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Abstract In this paper, we make a comprehensive credit risk analysis on government
bonds (GBs) of Germany, France, Italy, Spain and Greece over the period 2007.4–
2012.3, where interest rate (IR) differential, GB price differential, default proba-
bility (DP) and credit default swap (CDS) are considered. First, applying the GB-
pricing model in Kariya (Quantitative methods for portfolio analysis: MTV approach.
Springer,Berlin, 1993) to theseGBprices,wederive the term structures of interest rates
(TSIRs) and discuss on the Maastricht convergence condition for the IR-differentials
among these states relative to the German TSIRs andmake some observations on some
divergent tendencies. The results are associatedwith the business cycles and budgetary
condition of each state. In the second part, to substantiate this viewpoint, we first make
credit risk price spread analysis on price differentials and derive the term structures
of default probabilities (TSDPs) of the French, Italian, Spanish and Greek GBs rel-
ative to the German GBs, where the corporate bond (CB) model proposed in Kariya
(Advances in modern statistical theory and applications: a Festschrift for Professor
Morris L. Eaton. Institute of Mathematical Statistics, Beachwood, 2013) is used in the
derivation. Then it is empirically shown that the TSDPs show a significant divergent
movement at the end of 2011, affected by the Euro Crisis. In addition, the TSDPs of
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these GBs are empirically shown to be almost linear functions of the differences of
the TSIRs, which enables us to state the Maastricht condition in terms of DP. Thirdly
the effectiveness of our TSDPs is empirically verified by comparing them with the
corresponding CDSs against US dollars.

Keywords European Economic and Monetary Union · Maastricht treaty ·
Government bond pricing model · Credit risk price spread · Term structures of interest
rates and default probability · Credit default swap

1 Introduction

The Financial Crisis in 2008–2009 and the European Crisis thereafter made many
European states (countries) in the the European Economic and Monetary Union
(EEMU) confronting severe budgetary and unemployment problems, as reflected in
Greek economy. As of May 2013, there are 27 countries in the European Union (EU)
among which 17 states form the EEMU. The European problem has been affecting
global economies through trade relations andfinancialmarkets, and naturally theworld
concerns about their future movements, because a collapse of the EEMU would make
a significantly serious impact on the world economy. As a matter of fact, the 2012
GDPs of Germany, France, Italy and Spain in the EEMU are respectively ranked the
4th, 5th, 9th, and 13th in the world and the total GDP of these four states is greater
than the GDP of China, implying the global importance of these countries in view of
the world trade system and financial system.

Though the currency has been integrated in the EEMU, the sovereignties of making
finance for fiscal policy by issuing government bond (GB) have not yet been integrated
in the system.Since theseGBs are of commoncurrencyunit “euro”, the bonds issuedby
the EEMU states are substitutable from investors’ viewpoint and the price differentials
observed in theGBmarkets basically show the substitutable rates or equivalently credit
risks in euros, which is made by alert and sensitive investors. Hence the GB prices of
the same attributes (coupon and maturity) in the EEMU states will naturally exhibit
or reflect credit quality in their price differentials, where we only treat GBs with
fixed coupons. In other words, the price differentials with bond attributes adjusted
will directly exhibit market evaluations of the DPs (default probabilities) projected by
forward-looking investors. Here it is noted that the investors who form prices in the
market will have certain views and perspectives on risks of possible defaults of the GB
issuers over some time horizons, given the past information on microeconomic and
macroeconomic movements, business cycles, and government budgetary conditions,
etc.

In this paper, via interest rate differential (IR-differential), price differential (P-
differential), default probability (DP) and credit default swap(CDS), we will make a
comprehensive credit risk analysis on the GB price data of the Five States; Germany,
France, Italy, Spain and Greece over 2007.4–2012.3. The names of the Five States are
often respectively represented by the symbols D, F, I, S, and Gr below. For example,
their GBs are abbreviated as DGB, FGB, IGB, SGB and GrGB respectively. The
analysis includes the derivations and comparisons of the term structure of interest
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rates (TSIR) implied by those GB prices, and it is associated with credit risk analysis
on FGB, IGB, SGB and GrGB relative to DGB, where the price differentials are
analyzed and the term structures of default probabilities (TSDPs) are derived and
compared. In our terminology the credit risk of the kth state (issuer) at current time
t is the TSDP {pkt (s) ≡ P(τ kt ≤ s) : 0 < s ≤ skM } that the kth government (state)
cannot timely pay the coupons nor fully redeems the principals of its issued GBs at
future time t + s, where k = F,I,S,Gr and τ kt is the default time random variable of
the kth state. Our future time horizon for analysis is commonly fixed as the 10-year
term (0, 10] from t . Throughout this paper the time t of analysis is dropped from our
notation and the TSDP is simply denoted by {pk(s)}. By its definition the TSDP curve
of pk(s) is increasing and unconditional at each time and we will estimate pk(s) with
monthly cross-sectional data of the GB prices for each state k.

It is noted that in interest rate analysis and credit risk analysis, its data source natu-
rally makes a great impact on the effectiveness of modeling and analysis. In particular
when it is aimed to derive a DP (default probability) from a set of data, we distin-
guish the two approaches: (1) Backward-looking approach and (2) Forward-looking
approach. In Backward-looking approach microeconomic and macroeconomic time
series data over a past period is used for modeling and analysis and the data on
defaulted firms and non-defaulted firms in the past is associated with economic, busi-
ness and financial data. But these data are often generated under different environments
with possibly different economic regimes. Typically, statistical or econometric mod-
els which use time series data on defaults and non-defaults belong to this approach.
Examples are intensity model, survival model, classification model, rating transition
model, logit-probit model, etc. In Forward-looking approach, current (cross-sectional)
market data such as GB or CB (corporate bond) prices, interest rates, swap rates, stock
prices, credit default swap (CDS) etc. is used to look forward over a future term with
concept of DP for those firms that have not defaulted. These current market prices are
supposed to reflect and include investors’ views, projection and perspectives on future
economic and financial movements or budgetary conditions of firms or states over a
future term, given past time series information. A typical example is that a current
cross-sectional set of GB prices of different maturities will give a TSIR over a future
term, which is nothing but investors’ views at current time on future interest rates.

We remark on liquidity risk. In our view liquidity will be inseparable from credit
quality. In fact, liquidity risk is tightly related with credit risk and generally speaking,
when economy is not in financial crisis, the lower the credit quality is, the less the
liquidity is, which is in fact implied by the fact that the lower the credit quality is, the
smaller the size of investors’ funds is in the market (see, e.g., Friewald et al. 2012).
Also the volume of the issuedGBs standing in themarket (depth of themarket) matters
in view of liquidity because the larger it is, the more easily the investors sell or buy
bonds without market impact.

In our analysis, to derive TSIRs, the forward-looking GB-pricing model proposed
in Kariya (1993) and applied in Kariya et al. (2012) (shortened KWWDY 2012)
is applied to each monthly cross-sectional set of GB prices. And to derive TSDPs
relatively to DGB, the forward-looking CB (Corporate Bond) pricing model proposed
in Kariya (2013) is also applied to each monthly cross-sectional set of FGB, IGB,
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SGB, and GrGB, which are regarded as CBs in the model, while DGBs are viewed as
non-defaultable reference GBs.

In derivations of TSIRs, P-differentials and TSDPs, we use each monthly cross-
sectional set of GB price data, where price data is observed at the last business day of
eachmonth and the period of analysis is 2007.4–2012.3. Our arguments are sometimes
made associated with the conditions in the Maastricht Treaty, which we will discuss
in Sect. 2 and show a legitimacy of regarding DGB as a reference GB.

In Sect. 3, first our cross-sectionalGBpricingmodel is reviewed, and then theTSIRs
of the Five States are derived cross-sectionally in each month over the period 2007.4–
2012.3. Themodel contains the heteroscedasticity and correlation structure of prices in
the stochastic discount function, which naturally introduces a bond duration structure.
Then from a viewpoint of the Maastricht convergence problem on the IR-differentials
in Sect. 2 we associate time series paths of their TSIRs with business cycles of the
Five States (German, France, Italy, Spain and Greece), where the business cycles are
measured by the ESI (Economic Sentiment Indicator). Note that the IR-differential
itself is a measure of credit risk and the relationships between our TSIRs and TSDPs
are considered in Sect. 6.

