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Abstract The paper shows a unified approach for designing both sensor and actuator fault
diagnosis with neural networks. In particular, a general scheme of the group method of data
handling neural networks is recalled. Subsequently, a unscented Kalman filter approach for
designing the network and determining its uncertainty is briefly portrayed. The achieved
results are then used to obtain the so-called robust sensor fault diagnosis scheme. The main
contribution of this paper is to show how to use the above-mentioned results for actuator
fault diagnosis. In particular, the obtained neural model is used to obtain the input estimates.
The achieved estimates are then compared with the original input signals to formulate the
diagnostics decisions. The input estimation scheme is based on a chain of robust observers,
which guaranties that the input estimates are obtained with a prescribed disturbance atten-
uation level while ensuring the convergence of the observers. The final part of the paper
shows a comprehensive case study regarding the laboratory tunnel furnace, which exhibits
the performance of the proposed approach.

Keywords State-space GMDH neural networks · Non-linear system identification ·
Robust fault diagnosis

1 Introduction

Each technical system can be usually split into three parts: actuators, process and sensors.
Each of these parts is affected by the so-called unknown inputs, which can be perceived as
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process and measurement noise as well as external disturbances acting on the system. The
system may also be affected by faults. A fault can generally be defined as an unpermitted
deviation of at least one characteristic property or parameter of the system from the normal
condition, e.g., a sensor malfunction. All the unexpected variations that tend to degrade the
overall performance of a system can also be interpreted as faults. Contrarily to the term fail-
ure, which suggests a complete breakdown of the system, the term fault is used to denote a
malfunction rather than a catastrophe. Indeed, failure can be defined as a permanent interrup-
tion of the system ability to perform a required function under specified operating conditions.
In the light of the above discussion, it is clear that the design of fault diagnosis schemes that
prevent turning faults into failures is of paramount importance. One way to settle a challeng-
ing problem of fault diagnosis is to use model-based redundancy [3,8,27]. In this case, the
systemmodel quality determines the effectiveness of the Fault Detection and Isolation (FDI)
[3,8,13,18,28], and consequently, the Fault-Tolerant Control (FTC) [2,19,20,27].

An obvious way the obtain the model is to employ the physical relation governing the
investigated system. As a result, the so called analytical model is obtained. Unfortunately,
the complexity of modern industrial systems usually makes the model derivation difficult or
even impossible (in the light of the quality of the achieved model). In the case of non-linear
dynamic system, the Artificial Neural Networks (ANNs) constitute an elegant remedy to the
above-mentioned problem [4]. Unfortunately, the ANNs have disadvantages, e.g., they are
usually not available in the state-space form [11,22,30] frequently used for fault diagnosis.
Moreover, only rare approaches ensure the stability [21] and there is a limited number of
solutions that can settle the robustness problems regarding neural model uncertainty [15,26].

This issue is very important for the model-based FDI systems which are usually based on
the residual generation and constant threshold application. Neglecting the model uncertainty
andmeasurements noise [12,15] in the FDI system,may result in the undetected faults or false
alarms. To solve such a challenging problem, a methodology of dynamic non-linear system
identification on the basis of the state-spaceGroupMethod of DataHandling (GMDH) neural
network [14] was proposed. Such a neural model is gradually constructed by the connection
of the partial models (neurons) with the application of the appropriated selection methods
[15], what result in the significant reduction of the neural model inaccuracy. The application
of the Unscented Kalman Filter (UKF) [25] during the training of the neural model allows
to obtain the neurons parameters estimate and the corresponding description of the neural
model uncertainty. Such knowledge is necessary to calculate the neuralmodel output adaptive
thresholds which allow to perform the robust sensor fault detection [15].

