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Abstract Accurate property valuation is important for property purchasers, investors and
for mortgage-providers to assess credit risk in the mortgage market. Automated valua-
tion models (AVM) are being developed to provide cheap, objective valuations that allow
dynamic updating of property values over the term of a mortgage. A useful feature of auto-
mated valuations is to provide a region of plausible price estimates for each individual
property, rather than just a single point estimate. This would allow buyers and sellers to
understand uncertainty on pricing individual properties and mortgage providers to include
conservatism in their credit risk assessment. In this study, Conformal Predictors (CP) are
used to provide such region predictions, whilst strictly controlling for predictive accuracy.
We show how an AVM can be constructed using a CP, based on an underlying k-nearest
neighbours approach. Time trend in property prices is dealt with by assuming a systematic
effect over time and adjusting prices in the training data accordingly. The AVM is tested
on a large data set of London property prices. Region predictions are shown to be reliable
and the efficiency, ie region width, of property price predictions is investigated. In particu-
lar, a regression model is constructed to model the uncertainty in price prediction linked to
property characteristics.
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1 Introduction

Automated valuation models (AVMs) have been developed by both banks and specialist
analytics companies, such as the members of the European AVM Alliance. They provide
computer-generated valuations of property prices at an individual property level. Such val-
uations are essential to both buyers and sellers of properties and mortgage-providers who
need to determine value of collateral on a mortgage. Traditionally, property valuations have
been conducted by trained surveyors. However, if AVMs are developed with sufficient
accuracy they may be cheaper, faster, more objective and more transparent than human
surveyors. There is a parallel with the advent of credit scoring which automated lending
decisions, traditionally made by bank managers. Because AVM estimates are cheap and
fast, this would allow estate agents and mortgage-providers to dynamically update the value
of a property. Through the lifetime of a mortgage, this would help the mortgage-provider
assess risk and provide improved customer service facilites, such as re-mortgaging. There
are many other possible uses of AVMs, such as portfolio valuation and fraud or negligence
detection. They are already being used increasingly in property markets internationally; eg
in the UK, they are applied in an estimated 30 % of mortgage originations [6, 7].

Typically, AVMs are developed as segmented models using a nearest neighbours
approach, based on a rich data set of past house prices and variables such as:

– Property characteristics (eg size, number of rooms, garden, view from balcony);
– Local environment (eg schools, transportation, local services);
– Historic prices and economic conditions.

Statistically, the AVM problem is a regression problem and the goal of the AVMs is to
produce the most accurate predictions of individual property prices when contrasted against
actual purchase prices in the future. One of the earliest published models of house price
is based on the Boston Housing data, published in 1978, linking house price to property
features (number of rooms and age), neighbourhood features (such as social status and crime
rate), accessibility and air pollution measures [8]. Using linear regression, this study found
that, in particular, controlling for this wide range of variables, there remains a negative
association between air pollution levels and house price.

Although AVMs primarily produce point estimates of price, it is also useful to have a
measure of confidence in the estimates. In particular, an AVM that can output a prediction
interval would be very useful for the following reasons.

1. They would allow us to understand the overall accuracy of the AVM. Indeed, particu-
lar property segments for which the AVM generates broad prediction intervals would
suggest areas for which the AVM could be improved in future model development.

2. At the individual property level or segment level, they allow us to understand which
properties are harder or easier to price. This could be practically useful since it would
suggest difficult properties that should be followed-up with detailed manual surveying;
whilst the properties for which the AVM generates a sufficiently narrow prediction
interval, would not need to be followed-up.