In Sect. 4, we look into the P-differentials of GBs relative to DGB because they
provide direct credit risk measures on FGB, IGB, SGB and GrGB in terms of euros. In
fact, we propose the credit risk price spread (CRiPS) as a market credit risk measure
that evaluates the credit P-differentials in euros of each GB of the Four States (France,
Italy, Spain and Greece) relative to the corresponding DGB-equivalent bond of the
same maturity and the same coupon rate, where the prices are adjusted for the bond
attributes of maturity and coupon. It in fact measures a default likelihood of each
individual bond in euro, which is similar to the default distance measure that uses
current stock price, and it can be used in risk management of GB portfolios. And
we make some empirical observations concerning the cross-sectional and time series
differences of the CRiPSs of the Four States along business cycles together with the
budgetary conditions of each state and historical events.

In Sect. 5 with monthly GB price data of the Five States for the period 2007.
4–2012.3, the TSDPs of the Four States are estimated via our CB pricing model,
where the mean discount function derived from the DGB pricing model is used for
discounting future defaultable CFs of GBs in the Four States. Here the recovery rates
are assumed to be 0 because it is difficult to set specific nonzero rates for comparison.
The time series movements of the TSDPs of the Four States are compared in view of
business cycles, their budgetary problems and events revealed by the Greek Shocks in
2009.11, the Euro Crisis in 2010.4 and Financial Crisis in 2008.9–2009.3. The 10-year
DPs of Italy and Spain are shown to be dramatically increasing over 30% in the Euro
Crisis.

In Sect. 6 theMaastricht condition on the IR-differentials are considered in terms of
DPs. The DPs are regressed on the IR-differentials in time series and shown to have an
almost perfect linear relationship with the IR-differentials. The result is not surprising
because it is in fact due to a structural relation between our GB-pricing model and
CB-pricing model, and so it can be used as a conversion formula from IR-differentials
to DPs and vice versa.
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In Sect. 7 to show the effectiveness of our DPmeasure and analysis in this paper, for
each state we associate each DP pk(s) up to term s with the CDS (credit default swap)
of the same maturity s. Here a CDS is a credit derivative which pays its holder the GB
principal 100 euros in US dollars when the issuer gets defaulted. In our analysis we
regress CDS prices (premiums) on the levels of DPs and slopes of TSDPs, the best
model is selected for each maturity s and show that CDS prices are well explained by
our TSDPs.

In the literature there are many theoretical and empirical researches on credit risk.
But to our knowledge, there seems no such paper as this paper treating credit risk
unconditionally in view of forward-looking modeling. Most theoretical researches
in the area of mathematical finance take a time-continuous setting in view of no-
arbitrage concept. The books byDuffie andSingleton (2003) andLando (2004) arewell
known. A common feature of these time-continuous theories is that all the stochastic
processes are Markovian including processes of interest rate and credit risk intensity.
Unfortunately speaking from a viewpoint of empirical analysis, actual interest rates
and credit processes will not be Markovian since business cycles are not.

In his book, Duffie (2011) comprehensively describes his default intensity approach
to corporate credit risk modeling together with time series empirical analysis, where
most results are based on his previous papers such as Duffie et al. (2007, 2009), which
consider frailty correlated defaults. The model is a doubly stochastic Poisson intensity
model, which is extended as predictive intensity model in Duan et al. (2011).

On the other hand, a traditional approach to bond pricing will be represented by the
econometric approach in Nelson and Siegel (1987), among others. They assume a spe-
cific form of non-stochastic term structure of interest rates including level, steepness,
curvature and scale parameters. There are many papers associated with this model and
its estimation and forecast procedure (e.g., Diebold andLi 2006). In credit risk analysis
the yield curve approach often uses yield spreads between YTMs (yield-to-maturity)
or par-yields derived for GBs and CBs. On the other hand, we take a price approach
to measuring TSIRs, CRIPSs and TSDPs through GB price model, where TSIR and
TSDP are approximated by polynomials.

2 The Maastricht Treaty and Our Problem

The Maastricht Treaty, which was signed in February 1992 and entered into force
on 1 November 1993, describes the concept and vision of the EEMU and outlines
the 5 convergence criteria for EU member states to comply with in order to enter the
EEMU (see, e.g., Maastricht Treaty, Wikipedia, Treaty of Maastricht on European
Union). As is well known, the EEMU was established with 27 countries in 2002 and
was awarded the 2012 Nobel Peace Prize. In the treaty the Maastricht convergence
criteria (or simply convergence criteria) are stipulated in order to achieve financial
stability within the eurozone, and the economic conditions for an EU member to join
the EEMU are required to meet:

1. Its inflation rate shall be less than the average of the 3 lowest rates plus 2%.
2. Its annual government budget deficit over GDP shall be less than 3%.
3. Its government debt-to-GDP ratio shall be less than 60%.
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Fig. 1 The budgetary conditions of some European countries, USA and Japan in 2011

4. Its exchange rates in the past year shall be stable.
5. Its long-term (10 year) interest yield average in the past year of a state that seeks

currency integration shall be no more than 2.0 % higher than the unweighted
arithmetic average of the similar 10-year government bond yields in the 3 EU
member states with the lowest inflation.

After the financial crisis in 2008–2009, some of the EEMU members themselves
are unable to satisfy the criteria (2) and (3) among others, which makes credit quality
of government bonds (GBs) differentiated through their price differentials because
they are issued under the same currency unit, which in turn makes the IR and hence
the credit risk (default probability) of those states differentiated. In other words, even
in the EEMU the convergence is questioned under the current situation. The problem
of IR differentials in (5) is of course closely related to the conditions (2) and (3) on the
budget deficit differentials in percentage. Our analysis based on GB prices is greatly
related to the condition (5).

The budget problem is described in Fig. 1, where the vertical axis and the horizontal
axis respectively represent the debt-to-GDP ratio and the annual government budget
deficit over GDP in 2011. It shows that though the budgetary condition of Japan is
exceptionally bad, the debt-to-GDP ratios of the Five States are all larger than 60%
in 2011 against (3) and the annual government budget deficit over GDP is larger than
3% against (2) except for Germany. In these two measures Germany is the best state
among the five and hence we take DGB as our reference state for comparisons in
interest analysis and credit analysis though the budgetary condition does not fully
explain credit risk.

It is interesting to point out that the debt-to-GDP ratio of Spain is smaller than that
of France, though Spanish budgetary condition became worse rapidly in 2012.
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3 Interest Rate Differentials and Convergence Criterion

In this section we apply the GB pricing model in KWWDY (2012) to DGBs, FGBs,
GrGBs, IGBs, and SGBs to derive their TSIRs and compare them to discuss on some
differences of the TSIRs in association with business cycles. In Sect. 6 the results will
be used to convert IR-differentials into DPs and the Maastricht convergence condition
will be stated in DPs.

To describe the model, let the kGB(g) denote the gth bond of the kth state at time t
for analysis, where k = D, F, I, S, Gr, and g = 1, . . . ,Gk

t . Let P
k
gt denote the kGB(g)

price at t , where Gk is the sample size of the kGB prices at t . In the sequel, time t
is fixed and the suffix is omitted from each variable. Let skg1 < skg2 < · · · < sk

gMk (g)
denote the future times measured in years from t at which the CFs of the kGB(g) are
generated, and sk

gMk (g)
is the maturity of the kGB(g). Then the GB pricing model is

given by

Pk
g =

Mk (g)∑

j=1

Ck
g

(
skg j

)
Dk
g

(
skg j

)
(g = 1, . . . ,Gk). (3.1)

In (3.1), Dk
g(s) is a stochastic discount function which possibly depends on bond

attributes, and the realization (at t) of each price Pk
g is regarded as equivalent to the

realization (at t) of the whole discount function {Dk
g(s) : 0 ≤ s ≤ sk

gMk (g)
}. Here

Ck
g(s

k
g j )

′s( j = 1, 2, . . . , Mk(g) − 1) are the coupons and Ck
g(s

k
gMk (g)

) is the coupon
plus the principal 100 (Euro) of the kGB(g). For example, in the case of the IGB,
coupons are paid semi-annually and so with k = I

Ck
g

(
skg j

)
= 0.5ck for j = 1, 2, . . . , Mk(g) − 1 and Ck

g

(
skgMk (g)

)
= 0.5ck + 100.