Unfortunately, the above method can be only applied for sensors but not for the actuator
fault detection, which means that the neural network works as a virtual sensor parallel to
the one present in the system. Then, the measurements provided by the system sensor and
those by the virtual sensor are compared to perform the diagnostics decisions. In order to
solve such a disadvantage in this paper it is shown how to use the above-mentioned results
for actuator fault diagnosis [1,24]. In particular, the obtained GMDH neural model is used
to obtain the system input estimates and the corresponding input adaptive thresholds. The
achieved thresholds are then compared with the original system input signals to formulate the
diagnostics decisions. The input estimation scheme is based on a chain of Robust Unknown
Input Filters (RUIF) [9,29,31], which guaranties that the input estimates are obtained with
a prescribed attenuation level while ensuring the convergence of the observers. Thus, the
complete solution that enables to perform robust fault detection and isolation of the actuator
fault is delivered.

The paper is organised as follows. Section 2 portrays a general scheme of the state-
space GMDH neural networks along with the associated sensor fault diagnosis scheme. It
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Fig. 1 Scheme of the robust sensor fault detection

also outlines the approach that can be used for estimating the parameters of such a neural
network. Section 3 presents the main contribution of the paper resulting in the robust actuator
fault detection and isolation scheme. Section 4 illustrates the application of the proposed
approach in robust fault detection of the tunnel furnace. Finally, the last section is devoted to
conclusions.

2 Robust Sensor Fault Detection with the GMDH Neural Network

The effectiveness of the model-based fault detection systemmainly depends on the quality of
the model of the diagnosed system, which is obtained during system identification. Several
methods for improving the neural model quality can be found in the literature. However, it
should be underlined that irrespective of the used identificationmethod the neuralmodels will
never ideally mimic the identified system. Thus, the robustness of the fault detection system
against model uncertainty is one of the most desirable features. The robust fault detection
system requires the knowledge about the uncertainty of themodel. Based on themathematical
description of the model uncertainty it is possible to calculate the output adaptive thresholds
which, allow performing robust sensor fault detection according to the scheme presented
in Fig. 1. The output adaptive thresholds should contain real system responses in fault-free
mode. Note that in the remaining part of this section it is assumed that the system along
with all actuators are fault-free. Under such an assumption it s possible to use the presented
scheme for sensor fault detection and isolation. An occurrence of the sensor faults is signaled
when system outputs yk cross the output adaptive threshold:

ŷmi,k ≤ yi,k ≤ ŷMi,k, (1)
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where ŷmi,k and ŷMi,k denote the minimum and maximum value of the adaptive threshold for
the i-th system output.

The model of the diagnosed system can be obtained with the application of the GMDH
approach. Such amethod allows to identify non-linear dynamic systemalongwith the descrip-
tion of its uncertainty. Moreover, synthesis process of such a neural network allows obtaining
amodel with relatively small uncertainty, which increases the sensitivity of the fault detection
system. The subsequent steps of procedure of the GMDH neural model synthesis procedure
[5,14,16,17,23] are presented in Fig. 2.

During the GMDH neural model synthesis new layers of neurons are added to the network
until the quality of the neural model is evaluated by the suitable criteria [15,16] is increasing
(cf. Fig. 3).

It is worth to emphasis that during the neural model training the parameters of each
neuron in the GMDH network are estimated separately. Moreover, the neurons parameters
are estimated in such a way to ensure the slightest possible uncertainty. It is possible by
the application of the appropriate learning algorithm and assuming adequate structure of the
neuron. For this reason in the paper the following form of the state-space neuron is proposed:

x̂k+1 = Ax̂k + Buk, (2)

ŷk+1 = g(Cx̂k+1), (3)

where uk ∈ R
nu and yk ∈ R

ny represent the inputs and outputs of the dynamic neuron created
on the combination of systems inputs. g(·) = [g1(·), ..., gny (·)]T where gi (·) denotes a non-
linear activation functions. A ∈ R

nx×nx , B ∈ R
nx×nu , C ∈ R

ny×nx and xk ∈ R
nx . As the

matrix A has an upper-triangular form it means that the neuron is asymptotically stable iff
all diagonal elements of matrix A fulfill the condition:

| ai,i |< 1, i = 1, ..., nz . (4)