3. They would enable mortgage-providers to take conservative lower bound estimates of
future property prices.

For prediction intervals to work well, we need to ensure that they are reliable, in the
sense that with a certain probability, the actual purchase price will be within the predic-
tion interval. Traditional statistical methods based on classical and Bayesian approaches
can be used. However, both frameworks rely on making strong underlying distributional
assumptions about the data, to derive reliable prediction intervals. An alternative machine
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learning methodology is the conformal predictor (CP). This algorithm will generate pre-
dictive intervals, or more generally, region predictions that are guaranteed to be reliable
at any user-defined confidence level, in both a transductive and inductive setting [13]. The
only distributional assumption they make is that the data is exchangeable, of which inde-
pendent and identically distributed (iid) is a special case. The user of the CP can choose any
confidence level. However, the consequence of higher confidence levels are broader region
predictions. Hence an important second performance measure for AVMs outputting region
predictions is the region size, or inefficiency, of the predictions. The narrower these are, the
more useful, precise and efficient the AVM. An additional quality of CPs is that they are
constructed as wrappers over existing machine learning or statistical point estimates. So, if
an AVM has already been built that produces good point predictions of price, then the CP
can be wrapped around it, to convert it into a reliable region predictor and the CP will draw
on the power of the existing AVM to produce efficient predictions. CPs have been applied
in many application domains, such as cancer diagnosis, biometrics, anomaly detection and
network traffic classification [3] and have been developed for both classification and regres-
sion. CP for regression has been applied to the Boston Housing data [11], but the focus of
that study was to show that regression CP performs well and reliably with respect to several
different application areas. In contrast, the aim of this study is to investigate whether CPs are
useful specifically in the domain of AVMs for prediction of individual property price. For
that reason, the Boston Housing data is not quite appropriate since the outcome variable is
the aggregate log median house price for metropolitan areas of Boston, rather than individ-
ual house price, and the sample size is small (506 examples). Instead we apply the method
to a recent, large data set of individual property prices in London, as described below.

For property price prediction, there is a clear problem when estimating and predicting
time trends in price movements. This is a problem for any AVM but especially so for CP
since it violates the exchangeability assumption. In this study, this problem is addressed
firstly by assuming a single systematic effect for price movements over time, secondly,
adjusting prices in the model training data set by an estimate of price changes up to the time
of the predicted property price(s), then, thirdly, allowing for uncertainty in forecast price
changes by generating region predictions which are unions of region predictions for a range
of possible price changes. This is explained in detail in Section 2.4.

The data used in this study are property transactions for London and its suburbs, derived
from the Land Registry (UK), which is supplemented by geographical data on railway and
tube stations and deprivation data. This is sufficient to demonstrate the use of CP with AVM
as a proof-of-concept. However, without detailed property characteristics, which are not
available publicly, the output of this study is not immediately of practical value. However,
with the inclusion of such data, this study demonstrates that CP could produce reliable
region predictions of property prices. In Section 2, the CP is described in more detail, along
with the underlying weighted k-nearest neighbours algorithm that will be used as the basis
of the model. Specific issues applying CP to AVM are also discussed. In Section 3 we
describe the data and Section 4 presents results that show that the AVM-CP is reliable and
investigates segments of inefficiency amongst the predictions. Finally, Section 5 presents
some final conclusions and ideas for further work.

2 Methodology

Consider n examples. Let xi denote a vector of predictor variables and yi a real number
outcome variable for each example i ∈ {1, · · · , n}. For this paper the outcome is log of
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price. Log price is used since the distribution of property prices is typically right skewed
and the log allows property price movements over time to be expressed by additive terms,
rather than % change.

2.1 k-nearest neighbours for regression

Typically the base predictive algorithm for AVM is k-nearest neighbours (k-NN) for regres-
sion. Define a distance metric between examples, d. For a new example given as xnew, let
n(j) denote the index of the j th nearest neighbour to xnew from a pool of n training exam-
ples, based on the distances d(xnew, xi ) for i ∈ {1, · · · , n}. Then the predicted outcome for
xnew is the weighted mean of outcomes of the k nearest neighbours:

ŷ =
∑k

j=1 wjyn(j)
∑k

j=1 wj

. (1)

Training examples with similar distance to the new example should naturally have similar
weights and the further away a training example, the less weight it will have, hence a good
choice of weight is

wj = exp
(−λd

(
xnew, xn(j)