But in the case of the other GBs, coupons are paid annually.
The stochastic discount function is assumed to be decomposed into the attribute-

independent mean discount function D
k
(s) and the attribute-dependent stochastic part

�k
g(s);

Dk
g(s) = D

k
(s) + �k

g(s). (3.2)

While inKWWDY (2012) D
k
(s) is also assumed to be attribute-dependent to look into

the pricing behaviors of bond investors, here it is assumed to be attribute-independent
to compare GB market prices in different states. Inserting (3.2) into the model in (3.1)
yields

Pk
g =

Mk (g)∑

j=1

Ck
g

(
skg j

)
D

k
(
skg j

)
+ ηkg wi th ηkg =

Mk (g)∑

j=1

Ck
g

(
skg j

)
�k

g

(
skg j

)
. (3.3)
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We approximate the mean discount function D
k
(s) by a polynomial of the pth order;

D
k
(s) = 1 + δk1s + δk2s

2 + · · · + δkps
p, (3.4)

since any continuous function on a closed interval can be uniformly approximated by
a polynomial.

On the other hand, the specification of the stochastic part of Dk
g(s) is made by

Cov
(
Dk
g

(
skg j

)
, Dk

h

(
skhm

))
= Cov

(
�k

g

(
skg j

)
,�k

h

(
skhm

))
= (σ k)2λkgh (3.5)

for all j and m, where

λkgh =
{
1 (g = h)

ρkekgh (g �= h)
wi th ekgh = exp

(
−ξ k

∣∣∣skgMk (g) − skhMk (h)

∣∣∣
)

. (3.6)

This specification implies that

(1) the longer the maturity of each bond is, the larger the variance of each price is,
and

(2) the larger the difference of maturities of two bonds, the smaller the covariance is.

It is noted that the covariance in (3.5) is independent of the individual CF time points
of two bonds except for the maturities. In this speculation the covariance of Pk

g and

Pk
h becomes

Cov(Pk
g , Pk

h ) = (σ k)2λkghϕ
k
gh with ϕk

gh =
Mk (g)∑

j=1

Mk (h)∑

m=1

Ck
g

(
skg j

)
Ck
h

(
skhm

)
. (3.7)

Now our GB-pricing model for state k is reduced to a regression model;

yk = Xkβk + ηk with βk =
(
δk1, δ

k
2, . . . , δ

k
p

)′ : p × 1,

yk =
(
yk1 , y

k
2 , . . . , y

k
Gk

)′ : Gk × 1, ykg = Pk
g − akg, a

k
g =

∑Mk (g)

j=1
Ck
g

(
skg j

)
,

(3.8)

and the covariance matrix;

Cov(ηk) = (Cov(ηkg, η
k
h)) = (Cov(Pk

g , Pk
h )) = (σ k)2(λkghϕ

k
gh) ≡ (σ k)2�(ρk, ξ k).

(3.9)

This specification naturally introduces not only a heteroscedasticity and correlation
structure into the model but also a bond duration effect into the variances and covari-
ances of the prices. The parameter βk in the mean discount function D

k
(s) are esti-

mated via the GLS (generalized least squares) method, which minimizes the objective
function
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Fig. 2 Business Cycles of European economies. Data source: ESI (Economic Sentiment Indicator) of
Economic and Financial Affairs, European Commission

ψ(βk, ρk, ξ k) =
[
yk − Xkβk

]′ [
�(ρk, ξ k)

]−1 [
yk − Xkβk

]
(3.10)

with respect to the unknown parameters (see Kariya and Kurata 2004 for the effec-
tiveness of GLS).

Once D
k
(s) is estimated, the TSIR of the kGB at time t is estimated by

rk(s) = −[log Dk
(s)]/s with 0 < s ≤ 10. (3.11)

Before we apply the model to data, we look into the business cycles of the Five States
and a brief history of events. In Fig. 2 the ESIs (Economic Sentiment Indicators) of
EEMU states, published by the European Commission, are graphed, where the ESI
is based on economic surveys and summarized as diffusion index, and the average of
ESIs over 1990–2011 is set equal to 100.

Though the ESI represents the economic sentiments of industries in private sector,
it describes the business cycles of each state, which affect the levels of IRs (at time t)
and even the budgetary condition of each government. The graph was originally made
by JETRO and modified by the authors. The average of ESIs over 1990–2011 is set
equal to 100.

From Fig. 2 it is observed:

(1) The ESIs of the Fives hit a peak around 2007.6 almost simultaneously though the
Spanish ESI was the lowest among the Fives from the peak through the downward
slope up to 2009.1.

(2) From the peak to the points in 2008.7 the ESIs gradually decreased and then in the
financial crisis period of 2008.8–2009.3 they dramatically dropped down about
30% to the bottom (trough) in 2009.3. The bottom was common to all the ESIs.
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Fig. 3 The average AICs and the average minimized GLSVs defined by (
�
ψ/G)1/2 are plotted for the case

of DGB over the period 2005.9–2010.8

(3) Then the ESIs of the Fives moved upward simultaneously up to the points in
2009.10, one month before the announcement of a huge budget deficit by Greece
Government (Greek Crisis) in 2009.11.

(4) Since then, the ESIs separated each other and those of Italy, Spain and Greece did
not go up much relative to those of Germany and France. From 2009.12 concerns
about the budgetary conditions of Italy and Spain in addition to Greece spread
globally and the credit rating agencies downgraded the GBs of Greece in 2009.12.

(5) In 2010.4 Greece requested the IMF and the EU Government a bailout and in
2010.5 the IMF and the EU Government created an emergent bailout system.

(6) In 2011, the ESIs of the Fives hit another peak around 2011.3 and then went
down. Along this downward movement the IGBs and SGBs were sold off and
their yields (interest rates) went up significantly, as will be shown later.

(7) Except those of Germany and France, the ESIs of Italy, Spain and Greece never
reached the level in 2007.6 around 2011.3.

Now we apply the model to each monthly data set of cross-sectional GB prices from
2007.4 through 2012.3 (5 years). In Table 2 the sample size of each monthly data
set is given for each state over the period. The sample sizes of DGB vary from 35 to
42 and tend to increase on the average. On the other hand, the average sample size
of FGB is about 37 for the period up to 2010.3 but thereafter it is reduced to about
25. In other words, the French Government did not issue many GBs after 2010.3.
In the case of SGB the sample size tends to increase almost monotonically from 16
through 24, while in the case of IGB they tend to increase from 28 to 42 over time.
However, Greece issued less GBs and it tends to increase from 16 to 23 up to 2010.5
and thereafter tends to decrease to 16 except for the case of 2012.3 with sample size
2. In 2012.3 it seems that Greece could not issue new bonds after the Greek Crisis.

In selecting a model in (3.4), we need to specify the order p of the polynomial. Fig-

ure 3 shows the AIC values and the averages of the 60 minimized values (
�

ψ
k

/G
k)1/2‘s

of the objective function in (3.8) when p changes. Of course, as p increases, the aver-
age decreases since the parameter increases. In the case of DGB and IGB there are a
moderate sample size for each set of data and hence we might be able to take p = 8.
However considering the other cases with smaller samples and taking into account the
fact that p = 6 in the cases of USGB and JGB (Japanese GB) (see KWWDY 2012),
we take p = 6 below, which is common to all the models of the Fives.
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Fig. 4 Term Structures of Interest Rates (TSIRs) implied by DGB prices

In Fig. 4, we plot the TSIRs of DGBs, denoted by D-TSIRs, which is estimated
through (3.11).
Some observations follow:

(1) From 2007.4 to 2008.6, the German economy was good enough to keep the 10
year IR about 4.5%and the differences of short term and long term IRswere small,
implying that the economy was close to the peak. It hit the peak with almost flat
TSIR r D(1) ≈ r D(2) ≈ · · · ≈ r D(10) = 0.05 in 2008.06.

