
Low-Overhead Paxos Replication

Jinwei Guo1 • Jiajia Chu1 • Peng Cai1 • Minqi Zhou1 • Aoying Zhou1

Received: 30 November 2016 / Revised: 10 March 2017 / Accepted: 13 March 2017 / Published online: 22 March 2017

� The Author(s) 2017. This article is an open access publication

Abstract Log replication is a key component in highly

available database systems. In order to guarantee data

consistency and reliability, it is common for modern

database systems to utilize Paxos protocol, which is

responsible for replicating transactional logs from one

primary node to multiple backups. However, the Paxos

replication needs to store and synchronize some additional

metadata, such as committed log sequence number (com-

mit point), to guarantee the consistency of the database.

This increases the overhead of storage and network, which

would have a negative impact on the throughput in the

update intensive work load. In this paper, we present an

implementation of log replication and database recovery

methods, which adopts the idea of piggybacking, i.e.,

commit point can be embedded in the commit logs. This

practice not only retains virtues of Paxos replication, but

also reduces disk and network IO effectively. We imple-

mented and evaluated our approach in a main memory

database system. Our experiments show that the piggy-

backing method can offer 1.39 higher throughput than

typical log replication with synchronization mechanism.

Keywords Log replication � Database recovery � Paxos �
OceanBase

1 Introduction

Through the smart phone, we can submit transaction pro-

cessing requests to the databases at any time. And in the

scenario of Internet application, highly concurrent requests

have overwhelmed the traditional database systems. For

example, in Chinese ‘‘Single Day’’ (i.e., Double 11 shop-

ping carnival), the total transactions may hit the level of

hundreds of millions in the first minute. To resolve this

challenge, many NoSQL and NewSQL systems were

designed and implemented [7]. NoSQL refers to the data

storage systems which are non-relational, distributed and

not guaranteed to follow the ACID properties. Compared to

the relational DBMS’s, NoSQL systems have some

excellent characteristics, such as without needing to pre-

define the data schema, high scalability, share-nothing

architecture and asynchronous replication. These features

provide strong support for the Internet applications in the

Web 2.0. On the other hand, both the industrial and aca-

demic communities hope to use the unique features of

NoSQL to solve the massive data processing problems.

NoSQL systems have got extensive attentions, and main

industry players including Google, Amazon and Facebook

have developed their NoSQL database products which have

played a key role in their services.

NoSQL systems have some limitations when they are

used in the mission critical applications which require

strong data consistency. For example, asynchronous repli-

cation and the eventual consistency mechanism provided

by NoSQL are not applicable for the bank systems. If the

delay of inconsistency window is too long and the primary

crashes in this delay period, then the last update informa-

tion may be lost because the committed update transactions

have not been synchronized to the backups. In this proce-

dure, it is possible that a customer performs a withdraw

& Peng Cai

pcai@sei.ecnu.edu.cn

1 East China Normal University, 3663 N. Zhongshan Rd.,

Shanghai 200062, China

123

Data Sci. Eng. (2017) 2:169–177

DOI 10.1007/s41019-017-0039-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191393708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0039-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0039-z&domain=pdf

operation, but the final balance of the account is not

reduced accordingly.

Log replication based on Paxos [15] can achieve the

strong data consistency. The Paxos algorithm is proposed

by Leslie Lamport in 1990 which is a consistency algo-

rithm based on the message passing model. The algorithm

solves the problem of reaching agreement among multiple

processes or threads under the distributed environment.

Recently, there exist many systems adopting Paxos algo-

rithm to the log replication [1, 10, 24, 25]. As long as the

log records have been replicated in the majority of servers,

the primary node can commit the transaction. This method

can guarantee the strong consistency between primary and

secondary nodes. When the primary node failed, the

majority of the system nodes can select at least one and

only one new primary to achieve a seamless takeover of the

predecessor.

Unfortunately, a typical implementation of Paxos

replication—which adopts two-phase commit protocol

(2PC) using some metadata such as commit point to

guarantee the consistency of the database—can increase

the overhead of disk and network. In other words, the

synchronization of metadata for consistency can put an

excessive burden on the disk and network, which causes

negative impacts on the throughput of the transactional

database. Therefore, this paper presents a low-overhead log

replication, which adopts the thought of piggybacking.