Such a neuron model clearly determines the class of systems for which the proposed neural
network can be used. Thus, an assumption underlying further deliberations is that the system
can be modeled with a specific network structure composed of the neurons described by
(2)–(3).
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ŷ3,k
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Fig. 4 Scheme of the UKF algorithm

As it was already mentioned, the parameters of each neuron in the GMDH neural net-
work are estimated separately. This property allows to apply the UKF in the process of the
synthesis of the GMDH neural network. The UKF employs the unscented transform [6],
which approximates the mean ŷk ∈ R

ny and covariance P yy
k ∈ R

ny×ny of so-called trans-
formed sigma points after the non-linear transformation yk = H(xk), where the mean and
covariance of sigma points are given as x̂k ∈ R

n and P xx
k ∈ R

n×n (Fig. 4). The UKF [7]
can be perceived a derivative-free alternative to the Extended Kalman Filter (EKF) in the
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Fig. 5 Robust sensors fault detection with the application of the output adaptive thresholds obtained via the
UKF

framework of the state-estimation. One of the main advantage of application of the UKF to
the constrained parameter estimation is that the asymptotically stable neurons are obtained.
It should be underlined that the state-space GMDH neural model has a cascade structure and
is asymptotically stable, when each of neurons in the network is asymptotically stable [10].
Moreover, the application of the UKF with the procedure of truncation of the probability
density function [25] allows obtaining the uncertainty of the GMDH model in the form of
a covariance matrix P xxt . Such knowledge allows to calculate the system output adaptive
thresholds which should contain the real system responses in the fault-free mode:

Fi (ci x̂k − tα/2
nt−n p

σ̂i

√
ci P xxt cTi ) ≤ yi,k ≤ Fi (ci x̂k + tα/2

nt−n p
σ̂i

√
ci P xxt cTi ). (5)

where ci stands for the i-th row (i = 1, ..., ny) of the matrix C of the output neuron,

σ̂i represents the standard deviation of the i-th fault-free residual and tα/2
nt−n p

denotes the t
Student distribution quantile. The sensors faults are signaled when system outputs yk crosses
the output adaptive threshold (5) what is presented in Fig. 5. Finally, it is also worth to
underline, that the faulty sensors can be replaced by the response of a neural network, which
can be perceived as a virtual sensor.

3 Robust Actuators Fault Detection and Isolation with the GMDH Neural Network
and RUIF

The approach presented in Sect. 2 enables performing robust sensor fault detection. Unfortu-
nately, it does not allow to detect and isolate the faulty actuator. To solve such a challenging
problem, a method depicted in Fig. 6 is to be suitably developed in the subsequent part of
this section. To achieve this goal it is necessary to develop a methodology for calculating the
input adaptive threshold:

ûmi,k ≤ ui,k ≤ ûM
i,k, (6)

where ûmi,k and û
M
i,k represent the minimum and maximum value of the adaptive threshold for

the i-th system input of the diagnosed system.
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û
(1)
nu−1,k

û
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Fig. 7 Estimation of the system inputs via GMDH model and RUIF

The state-space description of the GMDH network neuron allows to develop a new RUIF-
based approach which enables to estimate the input signals of the GMDH neural model (cf.
Fig. 7), and in the consequence calculating the input adaptive thresholds for the robust fault
diagnosis of the actuators. Let us consider a non-linear discrete-time neuron (2–3):

xk+1 = Axk + Buk + W1wk, (7)

yk+1 = g(Cxk+1) + W2wk+1, (8)
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where W1 and W2 are known disturbance distribution matrices, wk ∈ l2 is an exogenous

disturbance vector, l2 = {
w ∈ R

n, ‖w‖l2 < +∞,
}
where ‖w‖l2 = (∑∞

k=0 ‖wk‖2
) 1
2 . Thus,

the neuron can be perceived as a systemwith unknown inputs.Note also thatwk may represent
various sources of uncertainty, including modelling uncertainty.