(2) From 2008.7 to 2009.3, the interest rates dropped down rapidly and significantly
along the subprime shock up and its aftermath, and the TSIRs became upward
where the longer the terms are, the larger the rates. The Statistical Bureau of the
European Commission identified 2009.3 as the bottom of the business cycles of
European economy as in Fig. 1. The r D(10) rates dropped from 4.6% in 2008.6 to
3.28 in 2009.3 and further to 2.25% in 2010.8, which corresponds to the business
cycles of Germany in Fig. 1.

(3) At the bottom of the business cycles in 2009.3 the D-IRs did not drop much
though the gaps between shorter rates and longer rates were widened and the
upward slope of the TSIR became steep.

(4) After 2009.3 on, the German ESI moved up till 2011.3 in which the business
cycles hit another peak, though the Greek budgetary crisis appeared in 2009.11.
However, r D(10) stayed at levels of more than 3% after 2009.3 till 2010.3, and
then suddenly dropped down to 2.4% in 2010.8, which is not consistent with the
movement of the German ESI.

(5) The period of 2010.4 through 2010.8 was reported to be the period in which
Germany had to make some financial contribution to keep the EEMU system for
Greece and other states.
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Fig. 5 TSIRs of France, Italy, Spain and Greece

(6) After that, the r D(10) moved up to the level of 3.4% in 2011.3, where 2011.3
corresponds to the peak month of the ESI. Thereafter r D(10) went down along
the downward movement of the ESI.

In Fig. 5 the TSIRs of the Four States (France, Italy, Spain and Greece) are plotted.
It is first noted that the scales of each vertical axis in these graphs are different. The
reason why the graphs of French r F (10) and r F (9) are cut off in between the period is
that no FGBs of 10 year and 9 year maturities beyond the cut-off points are available
in our data set, where no extrapolation is made in estimating IRs.

It is observed from Fig. 5 that French TSIRs move more like German TSIRs over
all and that the TSIRs of Italy, Spain and Greece move in completely different manner,
though up to 2007.7 all the IRs including the German rates are almost same. In fact,
they moved up significantly after the Greek Shock in 2010.4, implying that some
potential budgetary or credit problems in the latter states are revealed. The 10-year
IRs of these three states remain at more than 4% level for almost all the months even
when the business cycles are around the trough in 2009.3, while the 10-year German
IR dropped to 2.4% in 2010.8. This implies that the credit risk of the three states gets
larger than that of Germany. In fact, it is often the case that credit risk is analyzed
through the IR-differentials rk( j) − r D( j)’s between k−IR and D−IR of common
maturity jyears, where k = F ,I, S, Gr and k−IR stands for the interest rate of the
kth state at each time t . In Sect. 6 the IR-differentials are analyzed in association with
DPs.

As in Fig. 5, the Greek TSIRs are divergent. In particular, from the starting point
2010.4 in Euro crisis they go over 10% and reach 20% in 2011.4. Then at high
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Fig. 6 The 7-year interest rate movements of Germany, France, Italy and Spain for 2007.4–2012.3

space they increase and in 2011.10 the 10 year IR reaches 50%, implying a state of
bankruptcy in GrGB. In fact, as will be shown in Fig. 9, the 10 year DP of GrGB is
more than 60% in 2011.10. For this reason, we sometimes omit the case of GrGB
from our analysis in the sequel.

The D-IRs, F-IRs, I-IRs and S-IRs of 7-year maturity are drawn for the Five States
over the period 2007.4–2012.3 in Fig. 6. From Fig. 6 it is easily observed that I-IRs
and S-IRs gradually get separated from D-IRs and F-IRs. The period is divided into 4
sub-periods;

(a) 2007.4–2008.6, (b) 2008.7–2010.3,
(c) 2010.4–2011.11, (d) 2011.12–2012.3.

We respectively call them (a) sub-period of no differentiation, (b) sub-period of dif-
ferentiation, (c) sub-period of divergence and (d) sub-period of stabilization.

In the period (a) the 4 IRs stick together without credit differentiation, representing
a unification of the EEMU. This was also shown in the ESIs in Fig. 2 when their
economies were good. The sub-period (b) includes the period of the subprime financial
crisis and there the I-IRs and S-IRs start to separate themselves from the D-IRs and
F-IRs, though the gaps are less than 2 %, as is required in the Maastricht condition (5)
for participation in the EEMU.

However, in the period (c) after Greece requested a bailout to the IMF and the ECB
(European Central Bank), investors concerned about the budgetary situations of Italy
and Spain governments and sold IGBs and SGBs relative to DGBs and FGBs. In that
period, the budget problems in fact turned out to be serious and, as is shown in Fig. 1,
the annual deficit/GDP ratios of France, Italy and Spain go over 3%, where that ratio
of Greece is 7.3%. In addition, the debt/GDP ratio of Italy at the end of 2011 is about
135% and close to that of Greece, while the debt/GDP ratio of Spain is about 75%
and a bit less than that of Germany. The unemployment rates of these states get worse
in this period. In (d), after the ECB, German Government and the IMF responded to

123



410 T. Kariya et al.

the bailout request, the IR differentials get smaller though the gaps between Italy and
Germany and between Spain and Germany are far larger than 2%. It is noted that the
F-IRs almost stick to the D-IRs until 2011.10 but thereafter the gaps widened.

No doubt, the credit risk of Italy and Spain gets worse especially in the sub-period
(c) and it may be measured as IR-differential. In Sect. 5 we will make correspondence
between the IR-differential andDP as ourmeasure of credit risk after we derive TSDPs
of the Four States in Sect. 4. In addition, the CDS prices of the Fours are shown to be
well explained by the TSDPs.

4 Price Differentials (P-Differentials) and CRiPS Analysis

In this section, we first define the CRiPS (credit risk price spread) measure that shows
P-differentials (in euros) of each GB of the Four States (France, Italy, Spain, Greece)
relative to the corresponding DGB-equivalent bond of the same maturity and coupon
rate. Secondly from the CRiPS analysis we draw some empirical observations con-
cerning the differences of CRiPS of the Four States.

To define our CRiPS measure, it is noted that a kGB price and a corresponding
DGB price cannot be directly compared where k = F, I, S and Gr, since bonds carry
such attributes as maturity and coupon rate. Hence for each fixed month we define a
measure of DGB-equivalent bond of kGB(g) by

P̂k/D
g =

Mk (g)∑

j=1

Ck
g

(
skg j

)
D

D
(
skg j

)
, (4.1)

where D
D
(s) is the mean discount function estimated through the DGB pricing

model in Sect. 3 with the set of cross-sectional DGB prices and {Ck
g(s

k
g j ) : j =

1, 2, . . . , Mk(g)} is the CFs of coupons and principal 100 (euros) of the kGB(g).
Using DGB-equivalent bond, we define the CRiPS between the kGB(g) and the DGB-
equivalent by

ykg = Pk
g − Pk/D

g (4.2)

where Pk
g is the kGB(g) market price. The CRiPS measure ykg is expected to be

nonpositive, but since the GBs of different states are compared in our case, in the
sub-period (a) where no credit differentiation is revealed, a few of ykg’s are positive.
An important feature of this measure is that it serves as a measure of credit risk and it
is additive. In other words, a relative risk of a portfolio of FGB, IGB, SGB and GrGB
is measured as

R ≡ −
{∑

eFg y
F
g +

∑
eIg y

I
g +

∑
eSg y

S
g +

∑
eGr
g yGr

g

}
, (4.3)

where ekg is the number of units of the kgGB included in the portfolio. If the risk of
DGB per unit is zero up to 10 years, this is the risk volume of the portfolio in euros
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Fig. 7 The term structures of CRiPSs (TS-CRiPSs) in each state for 2007.4, 2008.6, 2009.3, 2010.8, 2011.3
and 2012.2

relatively to DGB. If the risk of the gth DGB of maturity sD
gMD(g)

is represented by its

TSDP pD(s), then the risk volume can be measured by

zDg = 100D
D

(
sDgMD(g)

)
pD

(
sDgMD(g)

)
(4.4)

and hence the total risk volume in (4.3) plus risk volume of DGBs is

U ≡
{∑

eFg x
F
g +

∑
eIgx

I
g +

∑
eSg x

S
g +

∑
eGr
g xGr

g

}
+

∑
eDg z

D
g ,

where xkg = −ykg + zDg with k = F, I, S, Gr.