More precisely, the commit point is embedded in the

transactional log and then is synchronized from the primary

node to backups along with the log records. We imple-

mented this mechanism on an open source database system

OceanBase [19] and showed that this method can provide

good performance in terms of throughput of transaction

processing since the overhead of disk and network was

reduced.

The remainder of the paper is organized as follows:

Preliminary works, which include the OceanBase archi-

tecture and Paxos replication model, are presented in

Sect. 2. We introduce related work of Paxos replication in

Sect. 3. Sections 4 and 5 introduce the mechanism of log

replication and recovery for OceanBase, which aims to

reduce the overhead of disk and network. Section 6 pre-

sents experimental results. We conclude the paper in

Sect. 7.

2 Preliminary

In this section, we will introduce the database system

OceanBase, where our low-overhead method is imple-

mented. And then we will describe and analyze the

mechanism of typical Paxos replication.

2.1 OceanBase

OceanBase is a scalable relational database management

system developed by Alibaba. It supports cross-table and

cross-row transactions over billions of records with hun-

dreds of terabyte data.

OceanBase can be divided into four modules: the master

server (RootServer), update server (UpdateServer), base-

line data server (ChunkServer) and data merge server

(MergeServer).

• RootServer It manages all servers metainformation in

an OceanBase cluster, as well as data storage location.

• UpdateServer It stores updated data in OceanBase.

UpdateServer is the only node responsible for execut-

ing any update requests such as DELETE or UPDATE

SQL statements. Thus, there is no distributed transac-

tion in OceanBase because any update operations are

processed in a single node.

• ChunkServer It stores OceanBase baseline data, which

is also called static data.

• MergeServer It receives and parses SQL requests, and

forwards them to the corresponding ChunkServers or

UpdateServer after lexical analysis, syntax analysis,

query optimization and a series of operations.

UpdateServer is a key component in OceanBase, and it has

some characteristics, which we utilize to implement our

Paxos replication, as follows:

• UpdateServer can be seen as a main memory database,

which stores updated data in memtable.

• One transaction only corresponds to one commit log,

which is generated when the transaction is finishing.

• Log records are stored on disk continuously. Therefore,

there are no holes in log files.

OceanBase can be configured with multiple clusters, e.g.,

one master cluster and one slave cluster. Only the master

can receive write requests and process these transactions.

When master cluster breaks down, the whole system is not

available for clients. For this reason, we have implemented

Paxos replication, whose model will be introduced in the

next subsection.

2.2 Paxos Replication Model

Using Paxos to replicate log records is a popular choice to

build a scalable, consistent and highly available database.

Traditionally, systems adopting Paxos replication have two

main phases: Leader election and log replication. The ser-

vers participating in these phases are called Paxos members,

which make up a Paxos group. For ease of description, we

can use member to refer to the member of Paxos group.

170 J. Guo et al.

123

During the Leader election phase, there may be no

Leader in the system. Assume that each member in the

Paxos group should take part in the Leader election.

Therefore, they report the local last log sequence number

(LSN) to the election service. Note that the local last LSN

may be comprised of log id, generated log timestamp or

epoch number, which can be used to order the state of each

member. The election service elects a Leader from the

reporting members in consideration of the LSN’s, i.e., the

new Leader’s LSN must not be less than a majority of

members’. When a majority of nodes acquire the election

result and succeed in registering to the new Leader, the

election phase is finished successfully. It is noteworthy that

the Leader can maintain its authority by renewing its

election lease periodically. If the majority of members note

that the Leader’s lease is expired, the system will enter into

the Leader election phase again.

During the log replication phase, each member has one

of the two replica status: Leader and Follower, which own

primary and backup replica, respectively. As is shown in

Fig. 1, the Leader receives a write request from a client,

generates a commit log, and replicates the log record to all

Followers. When a Follower receives the log message from

the Leader, it can do different actions according to the

strategies of reliability:

• Durability The Follower cannot response the Leader

until they ensure that the log record is persistent in local

disk.

• Non-durability The Follower responses the Leader

immediately when it receives the log message and

buffers the log record in memory.

The execution flow of point 1 in Fig. 1 shows the situation

of non-durability. We note that the delay of write request is

smaller than the flow of point 2, which means the situation

of durability.

