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Selection of the Bandwidth Parameter
in a Bayesian Kernel Regression Model
for Genomic-Enabled Prediction
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One of the most widely used kernel functions in genomic-enabled prediction is the
Gaussian kernel. Selection of the bandwidth parameter for kernel regression has gener-
ally been based on cross-validation. We propose a Bayesian method for estimating the
bandwidth parameter / of a Gaussian kernel as the modal component of the joint pos-
terior distribution of 4 and the form parameter ¢. We present a theory for the Bayesian
selection of / in a Transformed Gaussian Kernel (TGK) model and its application in two
plant breeding datasets (maize and wheat) that were already predicted using the kernel
averaging (KA) model in the context of Reproducing Kernel Hilbert Spaces (RKHS KA).
We also compared the prediction accuracy of the proposed method with a model that
also uses a Gaussian kernel and estimates the bandwidth parameter using a restricted
maximum likelihood method (GK REML). Results for the wheat dataset show that the
predictive ability of TGK was at least as good as the predictive ability of model RKHS
KA, with TGK showing a significantly smaller Predictive Mean Squared Error (PMSE)
than the other two approaches. The TGK model was statistically a better predictor than
methods GK REML and RKHS KA in terms of mean PMSE and mean correlations in
seven (out of 17) trait-environment combinations in the wheat dataset. Fewer differences
were found between models for the maize data; the TGK model generally had similar
or inferior prediction accuracy than GK REML and RKHS KA in various analyses. The
superiority of GK REML over TGK based on mean PMSE was clear in seven maize
traits.
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1. INTRODUCTION

The rapid development of sequencing technologies has made it possible to use dense
molecular marker information for genomic selection (GS) (Meuwissen et al. 2001), which
has been shown to improve prediction accuracy (de los Campos et al. 2010; Crossa et al.
2010; Heslot et al. 2012; Pérez-Rodriguez et al. 2012).

The standard regression model of phenotypes, y;, (i = 1, 2, ..., nindividuals) on markers

(j =1,2,..., pmarkers)isrepresented by y; = “+Z§=1 x;jBj+ei,or,in matrix notation,
as

y=pl+XB+e, (1.1)

where w is a general mean, 1 is a vector of ones of ordern x 1, X is the n x p incidence matrix
of standardized markers, § is the vector of unknown marker effects, and ¢ is the vector of
model errors. Standard assumptions of normality, independency and homoscedasticity are
such thate ~ N (0, azln). Assuming 8 ~ N (0, aél and independent of ¢, then (1.1) is
usually fitted with the Ridge Regression Best Linear Unbiased Predictor (RRBLUP) method.
By letting u = X, (1.1) may be represented as

y=ultute, (12)

where u is a vector of random genetic effects and independent of €. If u ~ N (0, Gauz), and
G = XTX/, then (1.2) indicates a genomic mixed model which may be estimated through
the GBLUP method (VanRaden 2008). Although (1.1) and (1.2) are equivalent, estimation
of (1.2) is computationally more convenient (de los Campos et al. 2012). Models (1.1) and
(1.2) may be extended in order to account for the vector of fixed effects ¢ of factors arranged
in an incidence matrix Z by adding the term Z# to the right-hand side of (1.1) or of (1.2).
However, the data included in this study were already pre-corrected for fixed effects such
as experimental design and location effects.

A great deal of research on developing Bayesian linear regression models for capturing
the true genetic signal has been published recently; usually these Bayesian models differ in
their prior distributions (de los Campos et al. 2012). In general, the parametric regression
function has a rigid structure comprising a set of assumptions which may not be met in
genomic selection problems. Furthermore, the sample size (n) is usually much smaller
than the number of predictors (markers), p (p > n), a problem known as “the curse
of dimensionality” (Bellman 1961). Departures from linearity can be addressed by semi-
parametric approaches, such as Reproducing Kernel Hilbert Space (RKHS) regressions
or different types of neural networks (Gianola et al. 2006, 2011; Gianola and van Kaam
2008; de los Campos et al. 2010; Gonzdlez-Camacho et al. 2012; Pérez-Rodriguez et al.
2012). Gianola et al. (2006, 2014) suggested using RKHS regression for semi-parametric,
genomic-enabled prediction, and pointed out that non-parametric methods such as kernel
regression are necessary to reduce the dimension of the parametric space, and may be able
to capture complex cryptic interaction among markers. However, recovering non-additive
interaction among markers is an open field of research and the most successful results have
been obtained through kernel-based methods (Howard et al. 2014). Morota and Gianola
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(2014) and Gianola et al. (2014) pointed out that most studies carried out so far suggest that
whole-genome prediction coupled with combinations of kernels may capture non-additive
variation.

The basic idea underlying the RKHS approach to GS (Kimeldorf and Wahba 1971;
Gianola 2013) is to use the matrix of markers X to build a covariance structure among
genetic values u in (1.2). Therefore, in this context, u ~ N (0, %2K h) is independent of &
(de los Campos et al. 2010), K, is a symmetric positive semi-definite matrix of order n x n,
known as the reproducing kernel (RK) matrix, which depends on the markers, the bandwidth
parameter 7 > 0, the additive genetic variance component oaz > 0,and e isan n x 1 vector of
homoscedastic and independent normal errors. This general approach requires choosing an
RK, for example, a Gaussian kernel function K, (x,-, X j) = exp (—hdizj /q0_05), where x;
and x ; are the marker vectors for the ith and jthindividuals, respectively, and g o5 is the fifth
percentile of the squared Euclidean distance dl.zj = Zk (xik - X jk)z (Gonzélez-Camacho
et al. 2012).

Letu = K} f; then the (1.2) may be represented as

y=ul+K;,f +e, (1.3)

One of the methods used in GS to fit (1.2) and (1.3) is the standard ridge regression (Hoerl
and Kennard 1970). Assume that shrinkage parameter y is a known scalar and that the
square of the norm of u € H, (where H is the collection of functions in RKHS of real-
valued functions) is given by ||u||%1 = f'K; f (Kimeldorf and Wahba 1971); then for
each value of y, the ridge estimator is j" = (K; + yI)~ ' (y — y1). Then it follows that
i = K,(K, +yI~!(y — y1). A Bayesian version can be derived by assigning the prior
f~N (0, oK ;1) or, equivalently, u ~ N (0, 2K 1), Where o2 and h are unknown

hyperparameters and y = o2/ aaz, so that } and & are the modes of the posterior distributions
of f and u, respectively.