Now using CRiPSs in (4.2), let us make an empirical credit study on all the GB
prices {Pk

g : g = 1, . . . ,Gk} in each month issued by the kth state for the period
2007.4–2012.3, where k = F, I, S, Gr. In Fig. 7, within each state k, we make some
time series comparisons of the term structures of the CRiPSs. Selecting the five time
points; 2007.4, 2008.6, 2009.3, 2010.8, and 2011.12, we plot (sk

gMk (g)
, ykg)’s in 2-dim

plane for each state, where sk
gMk (g)

is the maturity of the kGB(g), g = 1, . . . ,Gk and

Gk is the sample size of the kGBs given in Table 1. The horizontal axis and vertical
axis respectively represent the maturity sk

gMk (g)
in years and CRiPS ykg in euros. Note

that the scale of the vertical axis in each state is different.
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Table 1 Sample sizes of each cross-sectional data set of GBs for each state over 2007.4–2012.3

07-4 07-5 07-6 07-7 07-8 07-9 07-10 07-11 07-12 08-1 08-2 08-3 08-4 08-5 08-6

Germany 35 36 36 35 35 36 35 36 36 36 36 37 36 37 37

France 36 37 38 37 37 37 36 36 35 36 36 36 36 37 37

Italy 30 29 28 29 30 29 30 31 31 31 31 31 32 32 31

Spain 16 16 16 16 16 16 16 15 15 16 16 15 15 15 15

Greece 16 17 17 17 17 17 17 16 16 17 17 18 17 18 18

08-7 08-8 08-9 08-10 08-11 08-12 09-1 09-2 09-3 09-4 09-5 09-6 09-7 09-8 09-9

Germany 36 36 37 36 37 37 36 36 37 36 38 37 36 36 37

France 37 37 36 36 36 36 36 36 36 35 36 38 37 37 36

Italy 31 32 32 33 32 32 32 33 32 33 33 34 35 34 35

Spain 14 14 15 16 16 16 17 17 17 17 18 18 19 19 19

Greece 18 18 18 18 18 18 19 21 21 21 20 20 20 20 20

09-10 09-11 09-12 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12

Germany 36 38 37 38 39 38 39 39 38 37 39 39 38 40 39

France 35 34 35 35 36 36 27 29 30 28 28 27 26 26 26

Italy 35 35 36 37 36 36 36 37 38 38 38 37 38 39 39

Spain 20 20 20 21 22 23 23 22 23 24 23 23 23 23 23

Greece 20 21 21 22 22 23 23 21 21 22 21 21 21 21 21

11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 12-1 12-2 12-3

Germany 40 41 40 41 42 42 40 42 41 41 42 41 41 41 40

France 26 26 26 25 26 27 26 26 25 24 24 23 22 23 23

Italy 39 39 39 39 40 40 40 41 41 40 41 40 41 41 42

Spain 24 24 23 24 23 23 23 23 23 23 22 22 22 21 21

Greece 21 21 20 19 18 18 18 18 17 16 16 15 17 16 4

From Fig. 7 the following observations can be made.

(1) In each state the CRiPS graph at each time is almost linear, implying a legitimacy
of the definition of CRiPS measure.

(2) Except for France, the almost linear CRiPS graphs are ordered from up to down in
the order of 2007.4, 2008.6, 2009.3, 2010.8, and 2011.12. This means that along
with these time points the slopes of the term structures of CRiPSs (TS-CRiPSs)
become steeper and the credit risks of these states worsened relative to those of
Germany. In case of France, the TS-CRiPS of 2009.3 is uniformly lower than that
of 2010.8 and so the credit of FGB is improved from 2009.3 to 2010.8.

(3) In each state the slope of the TS-CRiPS of 2011.12, which is the mid of the Euro
Crisis, is not only larger (in absolute value) than that of any other time but also it
jumps down significantly from the slope of the TS-CRiPS of 2010.8. In 2011.12
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Fig. 8 TS-CRiPSs of France, Italy, Spain and Greece in 2008.6, 2009.3, 2010.8 and 2011.12

the 8 year CRiPS of FGB is about −12 euros, while the 9 year CRiPSs of Italy
and Spain are respectively about −35 and −30 euros.

(4) In 2007.4, though the Italian CRiPSs are a bit negatively larger in the maturities
of longer terms, all the CRiPSs are rather close to 0 even in Greece, meaning no
significant credit differentiation at this time.

(5) In 2008.6 just before the subprime shock, the graph moves downward in each
state but not much, implying that credit risks of these states are slightly larger
than risk of Germany. For example, even the 10 year CRiPS of France is close to
−2 euros, while that of Italy is close to −5 euros

(6) But in 2009.3 of the financial crisis, it moves downward significantly in each
state. The 10 year CRiPSs of France, Italy, Spain and Greece are respectively
about −5,−12,−7.5 and −20 euros, far away from DGB-equivalents.

In Fig. 8, for each of 2008.6, 2009.3, 2011.12 and 2011.12 the TS-CRiPSs (term
structures of CRiPSs) of the Four States are plotted. This Fig directly compares the
differences of the TS-CRiPSs in each time.

In 2008.6 the TS-CRiPS of Spain is close and similar to that of France though the
latter is slightly and uniformly smaller in absolute value in the longer terms. On the
other hand, the TS-CRiPS of Greece is close and similar to that of Italy though the
latter is slightly and uniformly smaller in absolute value in the longer terms. Clearly
the CRiPSs of Italy and Greece are separately larger in absolute value than those of
France and Spain. This fact is probably related to the fact that the debt/GDP ratios of
Italy and Greece are larger. In 2009.3 the TS-CRiPS of Spain goes down away from
that of France and gets close to that of Italy and the 8.3 year CRiPS measure of Spain
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becomes about −7 euros. In 2010.8 the TS-CRiPS of Spain gets worse than that of
Italy and the 9.3-year CRiPS measure of Spain becomes about −16.5 euros, which is
significantly different from that of Germany. On the other hand, the 9-year CRiPS of
France is about −3.3 euros, though it gets worse in 2012.2.

In the next section these observations are substantiated by introducing CB-pricing
model and CRiPS measures are transformed into default probabilities of kGB(g)s.

5 Term Structures of Default Probabilities (TSDPs) of FGB, IGB, SGB
and GrGB

In this section we derive the (relative) TSDPs of each state up to 10 years via Kariya
(2013) model, and then compare their time series movements of the TSDPs over the
period 2007.4–2012.3. In Sect. 6 we will associate the TSDPs with the IR-differentials
and relate them to the Maastricht condition (5) in Sect. 2.

We first briefly review our model. In the same way as in the case of GB model
in Sect. 3, let Pk

g denote the kGB(g) price where time is fixed and let our model for
{Pk

g : g = 1, . . . ,Gk} with k = F, I, S and Gr be denoted by

Pk
g =

Mk (g)∑

j=1

C
k
g

(
skg j

)
D

(
skg j

)
, (5.1)

where {Ck
g(s

k
g j )} is the defaultable CFs of kGB(g), which is specified below, D(skg j ) is

an attribute-dependent stochastic discount function and skg j is the future time at which

the j th CF of kGB(g) is generated. Then by Dk
g(s) = D(s) + �k

g(s) as in (3.2), the
model is expressed as

Pk
g =

Mk (g)∑

j=1

C
k
g

(
skg j

)
D

(
skg j

)
+ εkg wi th εkg =

Mk (g)∑

j=1

C
k
g

(
skg j

)
�k

g

(
skg j

)
. (5.2)

It is noted that the mean discount function D(s) is common to all the kGB(g)s (g =
1, . . . ,Gk; k = F, I, S, Gr) because their prices are commonly denominated in euros.

For D(s), we use themean discount function D
D
(s) estimated by theDGBprices since

DGBs are regarded as the least risky GBs in our setting. A main feature differentiating

this model from the GB model in Sect. 3 is the CF function C
k
g(s

k
g j ) because the

scheduled CFs are not fully guaranteed when the issuer of the GB gets defaulted. Here
as expectations of investors, the CF at skg j is specified as

C
k
g

(
skg j

)
= Ck

g

(
skg j

) [
1 − pk

(
skg j

)]
+ 100γ k

[
pk

(
skg j

)
− pk

(
skg j−1

)]
, (5.3)

where pk(s) = P(τ k ≤ s) is the (accumulated) default probability up to time s with
τ k the default time of the kth state and γ k is an expected recovery rate when the issuer
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gets defaulted. We view this CF function as the expected future CF at each skg j that
acute investors form, by which we tacitly avoided the correlation problem between
default event and interest rates.