))
(2)

where λ ≥ 0 is a user-defined decay parameter. For an examination of distance-weighted
k-NN, see [10]. The usual Euclidean distance metric is used for this study:

d
(
x, x′) = √||x − x′||2. (3)

It can be shown that k-NN converges to no more than two times the optimal Bayes error
rate as n → ∞ [4]. However, k-NN is sensitive to the scaling of predictor variables and
to achieve optimal solutions for small sample size, rescaling of the predictor variables is
advisable prior to computation of distances. A simple approach is to normalize all predictor
variables to have variance 1. However, in this study the method successfully applied by [9]
is used: a linear regression model is developed using predictor variables xi and outcome
variable yi for training data i ∈ {1, · · · , n}, then the magnitude of coefficient estimates
from this model are used to rescale predictor variables in k-NN.

Since this study uses a large data set of housing data, an efficient implementation of
k-NN is required, using kd-trees and approximation methods [2]. In particular, the RANN
package is used in the R statistical programming language.

2.2 Inductive conformal predictors for regression

Conformal predictors (CP) are a class of machine learning algorithms that can produce pre-
dictions in the form of regions which are sets of possible outcomes. For regression, the
region will typically form a prediction interval. They have the important property that they
are reliable in the sense that accuracy of prediction is precisely bound by a user-defined
confidence level. CPs are usually constructed on the basis of existing machine learning
algorithms that output point predictions without reliability. Although CPs were initially
proposed for the online learning setting, for this study an inductive setting is required,
hence reliability of CPs is expressed for the inductive conformal predictor (ICP) learning
environment, as follows:-

1. Let examples 1 to l − 1 represent a proper training set, for some l < n;
2. Let examples l to n represents a calibration data set;
3. Let new examples n + 1 to n + m represent a test set of size m.
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Use the proper training set to construct a statistical model or decision rule D. Given a new
example x, D(x) will output a point prediction of outcome. Then, for a given confidence
level 1 − ε, define the region prediction for each test example n + h as

Rh =
{

y ∈ R : |{i ∈ {l, · · · , n} : αi ≥ αn+h}| + 1

n − l + 2
> ε

}

(4)

where

αi =
{

A(D(xi ), yi) if i ≤ n,

A(D(xi ), y) if i > n
(5)

and A is a non-conformity measure (NCM) which expresses how strange the second
argument is in relation to the prediction made by D.

Then, assuming that the data are exchangeable, the events that the true outcomes are in
the regions, ie yn+h ∈ Rj , are independent binomial events with probability

P(yn+h ∈ Rj ) ≥ 1 − ε. (6)

It is this property that demonstrates the reliability of CP; in particular, conservative validity.
See [13] for proof.

For this study, we use the following NCM:

A(ŷ, y) = |y − ŷ|
ŝ + r

(7)

where ŝ estimates the standard deviation of the prediction made by D and r ≥ 0 is a
user-defined parameter, following [11]. The numerator measures the disparity between the
prediction and proposed value y, but this is relative to the standard deviation of the predic-
tion given as the denominator. This is because we want to measure high non-conformity
when the proposed value is far from the typical range of the predicted value. The parameter
r controls the importance of the standard deviation, with larger values of r indicating that
the standard deviation is less useful in the NCM. It follows that

Rh = [ŷh − γ (ŝh + r), ŷh + γ (ŝh + r)] (8)

where γ is the (1− ε)-quantile of the empirical distribution of the NCMs on the calibration
data set, ie αl, · · · , αn [11].

For this study, the NCM is based on k-NN so ŷh is computed using formula (1) and ŝh is
computed by a corresponding weighted sample standard deviation

ŝ =
∑k

j=1 wj(yn(j) − ŷ)
2

∑k
j=1 wj

. (9)

For AVM, this proposed NCM can be interpreted as follows: the further the proposed price
y is from that predicted by k-NN, the higher its non-conformity measure, but this is relative
to the range of prices offered by the k nearest neighbours. Informally, a prediction based
on a large range of underlying prices would accept a larger range of proposed prices to be
conformal.