Subsequently, the system output can be written as follows:

g−1( yk+1 − W2wk+1) = Cxk+1 = g−1( yk+1) + W̃2vk+1, (9)

H[g−1( yk+1) + W̃2vk+1] = HCxk+1, (10)

where vk ∈ l2, and W̃2 stands for the distribution matrix of vk and must be determined by
the designer. Substituting (7) into (10):

H[g−1( yk+1) + W̃2vk+1] = HCAxk + HCBuk + HCW1wk, (11)

and satisfying HCB = I , i.e. H = (CB)+, which implies that rank(CB) = rank(B) = nu ,
the system input receives the following form:

uk = Hg−1( yk+1) + HW̃2vk+1 − HCAxk − HCW1wk . (12)

Based on (12), the input estimate can be defined as:

ûk = Hg−1( yk+1) − HCAx̂k . (13)

The input estimation error can be defined as follows:

εu,k = uk − ûk = −HCAek + Hw̃2vk+1 − HCw1wk . (14)

Substituting (12) into (7) gives:

xk+1 = Axk + BHg−1( yk+1) + BHW̃2vk+1

− BHCAxk − BHCW1wk, (15)

and denoting Ā = A − BHCA and B̄ = BH , (7) yield:

xk+1 = Āxk + B̄ g−1( yk+1) + B̄W̃2vk+1 − B̄CW1wk . (16)

Consequently, the robust unknown input observer structure is:

x̂k+1 = Āx̂k + B̄g−1( yk+1) + K (g−1( yk) − Cx̂k), (17)

while the state estimation error is given by:

ek+1 = xk+1 − x̂k+1 = Āek + B̄W̃2vk+1

−B̄CW1wk − K (g−1( yk) − Cx̂k)

= Āek + B̄W̃2vk+1 − B̄CW1wk − [K (Cxk − W̃2vk − Cx̂k)]
= A1ek + B̄W̃2vk+1 − B̄CW1wk + KW̃2vk

= A1ek + [0 B̄W̃2]v̄k+1 + [−B̄CW1 0]v̄k + [0 − KW̃2]v̄k
= A1ek + V̄ 1v̄k+1 + V̄ 2v̄k, (18)

where: v̄k = [wT
k vTk ]T , A1 = Ā − KC, V̄ 1 = [0 B̄W̃2], V̄ 2 = [−B̄CW1 − KW̃2].

As a consequence, the input estimation error (14) can be redefined as follows:

εu,k = −HCAek + [0 HW̃2]v̄k+1 + [−HCW1 0]v̄k
= −HCAek + Ṽ 1v̄k+1 + Ṽ 2v̄k . (19)
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where Ṽ 1 = [0 HW̃2] and Ṽ 2 = [−HCW1 0].
Theorem 1 For a prescribed disturbance attenuation level υ > 0, for the input estimation
error (19), the H∞ observer design problem for the system (7–8) and the observer (17) is
solvable if there exist α > 0, β > 0, P � 0, Q � 0, N such that the following LMI is
satisfied:

⎡
⎢⎢⎢⎣

−P + ATCT HT HCA −ATCT HT Ṽ 2

−Ṽ
T
2 HCA Ṽ

T
2 Ṽ

T
2 − μ2 I

−Ṽ
T
1 HCA Ṽ

T
1 Ṽ 2

P A1 PV̄ 2

−ATCT HT Ṽ 1 AT
1 P

Ṽ
T
2 Ṽ 1 V̄

T
2 P

Ṽ
T
1 Ṽ 1 − μ2 I V̄

T
1 P

PV̄ 1 −P

⎤
⎥⎥⎥⎦ < 0. (20)

Proof The problem ofH∞ observer design [31] is to determine the gain matrix K such that

lim
k→∞ ek = 0 for v̄k = 0, (21)

and

‖εu,k‖l2 ≤ υ‖v̄‖l2 for v̄k �= 0 and e0 = 0. (22)