The first term of the right side in (5.3) is coupon times non-default probability and
the second term is the CF when the issuer gets defaulted within the period (skg j−1, s

k
g j ],

which is the principal 100 times the recovery rate γ k multiplied by the default prob-
ability in the period (skg j−1, s

k
g j ]. The TSDP of the kGB is given by the accumulated

default probability function pk(s) with 0 < s ≤ 10. For simplicity let pk(s) be
approximated uniformly by a polynomial of order q;

pk(s) = αk
1s + αk

2s
2 + · · · + αk

qs
q . (5.4)

In our analysis, taking the fact of small samples into account, we commonly assume
q = 5 based on the AIC and the average values of the minimized objective functions
of the Four States, though the AIC slowly decreases even after q = 5. Then inserting
(5.3) and (5.4) into (5.2) yields

yk = Xkβk + εk, (5.5)

for each state (seeKariya et al. 2012 for details),whereβk = (αk
1, . . . , α

k
q)

′ is estimated
by the GLS method. It is noted that the gth element of the explained vector yk turns
out to be the kth CRiPS measure;

ykg = Pk
g − P̂k/D

g with P̂k/D
g =

Mk (g)∑

j=1

Ck
g

(
skg j

)
D

D
(
skg j

)
. (5.6)

The covariance structure is similar to the GB model case in Sect. 3 though it contains
βk and is given in Appendix A. Clearly each TSDP is obtained through (5.4) by
estimating βk in (5.5) for each month.

In the sequel the recovery rate γ k is assumed to be zero because it is difficult
to identify it for each state and the assumption makes us lead to a common base to
compare the TSDPs over different states. In addition it is remarked that the actual
recovery rate of each state is not only different but also very uncertain and stochastic
at each time.

In Fig. 9 the TSDPs of each state are graphed, where the vertical axis is DP. From
these graphs it is observed:

(1) Though the levels of DPs {pk(s)} for each state are different where s =
1, 2, . . . , 10, the patterns of time path of each pk(s) over the sample period are
similar. All the DPs of the Four States are getting larger relatively to their past
DPs over the period.

(2) This implies that only Germany has a sound credit position over the period, which
was observed in terms of IR-differentials in Sect. 3 as well as P-differentials in
Sect. 4.
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Fig. 9 The TSDPs {pk (s) : s = 1, 2, . . . , 10} of France, Italy, Spain and Greece over the sample period
2007.4–2012.3
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(3) Overall the 8-year DP pF (8) of France takes 10.3 % at its maximum in 2012.1. In
2012.1 S&P downgraded the rating of 9 Euro GBs including FGB. It is noted that
FGBs of 10-year maturity disappear after 2010.3 and the FRBs of 9-year maturity
disappear after 2011.3 because their GBs are not available in the market.

(4) On the other hand, the 10-year DP pI (10) of Italy takes 37% at its maximum in
2011.12, the 10-year DP pS(10) of Spain takes 30% at its maximum in 2011.9
but the Greek case is as catastrophically large as 80%.

(5) Around the financial crisis period 2008.9–2009.3, the TSDPs {pk(s) : s =
1, 2, . . . , 10} shift above for each state k. But the effect is different among the
states and the local maximum of 10-year DPs pk(10)′s around that period is about
6% in France, about 13% in Italy, about 10% in Spain and about 20% in Greece,
the last of which is already the largest.

(6) In the sub-period 2007.4–2008.6, the 10-year DPs pI (10)’s of Italy are larger
than those of France and Spain, which will probably reflect the high debt/GDP
ratios of Italy even in the sub-period.

In Fig. 10 the time paths of 7-year DPs {pk(7)} and 5-year DPs {pk(5)} are graphed
for France, Italy and Spain. Here the scale of the vertical axis for DP is the same and
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Fig. 11 Graphs of pk (s) and δk (s) ≡ rk (s) − r D(s) for k = I,S and s = 3, 5, 7

so direct comparisons of the DP levels for each time can be made. Clearly from the
start of the Euro Crisis in 2010.3 the DPs of Italy and Spain deviate from those of
France rapidly and pI (7) and pS(7) reach such a large level as 30 and 25% at the end
of 2011, though the Italian DP pI (7) is deviating from that of the Spanish DP pS(7)
in 2011. On the other hand, the French DP pF (7) reaches 10% in 2011.12, implying
a large deviation from that of Germany.

In the next sectionwe relate these results onDPs to the results on the IR-differentials
and discuss on the Maastricht condition (5) in terms of DPs.

6 Default Probabilities (DPs), IR-Differentials and Maastricht Condition (5)

The relationship between the IR-differentials and the DPs is explored by regression
analysis in this section and the result is associated with theMaastricht condition (5) on
the IR-gaps for a new state to participate in the EEMU. The IR-differential of s-year
maturity between the k-IR and the D-IR is of course defined as rk(s) − r D(s), where
k = F, I, S and Gr.

In Fig. 11 the time series graphs of the IR differentials and DPs of Italy and Spain
among others are plotted for s = 3, 5, 7. It is observed that the IR differentials and the
DPs fluctuate together in every detail, though the fluctuations of the IR-differentials
may not be easily seen in details.

To relate the IR-differential with the DP, we regress pk(s) on δk(s) ≡ rk(s)−r D(s)
by the model over the period;
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Table 2 Results of regression analysis between the DPs {pk (s)} and the IR-differentials {δk (s) ≡ rk (s)−
r D(s)} for 2004.4–2012.3

β (t-value) α (t-value) adj R2

France 2yrs 2.001 (122.06) 0.00003 (0.76) 0.996

3yrs 2.936 (92.99) 0.00014 (1.43) 0.993

5yrs 4.830 (74.19) 0.00045 (1.75) 0.989

7yrs 6.642 (73.77) 0.00083 (1.99) 0.989

9yrs 8.440 (21.60) 0.00137 (1.34) 0.919

Spain 2yrs 1.908 (339.37) 0.00049 (5.72) 0.999

3yrs 2.784 (225.66) 0.00103 (5.33) 0.999

5yrs 4.675 (225.65) 0.00107 (3.16) 0.999

7yrs 6.199 (158.86) 0.00359 (5.57) 0.998

9yrs 7.747 (136.45) 0.00491 (5.24) 0.997

Italy 2yrs 1.904 (297.66) 0.00041 (3.70) 0.999

3yrs 2.733 (168.47) 0.00268 (9.18) 0.998

5yrs 4.440 (181.03) 0.00292 (6.56) 0.998

7yrs 6.089 (142.95) 0.00289 (3.85) 0.997

9yrs 7.206 (85.37) 0.01311 (8.92) 0.992

Greece 2yrs 1.009 (35.24) 0.03599 (4.68) 0.955

3yrs 1.475 (29.82) 0.04785 (4.93) 0.938

5yrs 2.636 (33.80) 0.04906 (5.24) 0.951

7yrs 3.248 (25.82) 0.07019 (5.45) 0.919

9yrs 5.204 (41.15) 0.04591 (5.75) 0.969

pk(s) = αk(s) + βk(s)[rk(s) − r D(s)]

for each state k = F, I, S, Gr, where s = 2, . . . , 9. The result is summarized in Table 2,
where the analysis is based on% unit. Not only all the t-values of the coefficients
βk(s)’s are very significant but also the adjusted R2 ’s are all more than 0.9. In fact,
except for the cases of the 9-year French DP pF (9) and Greek DPs, all the adjusted
R2 ’s are more than 0.989, showing the strongly linear relationships between the IR-
differentials and the DPs. In particular, the linearity is very strong in the cases of Italy
and Spain. In addition, all the βk(s)’s are greater than 1 and increasing in s = 2, . . . , 9
for each k, which implies that the larger the maturity of the IR-differential, the lager
the magnifying regression coefficient βk(s) is. The constant terms αk(s)’s are very
small but they are all significant in t-values except for the France models.