2.3 Performance measures

For regression algorithms outputting point estimates, root mean square error (RMSE) is
typically used as a performance measure. However, region predictions are different since
error is indicated by whether the true outcome is in the region prediction or not. In particular,
the performance of CP is measured for reliability and efficiency.
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Reliability ensures that the CP is behaving according to the theory. This is necessary not
only to test for coding errors but also to check the exchangeability assumption for the
data. Accuracy on the test set is given by

Acc = 1

m

m∑

h=1

I (yn+h ∈ Rh) (10)

Following (6), if Acc ≥ 1−ε then the CP is exhibiting reliability. If Acc < 1−ε, then we
can perform a binomial test with null hypothesis that Acc follows a binomial distribution
with probability at least 1 − ε.

Efficiency measures how useful the prediction is. The narrower the region, the more pre-
cisely the prediction tells us about the true outcome. Hence region size is a good measure
of inefficiency. In this study, the region is an interval Rh = [ah, bh] for some ah and bh,
in which case the inefficiency is given as bh − ah and inefficiency on the test set is

Ineff = 1

m

m∑

h=1

(bh − ah). (11)

2.4 Handling price changes over time

Property prices are prone to strong movements over time and this needs to be factored into
the analysis. Indeed, from 2013 to 2014, property prices in London generally increased by
11 %. In particular, CP relies on data being exchangeable and price changes over time will
violate this assumption. This problem is dealt with by supposing a single systematic factor
that is contributing equally to general property prices in London. This factor takes into
account general economic and market conditions over time. Let pt be price at time t for
any particular property and s(t, t ′) represent systematic price change from time t to t ′, as a
fraction. Then price change is expressed as

pt = pt ′(1 + s(t, t ′))ε (12)

where ε > 0 is an idyiosyncratic factor for the particular property. Working with log prices,
the systematic term becomes the additive term

s∗(t, t ′) = log (1 + s(t, t ′)) (13)

which can be estimated from training data using linear regression. A linear term can be
used to model s∗ and tested to check whether non-linearity is required. Additionally, this
systematic term can be extrapolated forward so that an estimate of s∗(t, t (test)) is computed,
where t (test) is the time at which prices in the test set need to be forecast. Then each log price
in the training and calibration data is adjusted by an additive term s∗(ti , t (test)) to create the
outcome variable, where ti is the time at which the price for example i was observed. Once
all the data, training, calibration and test, have a common time reference for the log price
outcome variable, the data can reasonably be assumed to be exchangeable.

The assumption of a single systematic effect is realistic since property price movements
will generally have a common trend. Many property price movements will be the result of
idiosyncratic factors, such as ageing of property and renovation. However, these idiosyn-
cratic factors would be additional conditions we would expect the model to account for
through the ε error term. On the other hand, there will be other systematic factors affecting
price increases for different groups of properties: eg different localities will have some-
what different price movements, or different types of property (eg semi-detached) may be in
more demand than others. Handling these factors would be the topic of an extended study,



Reliable region predictions for automated valuation models 77

using expert knowledge of property price movements. The use of a single environmental
systematic factor mirrors the use of the one-factor model approach in credit risk [12].

The estimation of the systematic term over the period of the training data should be
accurate since it is an in-time estimate. However, the estimation over the period from the
end of the training data and the test data is less reliable. This period is likely to be long
(ie several months) because of the delay in reporting property sale transactions. The source
of this estimation can be based on past estimates of property price changes, but should be
supplemented by expert jugement. However expert judgement can vary and with property
price forecasting it usually does. Therefore, in this study, the approach taken is to allow
multiple estimates of s∗(t(train), t (test)) where t (train) is the last date in the training data and
from these construct bounds l ≤ s∗(t(train), t (test)) ≤ u that we believe with near certainty.
Then consider all CP built with an additive adjustment on log prices yi of s∗(ti , t (train)) + e

for all e ∈ [l, u]. Using k-NN for regression as NCM, as defined in Section 2.2, this implies
that ŷ changes by an additive amount e, relative to the prediction given with data adjusted
just to time t (train), whilst ŝ remains unchanged for all e. Therefore, we define the union