When the Leader gets a majority of acknowledge

responses, it can update local committed LSN, which can

be called commit point. Then the Leader flushes the point

to disk and sends it to each Follower. Note that the commit

point is an important metadata in Paxos replication, which

is used to guarantee data consistency for read operation and

recovery. In other words, this metadata enables the Fol-

lower to provide clients with timeline consistency services,

and simplifies recovery processes which guarantee the data

consistency when the database recovers from a failure.

However, the traditional synchronization mechanism of

commit point increases the overhead of storage and net-

work. Therefore, we design and implement the low-over-

head log replication adopting durability strategy for

OceanBase.

3 Related Work

ARIES [18] has been the actual criteria for transactional

logging in traditional database systems. It gives a reference

for log model and recovery mechanism. Replication, such

as eager or lazy mechanism [13], is an effective means to

provide horizontal scalability, high availability and fault

tolerance in distributed systems. Therefore, it is common

for distributed database systems to replicate transactional

log from a primary node to one or multiple backup replicas.

As the Internet applications are developed rapidly, an

increasing large number of databases leverage the NoSQL

techniques, which provides us with scalability and high

availability through the use of replication. Dynamo [11],

which is developed by Amazon, is a highly available key-

value datastore system. Its replication resorts to NWR

strategy, which permits clients to decide to balance avail-

ability against consistency. Facebook’s Cassandra [6, 14]

adopts the idea of Dynamo and makes use of the optimized

mechanisms, such as load balance. At present, it has

became an open source distributed database management

system in Apache. Yahoo’s PNUTS [8] is a scalable

datastore, which is focused on cross-datacenter replication.

Although these systems can offer good performance and

high availability, the eventual consistency can be only

provided.

Paxos is a consensus protocol for solving consistency

problem in distributed systems. It is described basically by

Lamport in [15]. Multi-Paxos introduced in [16] is an

important protocol for Paxos replication. And more vari-

ants are introduced by him in [17]. Using Paxos for repli-

cation is a common choice for implementing scalable,

consistent, and highly available datastore. Chubby [5] is

Google’s service aiming at providing a coarse grained lockFig. 1 Log replication model based on Paxos

Low-Overhead Paxos Replication 171

123

service for loosely coupled distributed systems. Zoo-

Keeper [26] is its open source implementation. Google has

developed MegaStore [1], Spanner [10] and F1 [24], and

these database systems have used Paxos for log replication.

Megastore is a storage system providing strong consistent.

Spanner is a scalable, multi-version, global distributed,

synchronous replication database. F1 provides the func-

tionality of the SQL database. Raft [20] is a consensus

algorithm for RAMCloud [21]. It is designed to be easy to

understand and equivalent to Paxos. Rao et al. [23] intro-

duce a relatively complete technology solution to build a

datastore using Paxos. Patterson et al. [22] analyze and

discuss the replication based on Paxos.

In recent years, with the rapid development of new

hardware, e.g., SSD (solid-state drive), NVM (non-volatile

memory) and RDMA (remote direct memory access), new

log replication and recovery mechanisms emerge. Drago-

jević et al. [12] leverage NVM and RDMA to build a

highly scalable and available computing platform without

sacrificing the strong consistency. Tango [2, 3] and

Hyder [4] use log-sharing architecture—which is based on

SSD and high-speed network—to ensure the reliability and

availability.

4 Low-Overhead Replication Protocol

This section will describe the log replication protocol based

on piggybacking method, which will reduce disk and net-

work IO. To simplify the discussion, we adopt three-way

replication. More precisely, the Leader—which is the pri-

mary node—replicates log records to two Followers own-

ing the backup replicas.

Recall that the architecture of OceanBase is described in

Sect. 2.1. In order to give a simple explanation, we treat

MergeServer’s and ChunkServer’s as the clients which

forward write requests, UpdateServer’s and RootServer’s

as the Paxos members in log replication model mentioned

above, which are responsible for log replication and Leader

election, respectively.

4.1 Commit Log Entry

In the Leader’s term, the primary replica is the only one

which can receive and process the write operations. When

a client issues a write request, it first acquires the infor-

mation about which UpdateServer is the Leader, and then

sends the write to the Leader node.

When the Leader receives a write request, it gets the

corresponding transaction, processes the operation and pre-

applies the results to the local memory table. Once the

transaction enters the commit phase, a log entry—which

contains a unique LSN, the transaction ID and the log data

(the final results produced by the transaction)—will be

generated.