Using the almost perfect linearity, the IR-differential δk(s) ≡ rk(s) − r D(s) is
expressed as

rk(s) = r Dk (s) + λk(s)pk(s) − κk(s)

� r D(s) + λk(s)pk(s)

whereλk(s) = 1/βk(s) and κk(s) = αk(s)/βk(s) � 0.Henceλk(s)pk(s) corresponds
to the IR-differential relative to the German IR r D(s) for each s.
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Now in the Maastricht condition (5) on IR-differential requires that a new state
that intends to participate in the EEMU is required to meet the condition that its IR-
differential of 10-year maturity compared to the average of the lowest three 10-year
IRs in the EEMU is less than 2%. In this paper the average rate is regarded as the
D-IR and we substitute the 10-year rate rk(10) by rk(9). Then since λk(s)pk(s) is the
IR-differential, the c% rule is

λk(s)pk(s) ≤ c% or equivalently pk(s) ≤ cβk(s)%.

Thus the default probability should be less than or equal to cβk(s). If c = 2, k = I
and s = 7, then β I (9) = 7.2 and so cβ I (9) = 2 × 7.2 = 14.4, implying that the DP
pI (9) should be less than 14.4%. However, in case of Italy DP(7) goes over 30% in
2011 and so the condition is not satisfied. Also in case of Spain DP(7) goes far over
the threshold required in the Maastricht condition.

It is remarked that the linear relationship does not accidentally hold but can be
shown to hold structurally in the relation of the bond pricing model in Sect. 3 and the
credit risk model in Sect. 5 though we do not show it here. In other words, the credit
risk measures of the DP and the IR-differential are almost equivalent.

7 CDSs and DPs: Effectiveness of Our DP Measures

As is well known, a CDS here is the credit derivative which pays its holder the GB
principal in US dollars when the issuer of the GB gets defaulted. Note that the issuers
of CDSs are investment bankers, hedge funds, insurance companies, etc. and hence
they may be different from bond investors. In this section, to show the effectiveness of
the DP measures and related analyses in this paper, we associate our DP measures of
each maturity for each state with the CDSs of the samematurity for the same state. For
this purpose we regress CDS prices (premiums) on levels of DPs and slopes of TSDPs
derived in Sect. 5 and show that CDS prices are well explained by those variables.

Let kCDS( j) variable denote the CDS price (premium) for the kGB of j-year
maturity and let kDP( j) variable be the DP of the k-state up to j years where k=F,
I, S. Our base model is the following regression model that explains kCDS( j) by
kDP( j);

Model O kCDS( j) = αk( j) + βk
1 ( j)kDP( j) + εk( j),

which we call Base Model O.
The regression results for the FCDS, ICDS and SCDS are given in Table 3, where

the sample period is 2009.1–2012.3. The results show:

(1) Except for the case of ICDS(10) all the regression coefficients are significant and
the longer the maturities are, the less the coefficients and the larger the t-values
are.

(2) Except for the cases of ICDS(10) and ICD(3), all the constant terms are significant
and decreasing along the period of maturities.
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(3) In the cases of ICDS( j), j = 4, 5, 7, 10 and SCDS( j), j = 4, 5, 7, the adjusted
R2’s are greater than 0.9 and so in these cases each kDP( j) derived from GB
prices will be in a good correspondence with the corresponding kCDS( j) in the
derivative market for each time.

(4) In the case of the FCDSs, the adjusted R2 of FCDS(1) is the lowest as 0.7, the
worst even in all the states, and the other adjusted R2’s are larger than 0.8.

(5) In the case of the ICDSs, the adjusted R2’s are increasing from R2(1) = 0.77 to
R2(7) = 0.95 but in the case of ICDS(10), R2(10) = 0.92, the constant term is
negative and its t-value is insignificant.

(6) In the case of the SCDS, the least adjusted R2 is 0.84 for SCDS(1) and ismonoton-
ically increasing up to 0.95 for SCDS(7). This case will be the best case among
the three states so long as the base model is concerned.

Summarizing the results, the Base Model will be satisfactory for explaining CDSs
by corresponding DPs except for FCDS(1) and ICDS(1).

Next we will improve on the above results by introducing the slope variables of
TSDPs into the BaseModel, where the slope is measured by the difference of two DPs
in the curve of each TSDP. Among others, we consider the three models:

A kCDS(s) = αk(s) + βk
1 (s)DPk(s) + βk

2 (s)
(
DPk(5) − DPk(2)

)
+ εk(s)

B kCDS(s) = αk(s) + βk
1 (s)DPk(s) + βk

2 (s)
(
DPk(9) − DPk(5)

)
+ εk(s)

C kCDS(s) = αk(s) + βk
1 (s)DPk(s) + βk

2 (s)
(
DPk(9) − DPk(2)

)
+ εk(s)

Model A uses the slope (DPk(5)− DPk(2))/3 of the kth TSDP between 5-year term
and 2-year term though 1/3 is absorbed into βk

2 (s). Similarly Model B and Model C
use the slopes (DPk(9) − DPk(5))/4 and (DPk(9) − DPk(2))/7 of TSDPs respec-
tively for Italy and Spain, but (DPk(8) − DPk(5))/3 and (DPk(8) − DPk(2))/6
of TSDP respectively for France due to the lack of FGBs with maturity more than
8 years.

In Table 4 the empirically best models in adjusted R2 among Models A, B and C
are selected for each kCDS. First note that except for ICDS( j), j = 1, 2, 3, all the
coefficients of βk

1 ( j)’s are significant, implying the importance of the level variables
of DPs.

The results are summarized;

(1) In the case of France, Model A improves Model O significantly for FCDS( j),
j = 1, 2, 3, none of the three models cannot improve it for FCDS( j), j = 4, 5
and Model C improves it for FCDS(7) in adjusted R2 with the t-value of βF2(7)
significant. In the case of FCDS(1) the adjusted R2 changes from 0.7 to 0.9 when
the slope variable is added to Model O. In Fig. 12 the improvement is visualized.

(2) In the case of Italy,Model A improvesModel O for ICDS( j), j = 1, 2, 3, 4. But
the t-values of β I

1 ( j)’s with j = 1, 2, 3 become less than 2, though we keep the
DP( j) variables in our basic viewpoint. In Fig. 12 the improvement is visualized
for ICDS(1), where the adjusted R2 changes from0.77 to 0.87. On the other hand,
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Table 4 Best regression results for France, Italy and Spain among Models A, B and C

France β1 β2 const adjR2
0.707 0.195 0.237
(6.46) (9.05) (8.30)
0.559 0.138 0.269
(5.80) (3.65) (8.15)
0.348 0.154 0.270
(3.27) (2.17) (6.00)
0.484 -0.028 0.287
(4.28) (-0.52) (5.01)
0.529 -0.123 0.286
(5.18) (-1.83) (4.98)
0.632 -0.387 0.273
(5.70) (-3.42) (3.88)

Italy β1 β2 const adjR2
0.121 0.330 -0.124 France
(0.82) (5.64) (-0.80) FCDS(1) A A
0.101 0.300 -0.022 FCDS(2) A A
(1.23) (4.91) (-0.18) FCDS(3) A A
0.098 0.265 0.040 FCDS(4) O A
(1.47) (3.69) (0.36) FCDS(5) O O
0.205 0.117 -0.103 FCDS(7) C O
(8.56) (2.37) (-0.56) O
0.179 0.075 0.185
(9.32) (1.57) (1.06)
0.163 -0.012 0.394
(9.73) (-0.23) (2.23)
0.164 -0.071 -0.010
(6.73) (-0.85) (-0.05)

FCDS(1)A 0.906

FCDS(2)A 0.903

FCDS(3)A 0.861

FCDS(4)A 0.859

FCDS(5)A 0.880

FCDS(7)C 0.866

(3.07)
0.115
(2.66)

(3.46)
0.063
(2.23)

ICDS(1)A 0.877

ICDS(2)A 0.905

ICDS(4)A 0.935

     Summary of Mode  Selec�on
for CDS & DP Rela�on

ICDS(10)A 0.916

ICDS(3)A 0.917

ICDS(5)A 0.946

ICDS(7)A 0.949

ICDS(3)
ICDS(4)

Spain β1
0.200
(4.70)
0.103

SCDS(1)A

SCDS(2)A

SCDS(3)A

SCDS(4)A

SCDS(5)A

SCDS(7)A

0.088
(2.67)
0.127

0.102
(1.12)

Italy
ICDS(1)
ICDS(2)

ICDS(5)
ICDS(7)

ICDS(10)

β2
0.137
(8.12)
0.171
(8.22)
0.207
(7.18)
0.200
(4.53)
0.153
(2.22)

const
0.482
(9.22)
0.399
(7.39)
0.332
(5.72)
0.362
(5.51)
0.386
(5.14)
0.333
(4.44)

Spain
SCDS(1) A
SCDS(2) A
SCDS(3) A
SCDS(4) A
SCDS(5) A
SCDS(7) O

el

0.955

adjR2

0.943

0.951

0.955

0.959

0.959

The models with shadows are not significant in the t-values of slope coefficients βk
2 (s)

none of the three models improve Model O significantly for ICDS( j), j =
5, 7, 10 in terms of t-values of β I

2 ( j) or adjusted R2.
(3) In the case of Spain, Model A improve Model O for SCDS( j), j = 1, 2, 3, 4, 5

but not for SCDS( j), j = 7.