In the non-parametric regression framework, the key idea is to develop more flexible
models that will capture complex signals, thus improving the prediction accuracy of the
genetic values. The RK function takes as input the markers used to create a covariance
structure for the genetic values Cov (ui, uj) = 0{12 Ky (xi, xj) (Ua2 > 0), where u;, and u;
are the genetic values of the ith and jth individuals. For example, the linear kernel given
by K = XTX, [see the definition of G in (1.2)] can be used to reduce the dimensionality of
the genotypic data and, hence, the number of parameters to be estimated (de los Campos
et al. 2010; VanRaden 2008). A comprehensive review of various kernel-based approaches
for capturing genetic variation in the context of genomic-enabled prediction was recently
published by Morota and Gianola (2014).

The RK function has two components: a distance measure between individuals based on
markers and the bandwidth parameter 4 that controls the rate of decay of the covariance
between genotypes. The RK function can either be selected from different RK options or
constructed with Mercer’s theorem, as described by Genton (2001). The most commonly
used RK function in GS is the Gaussian kernel (Gianola et al. 2006). Other RK functions,
such as the 7 (Tussel et al. 2014) and the exponential (Endelman 2011), have also been
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used. However, none of them have proven to be consistently superior to the Gaussian RK
function (Oberetal. 2011). Assuming that the Gaussian kernel has been selected, aremaining
crucial step is to tune the bandwidth parameter, which is usually based on cross-validation
or penalization (Hirdle 1990).

Assume that the RKHS in (1.3) is non-parametric and involves a fixed operator K,
for a known h. Then, given h, we need to estimate f or, equivalently, # and the vari-
ance components. One way of achieving this goal is to use Bayesian inference within the
theoretical framework of inverse problems (Aster et al. 2005), such as those proposed by
Knapick et al. (2012) and Cavalier (2008), and apply them to genomic-enabled prediction
(Cuevas et al. 2014). In an attempt to optimize prediction ability in GS, the bandwidth
parameter 4 is selected by means of cross-validation in a grid of values, as shown in Heslot
et al. (2012). However, cross-validation methods for selecting / are computationally very
intense and sometimes not easy to apply in GS (Gianola and van Kaam 2008). Endelman
(2011) used the restricted maximum likelihood (REML) to jointly fit (1.2) including &
for a model with the Gaussian RK function; the proposed method (GK REML) is imple-
mented in the R package rrBLUP. Note that when prior distributions of variance compo-
nents are assumed to be flat, the REML estimators coincide with the mode of the marginal
posterior density (Harville 1974; Blasco 2001). An efficient Bayesian method that mini-
mizes the effect of selecting an inadequate value of 4 and thus improves GS prediction
accuracy was proposed by de los Campos et al. (2010), who used an extension of (1.2)
with u = uj + - - - + uy, such that each random effect, u;,i = 1, ..., k, is weighted by
its variance component in a process termed Kernel Averaging (KA) or multi-kernel. Ker-
nel averaging uses a prior distribution that assumes independence among random effects

p(ul,...,ukla,fl,...,a,fk) = N (u1]0, Klauzl) X -+« X N(ugl0, Kkouzk). The set of ker-
nels {K, ..., K} is defined based on a set of values of h € {hy, ..., ht}. The set of values

of 4 is selected by first defining a range of values that will avoid small and large values of 4.
Achieving these criteria is important because small values of 4 will produce a kernel matrix
of ones, whereas large values of 4 will produce a kernel matrix whose off-diagonal elements
will approach zero. These two extreme cases are avoided because they do not contribute
information that can be used for prediction; for example, in the case of small values of 7,
the information provided is redundant with the intercept [which is already included in (1.3)]
and in the case of large values of %, will lead to a random effect with a variance covariance
structure similar to that of the error term in (1.3). de los Campos et al. (2010) also show that
u=u +- - +u ~N(0, 0,4215), where K = Y, chruzl/au2 and argue that inferring the
weights leads to a kernel K that is optimal. The strategy for specifying the values of 4 is
also described in Pérez-Rodriguez and de los Campos (2014).

In this study, we propose a Bayesian method for selecting the bandwidth parameter &
following a simple and logical idea put forward by Gianola and van Kaam (2008), that
is, to assign a prior p (h) and obtain a posterior point estimate of 4. This is achieved by
transforming (1.3) following the approach of Cuevas et al. (2014), which is similar to that
proposed by de los Campos et al. (2010), but transforming both sides of (1.3) as in Cavalier
(2008). This paper is organized as follows. In Sect. 2, we define the general framework
(prior and posterior distributions) of the proposed Bayesian Transformed Gaussian Kernel
(TGK) model; we also describe the likelihood, the prior, and the posterior of the bandwidth
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parameter. In Sect. 3, we describe the two real datasets analyzed using the TGK model,
as well as details of the prediction assessment using a random cross-validation scheme.
Section 4 gives the prediction accuracy results for the two datasets; results are discussed in
Sect. 5 and conclusions are provided in Sect. 6.

2. STATISTICAL METHODS

2.1. BAYESIAN SELECTION OF THE BANDWIDTH FOR A TRANSFORMED
GAUSSIAN KERNEL (TGK)

For genomic-enabled prediction, Cuevas et al. (2014) showed the advantages of trans-
forming both sides of the parametric linear regression model by an orthonormal matrix
based on a singular value decomposition (SVD) of the matrix of regression variables, X.
Some advantages of this method are (i) it reduces computing time because of the reduc-
tion in dimensionality of the vector of regression parameters, (ii) the prior distributions for
regression parameters have variances that mimic the decay of the singular values of X, thus
controlling over-fitting, and (iii) the posteriors of the transformed regression parameters
are conditionally independent. Following Cuevas et al. (2014), a model based on K (not
directly X) is described below.