R∗
h :=

⋃

e∈[l,u]
Rh,e = [ŷh + l − γ (ŝh + r), ŷh + u + γ (ŝh + r)] (14)

where Rh,e denotes region Rh from (8), constructed with price adjustment e. Since the true
price change must be one of these regions, for adjustment e′ say,

P(yn+h ∈ R∗
h) ≥ P(yn+h ∈ Rh,e′) ≥ 1 − ε (15)

from (6). Therefore R∗
h is a conservative region prediction and is used as the region

prediction in this study.

2.5 Analysing region inefficiency

Each test example will have its own individual inefficiency. It would be useful to know the
drivers of inefficient predictions, firstly, because this would give insight into which proper-
ties have unclear pricing (and which are more stable), and also would suggest segments of
the data that require better modelling. This information can be used to direct future model
development. This analysis can be conducted by taking individual inefficiency as given in
Section 2.3, bh − ah, as the outcome variable, using linear regression against the predictor
variables.

2.6 Experimental procedure

We follow this experimental procedure:

1. Extract a training/calibration data set TC and a test data set Test from the property
data set, such that there is a realistic delay period between the two data sets.

2. Model price trend function s∗ over period of TC.
3. Compute lower and upper bounds on s∗ over period between TC and Test, based on

minimum and maximum price changes within extended property price data.
4. Adjust prices in TC by the estimated s∗ function as described in Section 2.4.
5. Use linear regression on TC to estimate coefficients for rescaling variables in the

distance metric d.
6. Find optimal hyperparameters k and λ on TC using grid search, with RMSE as

performance measure.
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Fig. 1 London house prices;
source: Acadata

7. Geographical location will be included in the distance metric d, but cannot be included
in step 5, hence use grid search to find optimal rescaling, with RMSE as performance
measure.

8. Randomly sample TC into separate training, calibration and test data sets. Use this
with settings from steps 5 to 7 to perform a grid search to find optimal value of r in
the NCM formula (7), with efficiency as performance measure and a fixed confidence
level (0.9).

9. Randomly sample TC into separate training, Train, and calibration, Cal, data sets.
10. Run ICP with training and calibration data sets, Train and Cal, to extract region pre-

dictions on test set Test. Report final performance on Test and use linear regression
to analyse inefficiency as described in Section 2.5.

3 Data

Residential property price data for England are made publicly available by the Land Reg-
istry in the UK and was originally sourced as part of a Kaggle competition to predict
London house prices, along with locations of London tube and railway stations. This has
been augmented by local deprivation data.

The Property Price data consists of details for property sales in and around London over
the period 2009 to 2014. Along with the sale price and transaction date, other data is also
provided about the property: whether new build, whether free- or leasehold and geograph-
ical information this includes grid reference and Lower layer Super Output Areas (LSOA)
which are small regions defined in England by the Office of National Statistics. For this
study we aim to predict prices in April 2014 (22,145 records). Knowing that there is up to
a 3-month delay between completion of transaction and publication by Land Registry, we
use a 3-month delay between TC and Test, hence our training/calibration data is taken
from 2013 (302,978 records). The Land Registry data has been summarized by Acadata,
LSL Property Services Ltd, and Fig. 1 gives a summary of log mean price over the period
of interest, 2013 to early 2014.

The stations data set lists all London stations, along with whether they are tube or railway,
along with geographical location. Station data is joined with property transaction data by
finding the two nearest stations to each property, based on geographical location and using
the nearest neighbours algorithm.