Overall, for CDSs of shorter terms the base models are improved by introducing
the slope variables of the TSDPs. The slope (DPk(7) − DPk(2))/5 of the full
TSDPs makes an improvement on Base Model O of FCDS(7), while the shorter slope
(DPk(5) − DPk(2))/3 of TSDPs on Base Models of FCDS,ICDS and SCDS. From
the significance of t-values for the slope variables and adjusted R2, we summarize our
model selection in the south-east corner of Table 4 where the DP variables are kept in
the models even if the t-values are insignificant as in ICDS( j) with j = 1, 2, 3.

It is noted that CDS markets exist as derivative markets for GBs and so they are
closely related. But the players who form or quote CDS prices are not necessarily
investors in the GB markets and GDS markets are rather smaller. Taking into this
point account, our empirical result that the variations of DP( j) variable and CDS( j)
variable are synchronizedwill imply that ourmethod andmodel of deriving TSDPs are
effective to a large extent. And the results will be used for making a certain decision
on pricing CDSs and including CDSs for risk management in bond portfolios.

In Fig. 12 the graphs of FCDS(1)A, ICDS(1)A and SCDS(1)A show the improve-
ments by introducing the TSDP slope variables in addition to the DP level variables,
where the adjusted R2’s significantly increase.
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Fig. 12 CDSs are regressed on levels and slopes of TSDPs. In FCDS1 and ICDS1, the values of Model O
and Model A with Observed values are plotted

It is remarked that the results on the high adjusted R2’s in Table 4 are overall results
for the total period and may not be as effective as the apparent high numbers. In fact,
the fluctuations in the graphs include a big trendy mountain (Euro Crisis) that may be
under a long cycle as in Fig. 12. Hence so long as the regression models pick the big
movements, the adjusted R2’s tend to be large. But this is a limitation of regression
analysis itself and the results will still show the co-movements of the CDSs with the
levels of theDPs and the slopes. In time series context theCDS,DP and Slope variables
may be co-integrated to a certain degree, though we do not here explore for it. Note
that the DPs and Slopes data are cross-sectionally derived data by our model.

8 Conclusion

We made a comprehensive credit risk analysis on FGB, IGB, SGB and GrGB via
the IR-differentials, the GB price differentials, and the DPs in comparison with DGB
where the sample period was 2007.4–2012.3. First after making some discussions and
observations on the business cycles of the Five States and the Maastricht convergence
condition of IRs, we derived the TSIRs via the bond-pricingmodel inKWWDY (2012)
and compared them. In association with the budgetary conditions and business cycles
of the Five States, we found that (a) in the sub-period 2007.4–2008.6 the TSIRs of the
Five Statesmoved together at almost same levels,meaning that no credit differentiation
was found in the IR-differentials, (b) in the sub-period 2008.7–2010.3 all the IRs
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tended to decrease gradually as downward trend movements but their IR-differentials
exhibited some credit differentiation, (c) in the sub-period 2010.4–2011.12 the IR-
differentials tended to diverge and (d) after that they tended to get stabilized gradually.
Though the F-TSIRs moved together with the D-TSIR before the Euro Crisis, then
they deviate. This deviation would have made the role of the German Government
more important for the stability of the EEMU.

Secondlywe proposedwhatwe call CRiPSmeasure, whichmeasures directly credit
risk via the P-differential between a given GB and DGB-equivalent in terms of euros.
The CRiPS measure is model-free once the mean discount function of Germany is
estimated. In our empirical analysis the 10-year CRIPSs of Italy and Spain in the mid
of the Financial Crisis 2009.3 were respectively about −10 euros and −7 euros, but
in the mid of the Euro Crisis 2011.12 they jumped down to about −35 euros and
−30 euros. Since the CRIPS measure is additive, it can be used to measure credit risk
volume (in euros) of a bond portfolio.

Thirdly the TSDPs of the Four States were derived via CB-pricing model in Kariya
(2013) and compared. Themodel enabled us to transform the term structures ofCRiPSs
into TSDPs, and it turned out that the 10-year CRiPSs of Italy and Spain in 2011.12
respectively corresponded to about 35 and 30% where the recovery rate was assumed
to be zero. In addition we substantiated the observations on the credit differentiation
obtained through our TSIR analysis in terms of the DPs. Also it was observed that
the Financial Crisis did not affect the DPs of France, did increase the DPs of Italy,
Spain and Greece to the levels of 6, 10 and 20% respectively, but after that their DPs
decreased. The time seriesmovements of the TSDPs of the Four States were associated
with business cycles, Financial Crisis and Euro Crisis.

Fourthly the time series relationships between the IR-differentials and the DPs
of each maturity were shown to be strongly linear by our regression analysis, which
enables us to convert the IR-differentials into the DPs for eachmaturity and vice versa.
Consequently the Maastricht convergence condition can be stated in terms of the DPs.
It was observed that Italy, Spain and Greece did not meet the required condition in
the period of the Euro Crisis though they are the members of the EEMU, creating the
instability of the EEMU system that was an economic concern in the global world.
But an explicit solution that President Van Rompuy (2012) planned for a genuine
integration of the EEMU will stabilize the EEMU.

Finally we made compared the CDS prices of each maturity to our TSDPs by term
series regression and found that the CDS prices were well explained by the DP levels
and the slopes of TSDPs. Since the CDS prices are formed in a different market by
different players, this result will show that our approach and model to deriving the
TSDPs are effective. In addition the regression model will enable us to use for trading
CDSs.

Overall, our empiricalmodel analysis on credit risks of themain states of the EEMU
will be effective and the results therein will be useful for decision making in credit
investment and risk management.
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Appendix A

A. Covariance structure of kGB prices in (5.2) with CFs in (5.3) . Assuming the
covariance structure in (3.5) for the stochastic discount function yields

Cov
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εkg, ε

k
h

)
=

Mk (g)∑
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Mk (h)∑
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k
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(
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k
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skhm : βk
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k
gh, (8.1)

where λkgh is the same as the one in (3.5) and similarly to (3.7)
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Mk (h)∑
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k
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(
skg j : βk

)
C
k
h

(
skhm : βk
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. (8.2)

However a significant difference is that this covariance matrix depends on the
unknown regression parameters βk to be estimated. Of course our objective function
to be minimized is of the same form as (3.10);

ψ(βk, ρk, ξ k) = [yk − Xkβk]′[�(βk, ρk, ξ k)]−1[yk − Xkβk] (8.3)

where the covariancematrix is replaced by thematrix ((σ k)2λkghϕ
k
gh) in (8.1). To get an

approximate minimize, the GLS is applied in a repeatedmanner. In fact, we set βk = 0
as the initial value in the covariance matrix (8.1) to obtain the first GLS estimate β̂k(1)
by minimizing (8.3). Next we insert β̂k(1) into (8.1) and get the second GLS estimate
β̂k(2). Repeating this procedure five times yields our GLS estimate the coefficients
β̂k(5) of the TSDP in (5.4). The minimized value is ψ̂k = ψ̂(β̂k(5), ρ̂k, ξ̂ k).
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