In (1.3), we replace the linear operator K, with its eigenvalue decomposition K, =
UpS U }l, where U}, is a square orthogonal matrix and Sy, is the diagonal matrix of eigen-
values, and where sub-indexes express dependency on the value of /; this eigenvalue decom-
position is a common strategy also used in parametric methods for genome prediction (Zhou
et al. 2013). When multiplying both sides of (1.3) by U’,, we have

U,y =npU,1+U, (UySpU),) f +Uje.

Letd =d(y) =U,y,t =U;1,b =U) f,& = Uje.Since U U, = U,U} = I, the
model becomes
d=ut+ Spb+eé. 2.1

By assuming that & ~ N (0, I,,az), it follows that & ~ N (0, Inaz). Then, the joint
distribution of transformed data d, given h, b and o2, is

n
p (i b0 h) = [T NG lut; +sibi, o).
i=1
Note that (2.1) may be simply expressed as
di = ut; +sibi +&;, (i =1,...,n). (2.2)

In the theory of inverse problems, this model is known as the sequential spatial model
(Cavalier 2008). As will be seen later, this representation makes it easy to draw samples from
the joint posterior distribution of the target parameters. Estimation of the target parameters
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in the original model is done directly through the inverse transformation f = Uj;b and
u=U;S;b.

2.2. JOINT POSTERIOR DISTRIBUTION

If the prior of fis N (0, oazK ;1), where aaz is the additive genetic variance, then it can
be assumed that auz = @02, with ¢ > 0 (note that ¢ = 1/y), such that the prior distribution
ofb="U),fis N (b|0, ¢ozS;1). We also assume that the scale hyperparameter ¢ is an

unknown quantity such that we should assign a prior distribution to ¢. Therefore, the joint
posterior distribution of b, u, o2, @, and h in (2.1) is given by

p (M, b, o h, <p|y) x N (dlut + Syb, 021) p (W) N (b|0, (pazS;fl)

%72 (Plve ) p W P @), 23)

where the prior for 1 is uniform and the prior for o2 is the inverse scaled chi-squared with v,
degrees of freedom (df) and scale parameter t,; the priors for ¢ and & are described below.

2.3. BANDWIDTH ESTIMATION

Selection of bandwidth £ is a challenging problem. The ideal solution is to consider 4 as
an unknown quantity and obtain its marginal distribution through Bayes’ rule, which implies
approximation of the joint posterior distribution of (M, b, o2 ¢, h) via Markov Chain Monte
Carlo (MCMC) or other computational tools. However, any simulation method requires
recalculating the kernel at each iteration, which is computationally intensive.

Here, we propose fixing 4 and ¢ to the mode (%, @) of their joint posterior distribution
p(h, ¢|y), which is given by

L@, h, 0,h,
pwww=/p@hwww=/ O oV O 9 4
m(y)

_ P plp)m(ylh,¢) L@,h,oly)p@lh, )
m(y) m (y|h, ¢)

dd o< p (h) p (@) m (y|h, ),

where § = (M, b, 0’2)/ , L (0, h, p|d) is the likelihood function, the joint prior is of the form
pO.h,9)=p@h @) ph) p(p),andm (ylh,¢) = [ L6, ¢, hly) p@h, ¢)do is the
predictive distribution given & and ¢.

Since the posterior distribution p (h, ¢|y) is proportional to marginal likelihood
m (y|h, ¢) times joint prior density p (h) p (¢), the first step is to analytically derive
m (y|h, ¢); then, the posterior mode of p (h, ¢|y) can be estimated. Note that the prob-
lem reduces to finding the maximum of a function of only two parameters (%, ¢).

2.4. THE MARGINAL LIKELIHOOD OF THE BANDWIDTH

To obtain the marginal distribution of 4 from (1.3), we integrate out 6 from the likelihood
using the prior density as a weighting function (Berger et al. 1999; Maruyama and George
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2011) such that the marginal likelihood of y given (h, @) is
o o0
m (ylh, @) = / / / plp. b,o> h)p (u b, 02) dpdbdo?,
0 R" J—00

where p (/,L, b, 02) is the joint prior distribution of (,u, b, 02), which are assumed to be
independent, that is, p (,u, b, 02) =pw)pp (02). Assigning uniform, Gaussian, and
inverted scaled Chi-square prior distributions to i, b and o2, respectively, it follows that
the marginal likelihood is (see Appendix A):

ve+n—1

n n 32

| d:
m (ylh, ¢) 14+ 0s)"2 |t + — , 2.4
(ylh. @) E( ¢si) [ ;me} 2:4)
where 57,- is the ith element of the vector d = U }l (y — y1) and s; is the ith eigenvalue of
the spectral decomposition of Kj,. Then, m (y|h, ¢) depends implicitly on 4. We propose
finding the optimal value of & and ¢ by maximizing p (k, ¢|y), which implies Bayesian

estimators under O—1 loss function for 4 and ¢.

2.5. PRIOR DISTRIBUTIONS OF & AND ¢

An appropriate prior for 7 may be a Gamma distribution p (h) ~ Ga (h|v, t) ,where v
should be greater than 2 to avoid infinite prior variance; by fixing v and the prior mean y,,
the scale parameter 7 is given by v/uy,. Based on the KA method of de los Campos et al.
(2010), the idea is to find an interval of values of i that would tend, at one extreme, to have
the K matrix as a diagonal matrix (local bandwidth) and, at the other extreme, to have
the K matrix as a matrix of ones (global bandwidth), which would allow an appropriate
interval to be computed. For ¢ we should assign a proper prior with support on the positive
real numbers; then, an alternative is the uniform prior on (0, B), where B > 0 is large
enough to include values with high posterior density.

2.6. ESTIMATION OF THE POSTERIOR MODE OF /i AND ¢

The posterior distribution of (%, ¢) is p (h, ¢|y) o m(y|h, ¢)Ga (h|v, T) p (¢) and its
mode may be numerically estimated by the values of (%, ¢) within an area that produces the
highest value of the posterior density. As demonstrated later, the evaluation of p (k, ¢|y)
does not require computation of repetitive matrix inverses or multiplications, such that the

joint posterior mode (ﬁ, ¢) can be determined by a numerical approximation.