A rich source of deprivation data is publicly available as official statistics from
www.gov.uk and is based on census information. This study uses the English indices of
deprivation 2010 which measures relative levels of deprivation at LSOA level. The associ-
ations between levels of deprivation and property price will be used to develop improved
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Table 1 Summary statistics for TC and Test data sets

Variable Training/calibration Test data

summary summary

Log(price) 12.55 (0.616) 12.60 (0.632)

Property Type: Flat 97120 (32.1 %) 7216 (32.6 %)

Property Type: Semi-detached 65181 (21.5 %) 4644 (21.0 %)

Property Type: Terraced 83920 (27.7 %) 6187 (27.9 %)

Property Type: Detached 56718 (18.7 %) 4093 (18.5 %)

Leasehold 99596 (32.9 %) 7407 (33.5 %)

New build 29945 (9.88 %) 1028 (4.64 %)

log(distance from centre) 10.3 (0.95) 10.3 (0.94)

log(distance from 1st station) 6.99 (1.01) 7.01 (1.01)

log(distance from 2nd station 6.27 (1.75) 6.30 (1.74)

- distance from 1st station + 1)

Station: Both tube and railway 38063 (12.6 %) 2699 (12.2 %)

Station: Tube 31195 (10.3 %) 2188 (9.88 %)

Station: Railway 233681 (77.1%) 17253 (77.9 %)

Income score 0.119 (0.0884) 0.121 (0.0889)

Employment score 0.0723 (0.0431) 0.0733 (0.0436)

HD score -0.438 (0.802) −0.426 (0.803)

Crime score -0.00444 (0.729) −0.00137 (0.730)

LIV score 21.5 (16.1) 21.3 (15.9)

Environment: Indoors score 18.5 (15.6) 18.4 (15.7)

Environment: Outdoors score 27.7 (23.4) 27.2 (22.9)

GB score 20.3 (18.6) 20.2 (18.6)

WB score 30.6 (23.8) 30.4 (23.6)

Education: Child score 15.9 (14.6) 16.3 (14.6)

Education: Skills score 11.8 (12.3) 12.1 (12.3)

IDACI score 0.186 (0.154) 0.188 (0.154)

IDAOPI score 0.177 (0.123) 0.178 (0.122)

Young population score −1.51 (0.321) −1.51 (0.316)

Old population score −1.47 (0.382) −1.46 (0.376)

For categorical variables, figures are: frequency (percentage). For continuous variables, figures are: mean
(standard deviation)

predictive models of property price. However, it is important to understand that the depriva-
tion measures cannot be used inversely to measure affluence [5]. The following deprivation
scores are available: income, employment, health and disability (HD), education for children
and skills for adults, barriers to housing and services with sub-domains wider barriers (WB)
and geographical barriers (GB), crime, living environment score (LIV) with sub-domains
for indoor and outdoor living (ie quality of housing and external environment, respectively).
WB relates to household overcrowding, homelessness and access to owner-occupation. GB
relates to distance to local services such as GP, shops, schools and Post Office. Additional to
the general income score, separate scores for income deprivation affecting children (IDACI)
and the older population (IDAOPI) are provided. In all cases, a higher value of the score
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Fig. 2 Performance of ICP for
different values of r in NCM,
taking k = 10; demonstrates
minimal inefficiency at
r = 10−0.5

indicates higher level of deprivation. For detailed information, see [5]. Population scores are
also computed as log-odds of young (age 0–15) and old (60+) populations in each LSOA.
There are just over 12000 LSOAs in the London property data and the deprivation data
is linked to the property records using these LSOA. Hence, multiple properties will share
the same deprivation information. There are 39 records in TC and 5 records in Test with
missing deprivation data. Hence, these records are removed from the data prior to further
analysis.

Although a rich source of environmental data has been included in this study, limited
information about the individual properties is not publicly available. Characterictics such as
property size, number of rooms, condition, garden and so on would typically be included
in a commercial AVM and would be highly predictive of price. This is a limitation of this
study. However, our goal is to demonstate the use of CPs for this application and to show
proof-of-concept.