Recall from Sect. 2.2 that the commit points need to be

replicated and persisted in Paxos members, which can be

achieved by the synchronization of log records. Therefore,

in order to reduce the impact of handling commit points,

the committed LSN can be embedded into each commit log

record. The format of the log entries carrying the com-

mitted LSN is shown in Fig. 2. We note that the commit

log entry with LSN of 101 holds a committed LSN of 99,

which indicates that the logs whose LSN is not greater than

99 can be applied to the memtable.

It is clear that embedding the commit point into the log

increases the size of log. Since the size of one LSN is only

a few bytes, the extra information will not take up too

much space. The group commit mechanism which will be

described below can further reduce the impact of embed-

ding the metadata.

4.2 Log Replication

After generating the commit log, the Leader needs to send

the log record to all Followers by an asynchronous network

function, which does not block the single commit thread

held responsible for synchronization and persistence of log

records. In other words, the Leader is able to flush the

commit log to local disk without waiting for the responses

from the Followers.

When a Follower receives a log message from the

Leader, it would extract the committed LSN from the

received log record and compare it with the local cached

committed LSN. If the local value is less than the new

committed LSN, it should be updated with the new one;

otherwise, the value is not refreshed. Then the Follower

appends the commit log to the end of the log file in local

disk. Once the appending operation has finished or overrun

a certain period of time, the Follower would get the max-

imum flushed LSN, which represents the latest state of

commit log in local disk. Then it sends the response

LSN 98 99 100

LSN
TransID

LogData

CommitedLSN

101

101
1478793601000

x='a'

99

LSN

Fig. 2 An example of commit log entries with committed LSN

172 J. Guo et al.

123

message containing the maximum flushed LSN to the

Leader.

The value of committed LSN is checked periodically by

the log replay threads in the Follower node. When the

value is changed, these threads will get and replay the

persistent log which has not been replayed in local. More

precisely, the log entries whose LSN’s are not greater than

the committed LSN need to be applied to the local memory

table in order of LSN. If the Follower cannot find the

corresponding log records in the log file, it will request the

missing ones to the Leader by themselves.

In order to compute the commit point, the Leader has to

store the flushed LSN’s of all the Followers. When

receiving the response message from a Follower, the

Leader would extract the flushed LSN from the message

and compare it with the local cached value of this Fol-

lower. If the new flushed LSN is greater than the local one,

the Leader will replace the local value; otherwise, the value

is not changed. Based on all the Followers’ flushed LSN’s

cached in local and the majority strategy, the Leader cal-

culates a new committed LSN, which indicates a certain

state of the database. If the new value is greater than the

previous one cached in local memory, the local committed

LSN will be updated with the new one and embedded in the

next commit log entry. Finally, the Leader commits the

corresponding transactions in accordance with the local

cached commit point and returns the results to the clients.

Figure 3 shows an example of Paxos members’ infor-

mation stored in Leader, which is used to compute the

committed LSN. We find that the log records whose LSN is

not greater than 120 are durable in majority of members.

Therefore, the Leader can update the committed LSN to

120, commit the transactions whose LSN’s are not greater

than 120, and embed the value 120 into the next commit

log entry. If a Follower receives the new commit point, it

will apply the logs to local memtable in order of LSN until

120.

Note that the members’ information is only stored in

Leader’s memory. Therefore, a new Leader needs to

request the flushed LSN to the Followers when it starts to

take over the replication. And if a Follower fails, the pri-

mary node needs to clear out the failure’s information from

the table.

4.3 Further Discussion

The main procedure of the log replication protocol has

been introduced above. However, we note that the syn-

chronization triggered by each commit log entry can pro-

duce massive disk and network IO operations. Therefore, in

order to further reduce the overhead of log replication, it is

common for many databases to adopt group commit

mechanism, which treats a group of log records as one

commit unit.

When the Leader generates a log record for a transac-

tion, it caches the log record in the local buffer. Once the

size of log in the buffer reaches the maximum capacity or

the time interval from the last successive commit is longer

than a configured value commit interval, the Leader

packages the buffered log entries and sends the package to

each Follower by an asynchronous method, and then

appends all of them to the log file in disk. Therefore, we

can generate a special commit log entry containing com-

mitted LSN at the end of group, which can reduce the space

overhead in the log.