2.7. GIBBS SAMPLER

Itis difficult to directly get samples from the joint posterior distribution in (2.3), as it does
not have a closed form. However, it is possible to obtain the closed forms for the conditional
distributions of the parameters. This allows using Markov Chain Monte Carlo (MCMC)
through the Gibbs Sampler (Gelfand and Smith 1990) algorithm, which samples sequentially
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from the full conditional distribution until it reaches a stationary process, converging to the
joint posterior distribution.

We carried out convergence and diagnostic tests on different datasets. The Gelman—Rubin
convergence tests (Gelman and Rubin 1992) for the model were satisfactory. The Raftery—
Lewis test (Raftery and Lewis 1992) suggested a small burn-in period and that the number
of iterations should be between 10,000 and 20,000 for the datasets used. With the aim of
decreasing the potential impact of MCMC errors on prediction accuracy, we performed a
total of 60,000 iterations with a burn-in of 10,000 and a thinning of 10, so that 5,000 samples
were used for inference. The Gelman—Rubin convergence tests and the Raftery—Lewis tests
were performed using the Convergence Diagnosis and Output Analysis (CODA) R package
for MCMC (Plummer et al. 2006). The Effective Sample Size (ESS) varied between 1,400
and 2,000 for all parameters.

2.8. DATA AND SOFTWARE REPOSITORY

An R script (R Core Team 2015) to implement the Gibbs Sampler described above and
a brief document in Help and Programs.zip file can be downloaded from the following link
http://hdl.handle.net/11529/10234 together with the file Data.zip containing the datasets
used in this study. Supplemental Tables S1 and S2 can also be found at this link.

3. EXPERIMENTAL DATA

The two data sources used in this study were previously used by several authors (Crossa
et al. 2010; Pérez-Rodriguez et al. 2012; Gonzdlez-Camacho et al. 2012) and most recently
by Cuevas et al. (2014) for fitting several Bayesian inverse regression methods.

3.1. WHEAT DATASET

This dataset included 306 elite wheat lines from CIMMYT’s Global Wheat Program
that were used by Pérez-Rodriguez et al. (2012). These lines were genotyped with 1,717
diversity array technology (DArT) markers generated by Triticarte Pty. Ltd. (Canberra,
Australia; http://www.triticarte.com.au). These DArT corresponds to scores for presence
(1) and absence (0) for dominant marker (see Wenzl et al. 2004, for further details). Two
traits were analyzed: days to heading (DTH) measured in ten different environments and
grain yield (GY) measured in seven different environments.

3.2. MAIZE DATASET

The maize data represented 21 trait-environment combinations for 300 tropical inbred
lines genotyped with 55,000 SNPs each (Gonzélez-Camacho et al. 2012). A first group of
traits included female flowering (FFL) or days to silking, male flowering (MFL) or days
to anthesis, and the anthesis-silking interval (ASI). Each trait was evaluated under severe
drought stress (SS) and in well-watered (WW) environments. This dataset was also used by
Crossa et al. (2010) for assessing prediction performance.
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In the second group of traits, grain yield (GY) was obtained under severe drought (SS) and
in well-watered (WW) environments. Further, GY of the 300 maize lines was also measured
in a large number of relatively high yielding (GY-HI) and low yielding environments (GY-
LO). In the third group of traits, the 300 maize lines were also evaluated in nine international
environments for gray leaf spot (GLS), a disease caused by the fungus Cercospora zeae-
maydis. Finally, in the fourth group, the same 300 lines were evaluated in another set of trials
for northern corn leaf blight (NCLB), a disease caused by the fungus Exserohilum turcicum.

3.3. ASSESSING PREDICTION ACCURACY USING CROSS-VALIDATION

Once the value of & was estimated, its predictive ability was evaluated using the TGK
model, where conditional distributions were computed according to (2.3). Model predictions
for each of the maize and wheat datasets were done in each of 50 random partitions, with 90 %
of individuals in the training set and 10 % of individuals in the testing set to be predicted. We
used the same 50 random partitions as those used by Pérez-Rodriguez et al. (2012), Gonzélez-
Camacho et al. (2012), and Cuevas et al. (2014). We computed both Pearson’s correlation
coefficient between the posterior predictive mean and the corresponding observed values
and the Predictive Mean Squared Error (PMSE) as measures of prediction ability.

The GK REML method included in the rrBLUP package (Endelman 2011) was fitted
and the mean Pearson’s correlation between predicted and observed values and the PMSE
was also calculated for the same 50 random partitions. Therefore, Pearson’s correlation
between predicted and observed values and the PMSE for the same 50 random partitions
were computed for the TGK model, GK REML, and RKHS KA, as reported by Pérez-
Rodriguez et al. (2012) for the wheat dataset, and by Gonzdlez-Camacho et al. (2012) for
the maize dataset.

3.4. ASSESSING THE SIGNIFICANT DIFFERENCES AMONG THE MODELS
(METHODS)

We separated the traits in the wheat datasets into two subsets, those comprising the
DTH traits and those including the YLD traits. The trait-environment combinations of the
maize dataset included flowering time (FFL, FML, ASI) and grain yield (GY) in different
stress environments (WW, SS, HI and LOW) and those including the disease traits GLS and
NCBL measured in different environments. The significant differences among the methods
and models were assessed based on the two criteria, correlation between the predicted
and observed values and the PMSE. We computed two-tailed hypothesis testing of the three
models, TGK, RKHS KA, GK REML (using a Type I error rate of 5 %) to examine significant
differences between models based on correlation and PMSE criteria.

3.5. FuLL DATA ANALYSES

For each dataset (trait-environment combination), we computed the corresponding para-
meters using the full data. For the TGK model, we used three different priors with the
objective of examining the influence of each of them on the predictive ability of the TGK
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model. We fitted the TGK model using, as priors for 7, Gamma distributions with mean 2
(TGK2) and 1 (TGK1), and with a flat prior (TGKF). The inferences for TKG and RKHS KA
were based on 30,000 MCMC samples that were obtained after discarding 5,000 samples
(burn-in).