In order to settle the above problem it is sufficient to find a Lyapunov function Vk such that:

�Vk + εTu,kεu,k − μ2v̄Tk+1v̄k+1 − μ2v̄Tk v̄k < 0, (23)

where:

�Vk = Vk+1 − Vk = eTk+1Pek+1 − eTk Pek

= [eTk AT
1 + v̄Tk+1V̄

T
1 + v̄Tk V̄

T
2 ]P[A1ek + V̄ 1v̄k+1 + V̄ 2v̄k]

−eTk Pek, (24)

Thus, if v̄k = 0, (k = 0, . . . ,∞) then (23) boils down to

�Vk + εTu,kεu,k < 0, k = 0, . . . ∞, (25)

and hence �Vk < 0, which leads to limk→∞ ek = 0 for v̄k = 0. If v̄k �= 0, (k = 0, . . . ,∞)
then inequality (23) yields:

J =
∞∑

k=0

(
�Vk + εTu,kεu,k − μ2v̄Tk v̄k − μ2v̄k+1v̄k+1

)
< 0, (26)

which can be written as:

J = −V0 +
∞∑

k=0

εTu,kεu,k − μ2
∞∑

k=0

v̄Tk v̄k − μ2
∞∑

k=0

v̄Tk+1v̄k+1 < 0. (27)

Bearing in mind that:

μ2
∞∑

k=0

v̄Tk+1v̄k+1 = μ2
∞∑

k=0

v̄Tk v̄k − μ2v̄T0 v̄0 (28)

inequality (27) can be written as:

J = −V0 +
∞∑

k=0

εTu,kεu,k − 2μ2
∞∑

k=0

v̄Tk v̄k + μ2v̄T0 v̄0 < 0. (29)
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Knowing that V0 = 0 for e0 = 0, (29) leads to ‖εk,u‖l2 ≤ υ‖v̄‖l2 with v = √
2μ.

Thus, for zk = [eTk , v̄Tk , v̄Tk+1]T the inequality (23) becomes:

zTk X zk < 0, (30)

where the matrix X ≺ 0 has the following form:
⎡
⎢⎣

AT
1 P A1 − P + ATCT HT HCA AT

1 PV̄ 2 − ATCT HT Ṽ 2

V̄
T
2 P A1 − Ṽ

T
2 HCA V̄

T
2 PV̄ 2 + Ṽ

T
2 Ṽ 2 − μ2 I

V̄
T
1 P A1 − Ṽ

T
1 HCA V̄

T
1 PV̄ 2 + Ṽ

T
1 Ṽ 2

AT
1 PV̄ 1 − ATCT HT Ṽ 1

V̄
T
2 PV̄ 1 + Ṽ

T
2 Ṽ 1

V̄
T
1 PV̄ 1 + Ṽ

T
1 Ṽ 1 − μ2 I

⎤
⎥⎦ < 0,

(31)

Moreover, by applying the Schur complements, (31) is equivalent to
⎡
⎢⎢⎢⎣

−P + ATCT HT HCA −ATCT HT Ṽ 2

−Ṽ
T
2 HCA Ṽ

T
2 Ṽ

T
2 − μ2 I

−Ṽ
T
1 HCA Ṽ

T
1 Ṽ 2

A1 V 2

−ATCT HT Ṽ 1 AT
1

Ṽ
T
2 Ṽ 1 V̄

T
2

Ṽ
T
1 Ṽ 1 − μ2 I V̄

T
1

V 1 −P−1

⎤
⎥⎥⎥⎦ < 0, (32)

Multiplying (32) from both sites by diag(I, I, I, P), and then substituting A1 = Ā−KC,

P A1 = P Ā − PKC = P Ā − NC, AT
1 P = Ā

T
P − CT NT and N = PK , PV̄ 2 =

P[0 − KW̃2] = [0 − PKW̃2] = [0 − NW̃2], (32) receives the form:

⎡
⎢⎢⎢⎣

−P + ATCT HT HCA −ATCT HT Ṽ 2

−Ṽ
T
2 HCA Ṽ

T
2 Ṽ

T
2 − μ2 I

−Ṽ
T
1 HCA Ṽ

T
1 Ṽ 2

P A1 PV̄ 2

−ATCT HT Ṽ 1 AT
1 P

Ṽ
T
2 Ṽ 1 V̄

T
2 P

Ṽ
T
1 Ṽ 1 − μ2 I V̄

T
1 P

PV̄ 1 −P

⎤
⎥⎥⎥⎦ < 0, (33)

which completes the proof. ��
As the result of solving of Linear Matrix Inequality (LMI) (33), for a given disturbance

attenuation level μ the observer gain matrix K can be obtained:

K = P−1N (34)

The above-presented methodology allows calculate estimates of GMDH neural network
inputs. Furthermore, on the basis of (23):

εTu,kεu,k ≤ μ2v̄Tk+1v̄k+1 + μ2v̄Tk v̄k, (35)

and assuming that v̄Tk v̄k = ‖v̄k‖22 < δ, where δ > 0 is a given bound, then

εTu,kεu,k ≤ 2μ2δ, (36)

and the adaptive threshold for the inputs of the GMDH neural model can be defined sa
follows:

ûi,k − μ
√
2δ ≤ ui,k ≤ ûi,k + μ

√
2δ. (37)
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Fig. 8 Robust actuators fault
detection and isolation with the
application of the input adaptive
thresholds obtained via the RUIF

Fault

Fault-free

Fault-free
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ûm
k

ûm
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ûm
k

uk yk

yk

y1
k

y2
k

y
ny

k

Fault
isolation

RUIF1

RUIF2

RUIF3

During the actuator fault diagnosis, an occurrence of the fault of the i-th actuator is signaled
when input ui,k crosses the input threshold (37) (cf. Fig. 8).

Note that the proposed scheme depicted in Fig. 6 can be used for detecting and isolating
actuator under an assumption that all sensors are fault-free. To relax such an assumption it is
necessary to employ the scheme presented in Fig. 9 for which the sensitivity to actuator and
sensor fault is described in Table 1. The notation being used is as follows:

– yik denotes the output vector yk without i th element,
– fa,i denotes i th actuator fault,
– fs,i stands for i th sensor fault,
– RUIFi denotes the i th neural model supported with RUIF.

After providing appropriate nomenclature it is possible to analyze the fault sensitivity
matrix expressed by Table 1. It is evident that it makes it possible to determine if there is
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Table 1 Fault sensitivity matrix

f a1 f a2 · · · f anu f s1 f s2 · · · f sny

RUIF1 1 1 · · · 1 0 1 · · · 1

RUIF2 1 1 · · · 1 1 0 · · · 1

.

.

.
.
.
.

.
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.
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.
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.
.
.
.

.

.

.

RUIFnu 1 1 · · · 1 1 1 · · · 0

Fig. 10 Laboratory model of a tunnel furnace

Fig. 11 Interior of a tunnel furnace

either an actuator or sensor fault. If the sensor a symptom of sensor fault is obtained then the
approach presented in Sect. 2 can be used for further analysis else the actuator fault isolation
scheme presented in Fig. 9 should be employed.

4 Illustrative example

The objective of this section is to design a dynamic GMDH model of the tunnel furnace (cf.
Figs. 10, 11) and apply it to the robust fault detection of the actuator and sensor fault with
the input and output adaptive thresholds developed in Sects. 2 and 3.