However, it is difficult to configure commit interval

since the hardware may be not same in different production

environments and the processing time of log replication in

Followers should be considered. Therefore, we can design

an adaptive group commit mechanism, which takes into

account the time of log persistence in each replica node.

Let persistence timeðiÞ denote the latest time of flushing a

group of logs in node i. When the Leader receives the

persistence timeðiÞ, it needs to recalculate the

commit interval as follows:

commit interval ¼ ðcommit intervalþ persistence timeðiÞÞ=2

ð1Þ

The commit interval is initially set to a value configured

by the administrator, and it is automatically changed to a

relatively stable value—which is suitable for the platform

of database—through the simple adaptive method. If a

replica node i encounters something abnormal, the Leader

will catch the exception and not consider the value

persistence timeðiÞ.

5 Recovery

In this section, we describe how a Paxos member

recovers from a failure. It is clear that the failure is a

common phenomenon in distributed systems, e.g., power

failure, administrator mistakes, software or hardware

errors and so on. Therefore, we need to adopt recovery

mechanism to ensure the correctness and consistency of

the database.

commi�ed_LSN = 120

The log entries whose LSN's are not
greater than commi�ed_LSN are flushed
in a majority of Paxos members.

Leader

Follower1

Follower2

130

120

110

Member FlushedLSN

Fig. 3 An example of Paxos members’ information used to generate

committed LSN

Low-Overhead Paxos Replication 173

123

Recall from Sect. 2.2 that the system adopting Paxos

replication has two phases. Therefore, each Paxos member

needs to periodically check the system status, which can be

presented by a local variable. There are two kinds of states

of the status, i.e., DURING_ELECTION and AFTER_ELECTION,

which indicate whether there exists a Leader in the system.

If the status is AFTER_ELECTION, it shows that the system is in

the log replication phase. When a member is restarting, its

election role is definitely determined. Therefore, it can take

predetermined actions in accordance with the role. If the

system is in DURING_ELECTION state, it means that the Paxos

group is in the Leader election phase. The recovering

member needs to take part in the election. It is only when

new Leader is elected that the restarting member can

continue to recover.

5.1 Leader Recovery

When a recovering member finds the status of system is

AFTER_ELECTION and its election role is Leader, it has to take

some steps to ensure the consistency of the database. In

other words, it is not until the new Leader guarantees that

its local log records are persisted in a majority of the

members that it can service requests from the clients.

Firstly, it scans the log file in disk, gets local last LSN and

max committed LSN from the file, and caches them in local

variables. Then the Leader starts up threads to replay whole

local logs from checkpoint. By this time, the Leader cannot

service any requests from clients. Next, it appends a special

commit log entry which only contains max committed

LSN, and replicates the record to other members. Finally,

the master receives the responses of Followers and updates

corresponding information of the servers. When the pri-

mary replica detects that the committed LSN is not less

than the previous cached local last LSN, it can provide

services for clients.

The Leader adopting the above recovery procedure can

guarantee the consistency of the database. Its main steps

are summarized in Procedure 1. If the Leader has taken

over the log replication completely, a client getting the data

from the primary replica can be provided with strong

consistency. In some cases, we would like high availability

rather than consistency. Therefore, when the Leader starts

the replaying task, it can service read requests from clients

as long as replaying local log to the committed LSN. The

remainder of the local log is applied along with the new

committed LSN.

5.2 Follower Recovery

When a restarting member finds the status of system is

AFTER_ELECTION and its election role is Follower, it has to

ensure that the state of local data is consistent with the

Leader. Since the Follower cannot judge whether the log

records whose LSN is greater than the committed LSN

should be applied to the local memory table, it must get

necessary information from the Leader. In order to reduce

the network overhead, we implement a recovery mecha-

nism as below. To begin with, the Follower scans log file in

disk to update local variables, e.g., local last LSN, com-

mitted LSN. As described above, the committed LSN is the

max committed LSN stored in the log file. Then, it starts to

replay local log records whose LSN is not greater than the

committed LSN, and it discards the remaining log records.

At the same time, the Follower reports its committed LSN

to the Leader. When the Leader receives this message, it

sends the corresponding log records after that LSN to the

Follower. Finally, the Follower can receive new log

records and refresh the committed LSN, which triggers

itself to replay the log continuously.