For the TGK model, a Gamma prior distribution for & with mean 2 was used. For GK
REML, the default values given in the rTBLUP R package for the grid were used. For RKHS
KA, the values used were taken directly from Table 2 in Pérez-Rodriguez et al. (2012) for the
wheat datasets and from Table 1 in Gonzédlez-Camacho et al. (2012) for the maize datasets
(see footnote in Supplemental Tables S1 and S2 of this study).

4. RESULTS

4.1. FuLL DATA ANALYSIS

Supplemental Tables S1 and S2 (see http://hdl.handle.net/11529/10234) contain the
results for TGK1, TGK?2, and TGKF. In general, it can be seen that R, defined as the ratio
[genomic variance]/[genomic + error variance], for methods TGK1, TGK2, and TGKEF are
very similar; therefore, the prior should have very little impact on the bandwidth parame-
ter h. Estimates of the bandwidth parameter depend on the data and traits. For the wheat
data (DTH and GY), the estimates of & varied around 1 and 2 (Supplemental Table S1),
whereas for the maize dataset, the estimates of / from the full data varied from 0.27 to 3.9
(Supplemental Table S2).

4.2. WHEAT DATASET

The results of the two-tailed hypothesis tests all conducted based on a Type I error rate
of 5 % are shown in Table 1 for the mean PMSE and the mean correlation across 50 random
partitions for a total of 17 trait-environment combinations. For the PMSE criterion, TGK
was significantly more accurate than GK REML in seven trait-environments combinations
(DTH2, DTHS-11, YLDI, and YLD3) and significantly more accurate than RKHS KA in
14 cases. Also, GK REML gave significantly higher prediction accuracy than TGK in four
cases (DTH4, DTH12, YLD4, and YLD7). RKHS KA was significantly the best in only
one case (YLD?2).

Based on correlations, TGK was significantly more accurate than RKHS KA and GK
REML in seven trait-environment combinations (the same as those detected as significant
based on the PMSE criterion, except for YLD1 and DTH2) (Table 1). In only one case
(DTH4), was GK REML significantly more accurate, based on correlation, than TGK.

4.3. MAIZE DATASET

The mean PMSE and correlations across 50 random partitions and the significant differ-
ences between them based on two-tailed hypothesis tests (Type I error rate = 5 %) are given
in Table 2 for a total of 21 trait-environment combinations. Fewer significant differences
between the methods were found for the maize data compared to the wheat data; for nine
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Table 1. Mean Predictive Mean Squared Error (PMSE) and correlation from 50 random cross-validation partitions
(and their standard deviation, SD) of TGK, RKHA KA, and GK REML for various trait-environment
combinations of the wheat dataset.

Trait-environment TGK SD RKHS KA SD GK REML SD

Mean PMSE
DTHI1 10.8477* 3.0137 11.0235 3.0458 10.8640 2.9814
DTH2 10.1821 11.9974 10.1949 11.6981 10.2789 11.8519
DTH3 6.2090 2.1940 6.3071 2.2361 6.2365 2.1981
DTH4 21.3998 6.2440 21.1418 6.1762 21.1175 6.0726
DTHS 7.9089 2.2520 7.9491 2.2058 7.9247 2.2572
DTHS 12.8310 3.0244 13.1249 3.1391 13.2197 3.1712
DTH9 20.3664 5.9080 20.6926 5.9438 20.5104 5.9239
DTHI10 6.5580 2.0023 6.6379 2.0517 6.6918 1.9853
DTHI11 5.9693 1.8404 6.0122 1.8057 6.0849 1.8363
DTHI12 13.8573 7.1541 13.2890 6.9796 13.3424 6.9308
YLDI1 0.0668 0.0158 0.0673 0.0159 0.0678 0.0159
YLD2 0.0607 0.0232 0.0594 0.0227 0.0612 0.0232
YLD3 0.0488 0.0127 0.0501 0.0132 0.0496 0.0132
YLD4 0.1990 0.0497 0.2029 0.0505 0.1977 0.0496
YLDS5 0.3455 0.1077 0.3498 0.1059 0.3468 0.1121
YLD6 0.1160 0.0344 0.1182 0.0347 0.1163 0.0351
YLD7 0.3746 0.1076 0.3755 0.1090 0.3721 0.1079

Mean correlation

DTHI 0.6654 0.0905 0.6585 0.0920 0.6637 0.0903
DTH2 0.6804 0.1340 0.6767 0.1299 0.6749 0.1336
DTH3 0.6999 0.1000 0.6947 0.1004 0.6984 0.0999
DTH4 0.1330 0.1978 0.1547 0.1829 0.1735 0.1864
DTHS 0.6901 0.0819 0.6884 0.0819 0.6890 0.0825
DTHS 0.4882 0.1268 0.4708 0.1339 0.4657 0.1331
DTHO 0.6204 0.1083 0.6159 0.1112 0.6161 0.1072
DTHI10 0.6111 0.1249 0.6058 0.1219 0.6030 0.1258
DTH11 0.5909 0.1396 0.5888 0.1339 0.5832 0.1397
DTHI12 0.5058 0.1730 0.4989 0.1736 0.4974 0.1702
YLDI 0.5197 0.1186 0.5162 0.1154 0.5132 0.1185
YLD2 0.5066 0.1498 0.5237 0.1431 0.5013 0.1488
YLD3 0.4134 0.1872 0.3807 0.1970 0.3928 0.1960
YLD4 0.5475 0.1216 0.5368 0.1248 0.5510 0.1237
YLDS 0.6432 0.1356 0.6410 0.1337 0.6400 0.1387
YLD6 0.7379 0.0801 0.7339 0.0777 0.7368 0.0821
YLD7 0.5369 0.1295 0.5335 0.1286 0.5408 0.1335

* Methods significantly (at the 0.05 probability level) best or tied with the best method are in boldface and
underlined. Methods significantly worst or tied with the worst method are in plain typeface. Methods significantly
worse than the best but significantly better than the worst (i.e., second place methods) are underlined (but not in
boldface).

trait-environment combinations, no significant differences among any of the three methods
were detected.