In the laboratory conditions the tunnel furnace enables to mimic the real industrial tunnel
furnaces, which can be applied in the food industry. It is equipped in three electric heaters
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Fig. 12 Temperature t1 and output adaptive threshold

representing actuators and four temperature sensors. The temperature of the furnace can be
controlled by a group regulation of voltage in the heaters with the application of the controller
PACSystems RX3i manufactured by GE Fanuc Intelligent Platforms and semiconductor
relays RP6 produced by LUMEL providing an impulse control with a variable impulse
frequency f max = 1 Hz. The maximum power outputs of the heaters were measured to
be approximately 686, 693 and 756 ± 20W, respectively. The temperature of the furnace is
measured via IC695ALG600 module with Pt100 Resistive Thermal Devices (RTDs) with
an accuracy of ±0.7◦C. The visualisation of the behaviour of the tunnel furnace is made
by Quickpanel CE device from GE Fanuc Intelligent Platforms. It should be underlined that
the considered system is a distributed parameter one (i.e., a system whose state space is
infinite dimensional), thus any resulting model from input-output data will be at best an
approximation.

Themodeled furnace is a three-input and four-output system (t1, t2, t3, t4)= f (u1, u2, u3),
where t1, . . . , t4 represents the temperatures from sensors and u1, . . . , u3 denotes input volt-
ages of the electric heaters. For the modeling of the tunnel furnace purpose the state-space
GMDH neural model approach [14] was applied. The parameters of the state-space dynamic
neurons are estimated with the application of the UJF training algorithm [25]. The selection
of the best performing neurons is realized with the application of the Soft Selection Method
[14] based on the Sum Squared Error evaluation criterion. Figure 12 depicts temperature t1
of the furnace and the adaptive thresholds obtained with (5) for the validation data set (no
fault case).

At the next stage of the experiment the estimates of the GMDH neural model inputs and
corresponding input adaptive thresholds are estimated with the application of the approach
based on the application of theRUIF developed in Sect. 3. Figure 13 depicts themeasurements
of the input voltage u1 of the electric heater and the corresponding input adaptive threshold
(37) obtained with the application of the RUIF for the fault free case.

After the synthesis of the GMDH model, it is used for the robust fault detection of the
tunnel furnace. For this reason two faults were simulated. The first fault in the sensor was
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Fig. 13 Voltage u1 and input adaptive threshold
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Fig. 14 Detection of faulty temperature sensor via output adaptive threshold

simulated by its partly removing from the tunnel furnace (for k = 400). Figure 14 presents
the measurements of temperature t1 from the faulty sensor and the output adaptive threshold
obtained with the application of the state space GMDH neural model. As it can be seen the
fault is detected for k = 400 when the measurements of temperature t1 crosses the output
adaptive threshold calculated according Eq. (5).

The second fault was simulated in the actuator by the decreasing of the input voltage by
20%. Figure 15 presents the measurements of the input voltage u1 and the corresponding
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Fig. 15 Detection of faulty electric heater via input adaptive threshold

input adaptive threshold obtained with the application of the GMDH neural model and RUIF.
As it can be seen the faulty actuator is detected for k = 300 when the value of voltage u1
crosses the input adaptive threshold (37).

5 Conclusion

The main objective of this paper was to develop a novel robust FDI method on the basis
of the state-space GMDH neural model. The application of the UKF enables to obtain the
asymptotically stable GMDH neural model during the network synthesis. Moreover, the
application of such an algorithm enables to calculate the output adaptive threshold, which can
be applied for the robust sensor fault detection. Furthermore, in the paper a novelmethodology
of the GMDH model input estimation with RUIF approach was proposed. Such an approach
allows to calculate the input adaptive thresholds and enables to perform the robust fault
detection and isolation of the actuators. The main contribution of this paper is to show how
to use the above-mentioned results for actuator fault diagnosis. In particular, the obtained
neural model is used to obtain the input estimates. The achieved estimates are then compared
with the original input signals to formulate the diagnostics decisions. The input estimation
scheme is based on a chain of robust observers, which guaranties that the input estimates are
obtained with a prescribed disturbance attenuation level while ensuring the convergence of
the observers. The final part of the paper shows a comprehensive case study regarding the
laboratory tunnel furnace, which exhibit the performance of the proposed approach.
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