Note that if the role of Leader is frequently switched in

different members, the log records of committed transac-

tions will be lost. To prevent this, it is not until the backup

node ensures that the received log records which are inte-

grated from the committed LSN and whose LSN’s are

greater than the local last LSN that Follower can discard

log records after the committed LSN. In other words, the

Follower buffers the new log entries until these data cover

the LSN range ðlocal committed LSN; local last LSN�,
and then replaces the corresponding log entries in disk

atomically. The main steps are illustrated in Procedure 2.

After the Follower applies the commit log entries—

whose LSN’s are not greater than the

174 J. Guo et al.

123

local committed LSN—to the memory table, it can pro-

vide clients with weakly consistent services, such as

timeline or snapshot consistency. Therefore, a client for-

wards a read request to a Paxos member in accordance with

the requirement of consistency.

6 Experiments

This section evaluates the performance of several different

implementations of the synchronization of the commit

point, i.e., piggybacking method, synchronization method

and asynchronous method, which are implemented in the

open source database system OceanBase 0.4.2:

• Piggybacking method (PIGGY) This method is our

implementation in this work described above. In order

to reduce the disk and network overhead, we append a

special commit log entry containing the committed

LSN to the end of the log group.

• Synchronization method (SYNC) This method is differ-

ent from PIGGY. When the Leader detects that the

committed LSN has been changed, it would call Linux

interface fsync() to flush the committed LSN to the

disk and call a method which sends the commit point to

the Followers asynchronously.

• Asynchronization method (ASYNC) This method is

different from the above two methods. The Leader

starts a background thread, which is responsible for

flushing and sending the committed LSN periodically.

All the methods adopts the group commit technique

introduced specifically in Sect. 4.3.

6.1 Experimental Setup

This subsection describes the platform of the cluster and

deployment of the database, and gives a brief overview of

the benchmark.

Cluster Platform We ran the experiments on a cluster of

18 machines. The software and hardware setup of each

server is shown in Table 1. Note that the write latency of

the SSD is about hundreds of microseconds.

Database Deployment The database system is configured

with three-way replication. More precisely, we start three

OceanBase clusters, and each instance—which contains a

Paxos member (RootServer and UpdateServer) running in

one node and 5 clients (MergeServer and ChunkServer) in

others—is deployed on 6 servers.

Benchmarks We adopted YCSB [9]—a popular key-value

benchmark from Yahoo—to evaluate the log replication

performance of the three methods, we used workloads

containing heavy replace operations with read/write ratio

of 0/100. Since the MergeServer is the external interface of

the database system, the application of YCSB should

connect to MergeServer firstly, and then executes replace

auto-commit transaction repeatedly. We observe the results

of YCSB after the execution and the statistics of system

during the execution. The database is preloaded with 10

million records, and the size of each record is about 100

bytes.

6.2 Log Replication Performance

We ran experiments to benchmark PIGGY against the

other methods by using the YCSB. The performance in the

terms of TPS, IOPS, write throughput and Follower

receiving was focused on. The TPS refers to the number of

transactions performed by the system per second. The

IOPS is used to denote the write requests issued to disk per

second. Let write throughput and Follower receiving rep-

resent the volume of data flushed to disk in the Leader and

the number of messages received in Followers over a

period of time. The experimental results are illustrated

from Figs. 4, 5, 6 and 7.

We first compared PIGGY with other methods for the

TPS case, which reflected the performance of transaction

processing while executing various workloads. Figure 4

Table 1 Experimental setup

Software and hardware setup

CPU E5606@2.13 G * 2

CPU cores 8 (Hyper-threading disabled)

Memory 16GB PC3L-12800R * 6

Disk 100 GB SSD * 1

Network Gigabit Ethernet

Operating system CentOS 6.5

200 400 600 800 1000 1200 1400
5000

10000

15000

20000

25000

30000

35000

40000

45000

Th
ro

up
ut

 (t
xn

s/
se

c)

Number of clients

PIGGY
SYNC
ASYNC

Fig. 4 Throughput of transactions

Low-Overhead Paxos Replication 175

123

shows the transaction throughput of three methods as the

workload (number of clients) was scaled up. Note that the

PIGGY had the better performance than the other methods

in any workload, which significantly demonstrated the

effectiveness of our method. Since the PIGGY could not

produce additional impact on the disk, it improved

throughput of write transactions by at least 1.39 when the

number of clients was 1400. And the SYNC and ASYNC

had a nearly same TPS, because the latency of flushing

committed LSN is \2 ms which is largely smaller than a

common transaction response delay.