Based on PMSE, TGK was the most accurate method together with either RKHS KA or
GK REML in four cases and was significantly the solely best predictive method only once
(GLS7). GK REML was the best method in three cases (GY-LOW, GLS6, and NCBL2);
it tied for the highest position with RKHS KA four times, and with TGK three times. GK
REML was a significantly better predictor than TGK in seven cases.
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Table 2. Mean Predictive Mean Squared Error (PMSE) and correlation and from 50 random cross-validation
partitions (and their standard deviation, SD) of TGK, RKHA KA, and GK REML for various trait-
environment combinations of the maize dataset.

Trait-environment TGK SD RKHS KA SD GK REML SD
Mean PMSE
FFL-WW 0.2570%* 0.1257 0.2190 0.0909 0.2233 0.0942
FFL-SS 0.3229 0.0870 0.3295 0.0870 0.3234 0.0895
MFL-WW 0.2553 0.1218 0.2211 0.0895 0.2254 0.0917
MFL-SS 0.3071 0.0933 0.3113 0.0904 0.3056 0.0950
ASI-WW 0.6459 0.2465 0.6499 0.2508 0.6453 0.2464
ASI-SS 0.6460 0.2245 0.6490 0.2281 0.6479 0.2230
GY-SS 0.8880 0.2424 0.8879 0.2436 0.8834 0.2439
GY-WW 0.6841 0.1936 0.6925 0.2027 0.6785 0.1908
GY-HI 0.5739 0.1485 0.5710 0.1477 0.5670 0.1474
GY-LOW 0.8536 0.1950 0.8551 0.1940 0.8483 0.1965
GLS1 0.9243 0.2193 0.9184 0.2137 0.9212 0.2176
GLS2 0.8116 0.1768 0.8145 0.1718 0.8122 0.1792
GLS3 0.6299 0.1597 0.6349 0.1533 0.6260 0.1621
GLS4 0.7110 0.1695 0.7125 0.1685 0.7129 0.1701
GLS5 0.8174 0.1834 0.8167 0.1799 0.8173 0.1823
GLS6 0.9674 0.1422 0.9707 0.1418 0.9654 0.1452
GLS7 0.7282 0.1751 0.7287 0.1716 0.7333 0.1813
GLS8 0.6243 0.1611 0.6301 0.1547 0.6203 0.1636
GLS9 0.7110 0.1698 0.7121 0.1674 0.7128 0.1700
NCBL1 0.5498 0.1386 0.5194 0.1293 0.5145 0.1296
NCBL2 0.7050 0.2155 0.7083 0.2172 0.7046 0.2139

Mean correlation

FFL-WW 0.8140 0.2071 0.8364 0.1853 0.8235 0.2009
FFL-SS 0.7622 0.1727 0.7628 0.1714 0.7604 0.1740
MFL-WW 0.8210 0.1889 0.8409 0.1686 0.8287 0.1849
MFL-SS 0.7810 0.1532 0.7817 0.1523 0.7775 0.1575
ASI-WW 0.5863 0.1576 0.5855 0.1588 0.5854 0.1598
ASI-SS 0.6211 0.1162 0.6212 0.1153 0.6186 0.1163
GY-SS 0.3240 0.1870 0.3297 0.1881 0.3285 0.1872
GY-WW 0.5520 0.1342 0.5484 0.1351 0.5558 0.1352
GY-HI 0.6530 0.0909 0.6632 0.0844 0.6596 0.0872
GY-LOW 0.4004 0.1295 0.4021 0.1310 0.4048 0.1298
GLS1 0.2615 0.2111 0.2591 0.2045 0.2522 0.1990
GLS2 0.4393 0.1472 0.4386 0.1443 0.4380 0.1469
GLS3 0.5827 0.1335 0.5786 0.1335 0.5864 0.1340
GLS4 0.5423 0.1370 0.5439 0.1367 0.5398 0.1372
GLS5 0.3336 0.1868 0.3318 0.1856 0.3371 0.1837
GLS6 0.2670 0.1437 0.2625 0.1465 0.2696 0.1449
GLS7 0.5014 0.1414 0.5022 0.1430 0.4969 0.1473
GLS8 0.5889 0.1335 0.5842 0.1331 0.5924 0.1341
GLS9 0.5420 0.1371 0.5438 0.1374 0.5398 0.1375
NCBL1 0.6793 0.0882 0.7085 0.0813 0.7077 0.0815
NCBL2 0.4970 0.1631 0.4909 0.1683 0.4969 0.1627

*Methods significantly (at the 0.05 probability level) best or tied with the best method are in boldface and under-
lined. Methods significantly worst or tied with the worst method are in plain typeface. Methods significantly worse
than the best but significantly better than the worst (i.e., second place methods) are underlined (but not in boldface).
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Based on the correlation criterion, TGK shared the highest ranking position with RKHS
KA five times and was significantly the best predictive method for GLS6 and NCBL2
(Table 2). RKHS KA was the best predictive method 10 times, sharing the top position with
other models 6 times, and was the best model overall on four occasions. GK REML showed
a pattern similar to that of TGK, that is, it was the most significant predictive method six
times; it shared the top ranking with other methods for three trait-environment combinations,
and in three cases it was the most significant predictive method overall (GY-WW, GLS3,
and GLSS).

S. DISCUSSION

The marginal likelihood is important in selecting /4 and ¢ can be easily computed after
eliminating the nuisance parameters through integration with the joint prior of these parame-
ters (Berger et al. 1999). In this study, the assumption that p (®) has a uniform distribution
and that oaz = go? allows developing an expression such as the one shown in (2.3). However,
expression (2.3) still has a nuisance parameter (¢) that is difficult to eliminate by analytical
integration. An alternative solution may be Monte Carlo integration, but this could produce
an unstable solution.

5.1. SIMILARITIES AND DIFFERENCES BETWEEN REML AND THE PROPOSED
BAYESIAN ESTIMATION OF &

It should be pointed out that although we solved the problem of finding estimates of &
and ¢ by maximizing a function of the data, our approach is not the same as Endelman’s
(2011) strategy. While Endelman (2011) uses the iterative REML approach, our approach
simply follows the probability rules of finding the posterior density of 4 and .

