ. Our aim is to determine z
for K >> z. Mathematically, we shall interpret this as K → ∞. In PCR literature
based on enzyme kinetic considerations, values of the Michaelis–Menten constant
range at least from 106 (Lalam 2006) up to 1015 (Gevertz et al. 2005), in terms of
molecule numbers.

There are then two cases, known or unknown rate v. In the latter situation, v will
have to be estimated from the observed concentrations. Further, as pointed out, the
cases v = 1 and v < 1 exhibit an intriguing disparity, viz. consider first v < 1. By
Corollary 1

{
X logb K+n

}∞
−∞

D−−−−→
K→∞

{
fn(H(W (z)))

}∞
−∞.

The limit process here has strictly increasing trajectories and its entries have continuous
distributions, so with probability one none of them equals ρ. The first hitting time

(xn) �→ inf
{
n ∈ Z; xn ≥ ρ

}
, x ∈ R

Z

being a discontinuous functional with respect to the locally uniform metric on space
of sequences, is however continuous almost surely under the limit law. Therefore

τ K (ρ) := inf
{
n ∈ Z; X logb K+n ≥ ρ

}

converges weakly to

τ(ρ) := inf{n ∈ Z; fn(H(W (z))) ≥ ρ} as K → ∞.

If v = 1, the limit sequence is deterministic and strictly increasing. Provided no
fn(H(z)) happens to coincide with ρ, we have weak convergence τ K (ρ) → τ(ρ).
Otherwise, limK→∞ τ K (ρ) still exists and differs at most by 1 from τ(ρ).

We disregard this nuisance and assume in both cases that we have observed concen-
tration values strictly larger than ρ from logb K + τ K (ρ) ≈ logb K + τ(ρ) onwards:
κ0 = fτ (H(W (z))), κ1 = fτ+1(H(W (z)), κ2 = fτ+2(H(W (z)), . . ., and corre-
spondingly for v = 1, κ0 = fτ (H(z)), κ1 = fτ+1(H(z)), κ2 = fτ+2(H(z)), . . . (to
ease notation, we omit the dependence of τ upon ρ.) By (9) this simplifies to

κ j = H
(
W (z)bτ+ j

)

for v < 1 and

κ j = H(zbτ+ j )

otherwise. Note that typically, since the experimenter would like to catch the density
as early as possible, κ0 ≈ ρ, which for example could be of the order of 0.05. Since
H(x) is fairly close to the diagonal H(x) = x for 0 ≤ x ≤ 0.5 (see Figure 1) and
W (z) ≈ z, we can conclude that as a rule τ < 0.
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Fig. 1 The function H(x) for several values of v

As well as assuming K and ρ known it is easy to think of situations where so is v.
Then we can proceed directly to determining z. For v = 1 this is straightforward:

z = b−τG(κ0).

More generally,

z = b−τ− j G(κ j ).

If there is variation between the z-values thus obtainedwe can of course take arithmetic
means of the right hand side for the different observed j .

Now, if v < 1, we obtain

z∑

i=1

Wi = W (z) = b−τG(κ0),

in the sense that the right hand side is an observed value of the random variableW (z).
The initial number z of DNA molecules has now been hidden from direct calculation.
What can be done is to estimate z from data, e.g. maximise the density at the first point
of observation,

ψ∗z(b−τG(κ0)),

where * denotes convolution power,ψ is the density ofW , which we know to have the
moment generating functionφ fromSect. 2, corresponding tov. In this, z is an unknown
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parameter and we obtain a maximum likelihood estimate ẑ = argmaxzψ
∗z(t), where

t = b−τG(κ0) and z ranges over natural numbers. Again we can also consider later
κ-values and take averages, if this increases stability. Note that if z is large (but still
much smaller than K ), then by the local central limit theorem the ML problem is
roughly the same as finding zmaximizing the normal density withmean z and variance
z 1−v
1+v

=: zσ 2 at the point t = b−τG(κ0),

φ∗z(t) ≈
√

1 + v

2π z(1 − v)
exp

−(t − z)2

2z(1 − v)/(1 + v)
.

This yields the estimate

ẑ =
√
t2 + σ 4/4 − σ 2/2 =

√
(
b−τG(κ0)

)2 − 1

4

(
1 − v

1 + v

)2

− 1

2

(
1 − v

1 + v

)2

,

or rather one of its neighboring integers.
Now, if entities cannot be deduced a priori the question arises to what extent they

can be estimated from our sequence of observations. Clearly, in the limit the relation
between an observation x and its successor in the next round will be that the latter
converges to f (x), as K → ∞, by Corollary 1. Thus e.g.,

κ1 = κ0 + vκ0

1 + κ0

or

v = κ1(1 + κ0) − 1.

These problems are fairly standard in statistical literature but certainly deserve a
special investigation in the present context, if possible together with an experimen-
tal study of replication of single or few molecules, in order to determine the initial
efficiency, v.
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