We evaluated IOPS by using the Linux tool iostat

which can monitor the number of write requests issued to

the specified device per second. Through the comparison of

the three methods, Fig. 5 shows that the Piggybacking

method had the lowest write requests per second, because it

needs not to store the commit point, which could incur

additional IO and then increase the disk overhead. The

ASYNC method had the highest number of write requests,

because the single thread flushed the commit point every

10 ms, which caused more requests than SYNC persisted

the committed LSN to local disk only after the group of

transactional log entries committed. The curves of all the

methods had the decreasing trends with the increase in

connections, we note that the commit interval described in

Sect. 4.3 would be larger as the number of clients

increased.

Figure 6 shows the write throughput over the disk of the

tree methods. In this case, we also used the iostat

command to evaluate this performance. Note that PIGGY

has the highest write throughput and the ASYNC and

SYNC had the similar results. The curves of these mech-

anisms had the same trend with the ones in Fig. 4, which

indicated that the throughput of transactions determined the

data volume of disk writes and the flushing committed LSN

could not inconspicuously increase the size of data written

to the disk. Although the PIGGY adopted a special log to

record commit point, it is more efficient than other

methods.

We compared the PIGGY with other methods for the

case of Follower receiving through monitoring the number

of packets received by a Follower within one second during

normal processing. Figure 7 shows the results of receiving

messages per second as the workload (number of clients)

was scaled up. The ASYNC method had the highest results

since a background thread sent commit point in Leader

frequently. With the increase in client connections, all of

the three curves decreased by degrees. The reason of the

decline is same as the discussion described in Fig. 5. Since

the flushing commit point in SYNC increases the pro-

cessing time of a group of log entries, the SYNC method

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

900

1000

1100
D

is
k

IO
 (w

re
qu

es
ts

/s
ec

)

Number of clients

PIGGY
SYNC
ASYNC

Fig. 5 Write requests over the disk

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

9

10

11

12

13

D
is

k
w

rit
e

(M
B

/s
ec

)

Number of clients

PIGGY
SYNC
ASYNC

Fig. 6 Write throughput over the disk

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

200

220

240

M
es

sa
ge

s
(p

kg
s/

se
c)

Number of clients

PIGGY
SYNC
ASYNC

Fig. 7 Message throughput in one follower

176 J. Guo et al.

123

has the lowest Follower receiving when the number of

client was less than 1000. With the increase in connections,

the PIGGY was more effective in group commit mecha-

nism. Therefore, the PIGGY had the lowest Follower

receiving when the number of connections was[1200.

From the above experiment results, we could draw a

conclusion that the persistence of committed LSN—used to

improve the availability of the system—could lead to much

more overhead of disk, and then decreases the capacity of

IO, which is respected as a precious commodity to replicate

and persist transactional log. Therefore, the PIGGY has a

better performance than other approaches. Moreover, the

SYNC could provide similar throughput of transactions to

ASYNC.

7 Conclusion

Log replication based on Paxos can provide database sys-

tems with scalability, consistency and highly availability.

This paper described an implementation mechanism of

Paxos replication for OceanBase, which is scalable and has

a memory transactional engine. Unlike traditional imple-

mentation, our method takes into account the overhead of

storage and network, which have a significant impact on

performance.

We find that the synchronization of committed LSN

used for timeline consistency may improve the overhead of

the system. Therefore, we make use of piggybacking

technique to implement log replication and database

recovery. Compared to the synchronization mechanism,

our method improves throughput of update operations by

1.39.