Blasco (2001) explained that given the variance components (02, O’az) and h, the BLUP
of the vector of random effects b is equal to its conditional posterior mean (mode or median)
because the conditional posterior is normal if the prior for u is flat or normal itself. So, BLUP
of b is the posterior mean of p(blo?, o2, h)ifbisincluded in the model as a Gaussian random

s Yao
effect with mean 0 and variance UaZS _1, o2

2 = ¢o? However, o> and o are unknown,

and a common way to estimate them, for a given 4, is through REML which uses the
marginal posterior modes as estimators. However, for both REML and Bayesian approaches,
the problem of estimating /s remains. It is important to recognize that % is not a variance
component, though it is the scale parameter in the Gaussian kernel; that is, & is not the
variance of a Gaussian random effect on the linear predictor. Therefore, it cannot be affirmed
that the posterior mode of % is equal to the REML estimate, even though the corresponding
estimates will be similar as both correspond to the same quantity in the same model.

It is worth mentioning that Endelman (2011) followed the data transformation proposed
by Kang et al. (2008), such that V'y = (uy, uy, ..., u,)’, where V and A; + <p‘1 are the
n x n matrix of eigenvectors and the ith eigenvalue of the spectral decomposition of SH S,
respectively, with § = I — 11'/n and H = K}, + ¢~ 'I. Then, the restricted likelihood
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(RL) to be optimized for computing the REML estimate of / is given by

RL = % |:(n — 1 log 2m) —logn — ilog ()»i + §0_1) -0/ (‘/"72)]

i=1

2
with Q = >, (#) Note that as expression (2.4), RL also implicitly depends on

h. However, the main difference between RL and (2.4) is that RL is a function of o2, while
m (y|h, @) is not. In Endelman’s method, o2 is assumed to be equal to 62 = 62 /¢, where
8“2 and ¢ are REML estimations, and this value is plugged into RL. On the other hand, in
our Bayesian proposal, the function to be maximized is the marginal posterior density of
h, p (hly, @) o< m (y|h, @) p (h), which by definition does not depend on o'2.

5.2. THE PRIOR DISTRIBUTION OF /

The prior distribution of 7 may dominate the likelihood and its correct selection depends
on the researcher’s knowledge of & for a particular trait. This previous knowledge of the
values of & for certain traits can be used a priori to avoid using large values of / that may
cause over-fitting, as suggested by Hérdle (1990). It is important to note that large values of
h generate a K, close to the identity matrix, with the obvious consequence of generating
confusion in the signal/noise ratio. Furthermore, low values of & may produce K matrices
with all off-diagonal entries close to 1, which causes serious problems when fitting the
model.

The correct selection of p (h) influences the signal/noise ratio, and a flat prior is sug-
gested when nothing is known about /. With prior information, we suggest using a Gamma
distribution as a prior for /, because this distribution is flexible enough to represent the prior
knowledge of i. The parameters of the Gamma distribution may be selected by exploring
matrix K with different values of /2 and previous knowledge of the range of 4 values.

We used a Gaussian kernel of the form K;; (xi, xj) = exp (—hdl?j/qo_os), where dizj
is the squared Euclidean distance (Gonzédlez-Camacho et al. 2012), and gg o5 is the 0.05
quantile of this squared distance. The value gg o5 is used to scale the values of the kernel
such that the values of & close to zero will originate a matrix K near to one and large
values of & will tend to produce an identity matrix for K. For example, for markers of the
wheat data, Fig. 1 depicts the histograms of the upper off-diagonal elements of the Gaussian
kernel for three values of A. Figure 1a shows a high frequency of high values of K for
h = 0.2, indicating a global bandwidth; Fig. 1c¢ shows a high frequency of low values of K,
for h = 6, and Fig. 1b, with & = 1, shows intermediate off-diagonal values of K. It seems
reasonable to think that there is a high probability that a Gamma distribution with mean 1
or 2 covers the range of values of & that generates intermediate values for the off-diagonal
elements of K.

For the application of TGK in the maize and wheat datasets, we considered a Gamma
distribution with v = 3, and a scale parameter t = 1.5. The R program that we provide
in the Supplemental Material allows a researcher to choose a flat prior or proper Gamma
distribution for 2 with scale parameters that the researcher considers to be appropriate.
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Figure 1. a—c Histograms of the off-diagonal entries for three kernels in the wheat dataset: a K1 with 7 = 0.2;
b K2 with h = 1, and ¢ K3 with & = 6.

5.3. PREDICTION ACCURACY OF THE WHEAT DATASET

The wheat data may have genetic complexities that favor semi-parametric regression
over parametric regression, as clearly shown by Pérez-Rodriguez et al. (2012); some of these
complexities may be due to cryptic gene x gene epistatic effects that might be only captured
by a non-additive model. In general, TGK had better prediction accuracy more often than
RKHS KA and GK REML for DTH and YLD wheat datasets. Supplemental Table S1 shows

the estimated values of 4 and ¢ for the full data using TGK2 with a Gamma prior with mean
2

2, and RKHS KA and GK REML with a Gaussian kernel of the form K = exp —%
Also, Supplemental Table S1 shows that in almost all cases, the residual variance from GK
REML is smaller than those from the other methods and therefore produces larger R. On
the other hand, RHKS KA tended to have a smaller R than the other methods, whereas TGK
had intermediate values of R that were closer to those estimated by GK REML than those
estimated by RHKS KA. This is related to the generally better prediction accuracy of TGK2
for the wheat dataset. An exception is trait DTH4 with a very low signal/noise ratio; the
posterior of 4 is dominated by the prior distribution and thus the posterior mode is close to
the prior mean (close to 2).
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Figure 2. Graphs a and b depict the behavior of the posterior of / for wheat data DTH2 and DTH4, respectively.
In each graph, three priors of 4 are used: proper flat prior distribution (continuous line), Gamma distribution with
v = 3, © = 1.5 (dashed line) and Gamma distribution with v = 3, T = 3 (dotted line).