Table 1 shows summary statistics for variables used for modelling in the TC and Test
data sets. The summaries for the two data sets are very similar. The only major difference is
that the number of new builds is proportionally less in the Test set, compared to TC. Most
variables are included in k-NN as they appear in the data. Additionally distance from the
centre of London is also included (here, centre is defined as Buckingham Palace) and also
geographic position given by OS Eastings and Northings. Since the association of distance

Fig. 3 Accuracy by Confidence
level 1 − ε
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Fig. 4 Inefficiency by
Confidence level 1 − ε

to the second nearest station to property price is likely to be related to distance of the first,
the difference in these distances is included as a predictor variable.

4 Results

Ordinary least squares (OLS) regression is used to estimate the time trend of prices in data
set TC, controlling for other variables. A linear trend ŝ∗(t, t + 1) for all t is estimated
(time measured in days), which translates into an annual price increase of 9.2 %. Non-
linear effects were considered by including monthly indicator variables but these were not
significant. This matches the price trends observed in Fig. 1 that shows approximately linear
increase over 2013.

Lower and upper bounds on s∗ over the period between training and test were constructed
by finding the minimum and maximum 3-month price change over TC, then multiplying
the maximum by a factor (1.52) representing the maximum 3-month price change over the
period 2009 to 2013 , relative to the maximum in just 2013, using the Acadata time series.
This ensures that a broad range of plausible price changes are accounted for and gives
l = −0.000536 and u = 0.0736; ie price change between 0 % to 7.63 % over the 3-month
period following training data.

Using grid search, following Section 2.6, hyperparameter values, k = 10, λ = 4.65 and
r = 10−0.5 were found. Performance for various values of (log) r are shown in Fig. 2. This
result shows that including the standard deviation in the denominator for the NCM, (7), is
important, although a non-zero value of constant r is required to dampen the effect of the
standard deviation.

Contrasting k-NN with OLS regression for point estimates of log price, they give RMSE
on the test set of 0.316 and 0.394, respectively, demonstrating that k-NN is the better
algorithm for this valuation problem.

ICP is run and results are shown in Figs. 3 and 4. Figure 3 demonstrates that the ICP
is conservatively valid with accuracy above the exact calibration line (shown as the dashed
line) for all confidence levels. Figure 4 shows inefficiency increasing with increased confi-
dence level, which is what would be expected since the cost of improved predictive accuracy
is wider region size. As confidence level approaches 1, inefficiency rises sharply, towards
infinity.

Focussing on the 90 % confidence level, test results give 0.906 accuracy and 0.985
inefficiency. If we do not allow for uncertainty in the change in log price estimate, as
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Table 2 Model of region size (predictive inefficiency)

Predictor variable Coefficient Standard P-value

estimate error

Intercept −0.672 0.0677 <0.0001

Log(price) 0.0975 0.00338 <0.0001

Property Type: Flat 0.0264 0.0119 0.0272

Property Type: Semi-detached −0.0210 0.00451 <0.0001

Property Type: Terraced −0.0138 0.00466 0.0031

Property Type: Detached * 0

Leasehold 0.0869 0.0111 <0.0001

New build −0.0654 0.00642 <0.0001

log(distance from centre) 0.0154 0.00319 <0.0001

log(distance from 1st station) 0.0101 0.00175 <0.0001

log(distance from 2nd station 0.00450 0.000918 <0.0001

- distance from 1st station + 1)