Acknowledgements This work is partially supported by National

High-tech R&D Program (863 Program) under Grant Number

2015AA015307 and National Science Foundation of China under

Grant Number 61332006.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Baker J, Bond C, Corbett JC et al (2011) Megastore: providing

scalable, highly available storage for interactive services. In:

Fifth biennial conference on innovative data systems research,

pp 223–234

2. Balakrishnan M, Malkhi D, Davis JD et al (2013) CORFU: a

distributed shared log. ACM Trans Comput Syst 31(4):10

3. Balakrishnan M, Malkhi D, Wobber T et al (2013) Tango: dis-

tributed data structures over a shared log. In: Proceedings of the

twenty-fourth ACM symposium on operating systems principles,

pp 325–340

4. Bernstein PA, Reid CW, Das S (2011) Hyder—a transactional

record manager for shared flash. In: Fifth biennial conference on

innovative data systems research, pp 9–20

5. Burrows M (2006) The Chubby lock service for loosely-coupled

distributed systems. In: Proceedings of the 7th symposium on

operating systems design and implementation, pp 335–350

6. Cassandra website. http://cassandra.apache.org/

7. Cattell R (2011) Scalable SQL and NoSQL data stores. SIGMOD

Rec 39(4):12–27

8. Cooper BF, Ramakrishnan R, Srivastava U et al (2008) PNUTS:

Yahoo!’s hosted data serving platform. Proc VLDB Endow

1(2):1277–1288

9. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R

(2010) Benchmarking cloud serving systems with YCSB. In:

Proceedings of the 1st ACM symposium on cloud computing,

pp 143–154

10. Corbett JC, Dean J, Epstein M et al (2013) Spanner: Google’s

globally distributed database. ACM Trans Comput Syst 31(3):8

11. DeCandia G, Hastorun D, Jampani M, et al (2007) Dynamo:

Amazon’s highly available key-value store. In: Proceedings of

twenty-first ACM SIGOPS symposium on operating systems

principles, pp 205–220

12. Dragojević A, Narayanan D, Nightingale EB et al (2015) No

compromises: distributed transactions with consistency, avail-

ability, and performance. In: Proceedings of the 25th symposium

on operating systems principles, pp 54–70

13. Gray J, Helland P, O’Neil P, Shasha D (1996) The dangers of

replication and a solution. SIGMOD Rec 25(2):173–182

14. Lakshman A, Malik P (2010) Cassandra: a decentralized struc-

tured storage system. ACM SIGOPS Oper Syst Rev 44(2):35–40

15. Lamport L (1998) The part-time parliament. ACM Trans Comput

Syst 16(2):133–169

16. Lamport L (2001) Paxos made simple. ACM SIGACT News

32(4):18–25

17. Lamport L (2006) Fast paxos. Distrib Comput 19(2):79–103

18. Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P (1992)

ARIES: a transaction recovery method supporting fine-granular-

ity locking and partial rollbacks using write-ahead logging. ACM

Trans Database Syst 17(1):94–162

19. OceanBase website. https://github.com/alibaba/oceanbase/

20. Ongaro D, Ousterhout JK (2014) In search of an understandable

consensus algorithm. In: Proceedings of the 2014 USENIX con-

ference on USENIX annual technical conference, pp 305–319

21. Ousterhout J, Agrawal P, Erickson D et al (2010) The case for

RAMClouds: scalable high-performance storage entirely in

DRAM. SIGOPS Oper Syst Rev 43(4):92–105

22. Patterson S, Elmore AJ, Nawab F, Agrawal D, El Abbadi A

(2012) Serializability, not serial: Concurrency control and

availability in multi-datacenter datastores. Proc VLDB Endow

5(11):1459–1470

23. Rao J, Shekita EJ, Tata S (2011) Using paxos to build a scalable,

consistent, and highly available datastore. Proc VLDB Endow

4(4):243–254

24. Shute J, Vingralek R, Samwel B et al (2013) F1: a distributed

SQL database that scales. Proc VLDB Endow 6(11):1068–1079

25. Thomson A, Diamond T, Weng SC et al (2012) Calvin: fast

distributed transactions for partitioned database systems. In:

Proceedings of the 2012 ACM SIGMOD international conference

on management of data, pp 1–12

26. ZooKeeper website. http://zookeeper.apache.org/

Low-Overhead Paxos Replication 177

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cassandra.apache.org/
https://github.com/alibaba/oceanbase/
http://zookeeper.apache.org/

	Low-Overhead Paxos Replication
	Abstract
	Introduction
	Preliminary
	OceanBase
	Paxos Replication Model

	Related Work
	Low-Overhead Replication Protocol
	Commit Log Entry
	Log Replication
	Further Discussion

	Recovery
	Leader Recovery
	Follower Recovery

	Experiments
	Experimental Setup
	Log Replication Performance

	Conclusion
	Acknowledgements
	References