Depicted in Fig. 2a, b is the effect on the posterior of three different prior specifications

for h given that ¢ = ¢, which is approximately equal to the REML estimate. Any other
proper prior on R could certainly be used, but we used a Gamma prior in this study due
mainly to practical considerations and mathematical convenience. The values of 4 in TGK2
(Supplemental Table S1) are intermediate, with moderate cross terms of K, similar to those
observed in Fig. 2b; it can thus be assumed that the selection of the prior is adequate.
Figure 2a, b depict the behavior of the posterior distribution for two trait-environment
combinations of the wheat dataset (DTH2 and DTH4). For trait-environment combination
DTH2, Fig. 2a shows the posterior distribution of 4 with the Gamma prior distribution with
mean 2 (continuous line) and the Gamma prior distribution with mean 1 (dotted line). These
results indicate that for the DTH2 wheat dataset, the posterior is not sensitive to the prior
selection. Note in Supplemental Table S1 that the R? for TGK2 of this trait-environment
combination indicates a relatively high signal/noise rate.

On the other hand, Fig. 2b for trait-environment combination DTH4 shows the posterior
distribution of 4 with the Gamma prior distribution with mean 2 (continuous line) and the
Gamma prior distribution with mean 1 (dotted line). These results indicate that the posterior
distribution of % is very sensitive to the prior distribution selection because the likelihood
function does not give enough information about 4 and the remaining parameters of the
kernel regression model (see R in Supplemental Table S1). In this case, the selection of an
appropriate prior distribution of 4 will depend strongly on the prior knowledge about the

value of & for this trait.

5.4. PREDICTION ACCURACY OF THE MAIZE DATASET

For the maize datasets, the prediction accuracy of TGK was statistically similar or lower
than the prediction accuracy of GK REML; for seven trait-environment combinations, GK
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REML was statistically better than TGK. Supplemental Table S2 shows the information
after fitting TGK2, RKHS KA and GKREML with the full data. The pattern of results is
similar to the patterns in the wheat dataset, with the residual variance lower in GK REML
and higher in RKHS KA. The three models (TGK2, RKHS KA and GK REML) had very
similar prediction accuracies, except in some specific trait-environment combinations. For
example, flowering traits FFL-WW and MFL-WW, with the highest values of & (3.8914
and 3.5055), showed poor prediction performance under the TGK model, probably due to
the bimodal distribution of the phenotypic data. Flowering traits such as FFL and MLF
do not have a very complex genetic architecture and this may be another reason why the
TGK2 model did not perform as well as the other models. Also, low values of / (0.2 and
0.4) produced a more global kernel and thus lowered the prediction ability of model TGK.
Another case is NCBL1, where the values of / are low (0.2). However, despite the fact that
the correlations of TGK2 were not all higher than those of the other two models, the PMSE
are generally lower for methods GK REML and RKHS than for model TGK.

6. CONCLUSIONS

The proposed method for estimating % is based on a Bayesian formulation in which the
selected value of & is a posterior point estimate of /, namely, the posterior mode / of the
marginal distribution p(k|y, ¢). Then, conditional on ﬁ, the TGK model is fitted and used
for prediction. The selection of & produced good prediction accuracy of unobserved indi-
viduals. When the proposed selection of % is combined with model TGK, the computational
limitations derived from the high dimensionality are removed, as well as the poor mixing
of the MCMC typical of most Bayesian genomic selection procedures.

The Gamma distribution used as a prior for estimating 4 penalizes the high values of
the bandwidth parameter. To elicit the Gamma prior for £, we fixed the form parameter (¢)
and either the mean or the mode may be selected such that K;, does not tend towards the
identity matrix or, at the other extreme, to a K; matrix with all its entries equal to one. In
the application for wheat and maize data, a mean of 2 was used, which represents moderate
values of the cross terms in K.

When the proposed model (TGK) was applied to the wheat data, it indicated superiority
in prediction accuracy over the RKHS KA and GK REML models. In the maize data, no
superiority was achieved in some trait-environment combinations, due to the fact that some
traits were bimodal and had different genetic architecture. Significant differences between
models were less clear for the maize data; model GK REML had statistically lower PMSE
than model TGK in seven cases, and, in general, both GK REML and RKHS KA had lower
PMSE than model TGK.
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APPENDIX

Assume that uniform distribution is assigned as the prior of u, thatis, p (i) o 1; Berger
et al. (1999) justify the use of non-informative prior distributions to obtain the predictive
distributions in the context of model selection.

Let us first integrate the likelihood with respect to w, such that the integrated likelihood
for (h, b, 2, @) is given by

o0
Lnp.o2.4) (h b o’ wly) = / P (dlu, b0’ h, w) P (M, b, azlw) du
—00

<o) () [ ()

1
6.1)

Define d = Uj, (y —1y) = d — ty, where y is the arithmetic mean of the elements of y,
such that

(d — put — Spb)'(d — jut — Spb) = n(5 — ) + (d — put — Spb)' (d — put — Syb),

Then, completing the normal density for u in the integrand of (6.1), we have

L(hb.o2) (h b,o?, wly) o« p (bloz, 90) P (02) (02)_@_1)/2 N (Zi|shb, 021)
6.2)

To integrate expression (6.2) with respect to b, recall that b = U, f and K, = U;,S,Uj,.
Then if we assign the normal distribution N (0, o2pK ;1) as the prior of f, the prior of b
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is N (0, (,002S;1). It follows that the marginal likelihood of (%, ¢, 02) is

L(n.o2) (h’02’ ‘p|y) = /L(h,b,a2,¢) (h,b,az, <p|y) N(b]0, oS, ")db
Rn

x (02)_("_1)/2 » (02) / N (&|shb, 021) N (b]0. po5; " )db

Rn

-1/2 .
o (@183 |83+ Su/0|  p (o) N@ISbi, o* D

where by, = (52 + S;,/(p)71 S'.d is the conditional posterior mean of b.
Finally, if we assign the prior X’2(02|U8, 7.) to o2, then

oo

m(ylh, @) o</L(h o2.0) (h b, o’ (p|d) (0 |v£,r£) do?
0

oo
-1/2 - B
o< IS41"/2[ 8% + S1/¢| /(oz)‘/zN(mshbh, o* Dy (@ |ve, 70)do?

Then, the marginal likelihood is:

molhg) 1511287+ Suse] [rg + (@~ subi) (a- shi)h)}(vmm

or

_ vetn—l1

n
1
m (ylh, @) o [ [ (1 +@s)72 | 7 + Z
im1 (1 +</)Sz
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