Station: Both railway and tube −0.00140 0.00478 0.769

Station: Tube 0.0147 0.00521 0.0047

Station: Railway * 0

Income score 0.172 0.1000 0.0858

Employment score 0.577 0.0929 <0.0001

HD score −0.0397 0.00362 <0.0001

Crime score 0.00437 0.00259 0.0912

LIV score 1.46 0.375 <0.0001

Environment: Indoors score −0.973 0.250 <0.0001

Environment: Outdoors score −0.486 0.125 0.0001

GB score 0.000569 9.16 ×10−5 <0.0001

WB score −0.000125 1.21×10−4 0.303

Education: Child score 0.000647 0.000158 <0.0001

Education: Skills score −0.00217 0.000191 <0.0001

IDACI score -0.138 0.0361 0.0001

IDAOPI score 0.0311 0.0295 0.293

Young population score −0.0267 0.00693 <0.0001

Old population score 0.0346 0.00373 <0.0001

* excluded category

given in (14), then the result is 0.888 accuracy and 0.910 inefficiency. The accuracy is well
below the confidence level, fails the binomial test (p < 0.0001) and so is not reliable.
This demonstrates the need to use some method to deal with uncertainty in price change.
On the other hand, using the union of regions does not result in a large increase in ineffi-
ciency. The distribution of region size as a fraction of the true log price has the following
characteristics: minimum=0.0425, 1st quartile=0.0663, median=0.0747, mean=0.0781, 3rd
quartile=0.0865, maximum=0.219. This demonstrates that the distribution of region sizes
(inefficiency) has a long tail, but most predictions have a reasonable size on the log scale;
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Table 3 Example of a relatively efficient region prediction from the test data.

True property price: 337500 GBP and log(price)=12.73

Region prediction: [190921, 347183] and log scale=[12.16, 12.76]

Main characteristics: North London (NW10) freehold terrace, not new build with both tube and over-
ground railway nearby. Has relatively high deprivation scores, especially for
income.

Main characteristics
of 10 nearest neigh-
bours:

All North London (NW10 and NW2) properties: 3 terraces, 6 flats and 1 semi-
detached, no new builds, serviced by tube (and two also by rail) . All with high
or moderate deprivation scores, especially for income. Property price range from
204763 to 670957 GBP (log prices 12.23 to 13.42) after adjustment.

eg the median is less than 8 % of the true log price. The distribution of region size on the
property price scale (ie by taking the exponential), as a fraction of true price, has the follow-
ing characteristics: minimum=0.0667, 1st quartile=0.780, median=0.945, mean=1.10, 3rd
quartile=1.22, maximum=22.7. This demonstrates that most predictions are not particularly
practical; eg the median value suggests a region size which is almost as large as the price
itself. However, this is not surprising since this study only uses environmental data about
properties and not the individual property characteristics.

Table 2 shows linear regression coefficients for modelling region sizes in the test set on
the predictor variables. This suggests many of the variables are drivers of inefficiency. In
particular, price itself has a positive association with region size and new built properties
demonstrate more price stability. Several of the environmental variables have an impact on
inefficiency; eg higher income and employment deprivation is associated with predictive
inefficiency. These results could help to refine the model for future development or identify
particular types of property or localities that are difficult to value.

Table 3 shows an example of a region prediction taken from the test data. The diversity
of the 10 nearest neighbours suggests that k-NN has selected geographical location and
deprivation levels, especially for income, as the main predictive variables, for this case. The
wide range of prices amongst the chosen 10 nearest neighbours is the explanation for the
broad region prediction on the price scale.

5 Conclusion

In this paper a CP has been used to provide reliable region predictions for AVMs. In par-
ticular, the problem of time-dependency of property prices has been handled by assuming
a systematic time effect which is estimated for training data. Uncertainty in this estimate is
accounted for by outputting a conservative, broad, region prediction. This study shows that
reliable region predictions can be generated, predicting property prices forward, using CP
with weighted k-NN. Most efficient regions are predicted when a specific form of NCM is
used which takes account of the standard deviation in the nearest neighbour’s prices. The
inefficiency of region predictions is analysed and, in particular, a linear regression is used
to determine segments of properties for which the AVM produces more or less efficient
regions. This information could be used in future AVM developement to refine the model.

This study is a proof-of-concept and the CP could readily be applied to commercial
AVMs based on more detailed property data. We would expect this to perform well in terms
of reliability and predictive efficiency. Future academic work in this area could focus on
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building more efficient models by careful segmentation of the limited property data avail-
able, exploration of better use of the training data (eg using longer training periods with
adaptive forgetting [1]), refining estimation of the property price trend, using expert knowl-
edge of the housing market or considering property segments (eg leasehold separately to
freehold, or segmenting by geographical location).
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