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Abstract This paper presents enhanced adaptive differ-
ential evolution (EADE) algorithm for solving high-
dimensional optimization problems over continuous space.
To utilize the information of good and bad vectors in the
DE population, the proposed algorithm introduces a new
mutation rule. It uses two random chosen vectors of the top
and bottom 100p% individuals in the current population of
size NP, while the third vector is selected randomly from
the middle [NP-2(100p%)] individuals. The mutation rule
is combined with the basic mutation strategy DE/rand/1/bin,
where the only one of the two mutation rules is applied with
the probability of 0.5. This new mutation scheme helps to
maintain effectively the balance between the global explo-
ration and local exploitation abilities for searching process
of the DE. Furthermore, we propose a novel self-adaptive
scheme for gradual change of the values of the crossover
rate that can excellently benefit from the past experience
of the individuals in the search space during evolution pro-
cess which, in turn, can considerably balance the common
trade-off between the population diversity and convergence
speed. The proposed algorithm has been evaluated on the
7 and 20 standard high-dimensional benchmark numerical
optimization problems for both the IEEE CEC-2008 and the
IEEE CEC-2010 Special Session and Competition on Large-
Scale Global Optimization. The comparison results between
EADE and its version and the other state-of-art algorithms
that were all tested on these test suites indicate that the pro-
posed algorithm and its version are highly competitive algo-
rithms for solving large-scale global optimization problems.
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Introduction

In general, global numerical optimization problem can be
expressed as follows (without loss of generality, minimiza-
tion problem is considered here):

min f (x), �x − [x1, x2, . . . xD] ∈ R
D; [xLj , xUj ],

∀ j = 1, 2, . . . , D (1)

where f is the objective function, �x is the decision vector
∈ R

D space consisting of D variables, D is the problem
dimension, i.e., the number of variables to be optimized,
and xLj and xUj are the lower and upper bounds for each
decision variable, respectively. The optimization of the large-
scale problems of this kind (i.e. D = 1000) is considered as
a challenging task, since the solution space of a problem
often increases exponentially with the problem dimension
and the characteristics of a problem may change with the
scale [1]. Generally speaking, there are different types of
real-world large-scale global optimization (LSGO) problems
in engineering, manufacturing, economy applications, such
as (bio-computing, data or web mining, scheduling, vehicle
routing, etc.). Todrawmore attention to this challengeof opti-
mization, the first competition on (LSGO) was held in CEC
2008 [2]. Consequently, in the recent few years, (LSGO) has
gained considerable attention and has attracted much interest
fromOperationsResearch andComputer Scienceprofession-
als, researchers, and practitioners as well as mathematicians
and engineers. Therefore, the challenges mentioned above
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have motivated the researchers to design and improve many
kinds of efficient, effective, and robust various kinds of meta-
heuristic algorithms that can solve (LSGO) problems with
high-quality solution and high convergence performance
with low computational cost. Evolutionary algorithms (EAs)
have been proposed to meet the global optimization chal-
lenges. The structure of (EAs) has been inspired from the
mechanisms of natural evolution. Due to their adaptabil-
ity and robustness, EAs are especially capable in solving
difficult optimization problems, such as highly nonlinear,
non-convex, non-differentiable, and multi-modal optimiza-
tion problems. In general, the process of (EAs) is based on the
exploration and the exploitation of the search space through
selection and reproduction operators [3]. Similar to other
evolutionary algorithms (EAs), differential evolution (DE)
is a stochastic population-based search method, proposed by
Storn and Price [4]. The advantages are its simple of imple-
mentation, ease of use, speed, and robustness. Due to these
advantages, it has successfully been applied for solvingmany
real-world applications, such as admission capacity planning
in higher education [5,6], financial markets dynamic mod-
eling [7], solar energy [8], and many others. In addition,
many recent studies prove that the performance of DE is
highly competitive with and in many cases superior to other
EAs in solving unconstrained optimization problems, con-
strainedoptimization problems,multi-objective optimization
problems, and other complex optimization problems [9].
However, DE has many weaknesses as all other evolutionary
search techniques. In general, DE has a good global explo-
ration ability that can reach the region of global optimum,
but it is slow at exploitation of the solution [10]. In addi-
tion, the parameters of DE are problem-dependent and it
is difficult to adjust them for different problems. Moreover,
DE performance decreases as search space dimensionality
increases [11]. Finally, the performance of DE deteriorates
significantly when the problems of premature convergence
and/or stagnation occur [11,12]. The performance of DE
basically depends on the mutation strategy, the crossover
operator. Besides, the intrinsic control parameters (popula-
tion size NP, scaling factor F , and the crossover rate CR)
play a vital role in balancing the diversity of population and
convergence speed of the algorithm. For the original DE,
these parameters are user-defined and kept fixed during the
run. However, many recent studies indicate that the perfor-
mance of DE is highly affected by the parameter setting and
the choice of the optimal values of parameters is always
problem-dependent. Moreover, prior to an actual optimiza-
tion process, the traditional time-consuming trial-and-error
method is used for fine-tuning the control parameters for each
problem. Alternatively, to achieve acceptable results even for
the sameproblem, different parameter settings alongwith dif-
ferent mutation schemes at different stages of evolution are
needed. Therefore, some techniques have been designed to

adjust control parameters in adaptive or self-adaptivemanner
instead of trial-and-error procedure plus new mutation rules
have been developed to improve the search capability of DE
[13–22]. Based on the above considerations, in this paper, we
present a novel DE, referred as EADE, including two novel
modifications: novel mutation rule and self-adaptive scheme
for gradual change of CR values. In EADE, a novel muta-
tion rule can balance the global exploration ability and the
local exploitation tendency and enhance the convergence rate
of the algorithm. Furthermore, a novel adaptation schemes
for CR is developed that can benefit from the past experi-
ence through generations of evolutionary. Scaling factors are
produced according to a uniform distribution to balance the
global exploration and local exploitation during the evolution
process. EADE has been tested on 20 benchmark test func-
tions developed for the 2010 IEEECongress on Evolutionary
Computation (IEEECEC 2010) [1]. Furthermore, EADE has
been also tasted on 7 benchmark test functions developed
for the 2008 IEEE Congress on Evolutionary Computation
(IEEE CEC 2008) [2]. The experimental results indicate
that the proposed algorithm and its two versions are highly
competitive algorithms for solving large-scale global opti-
mization problems. The remainder of this paper is organized
as follows. The next section briefly introduces DE and its
operators followed by which the related work is reviewed. In
the subsequent section, EADE algorithm is presented. The
experimental results are given before the concluding section.
Finally, the conclusions and future works are presented.

Differential evolution (DE)

This section provides a brief summary of the basic Differ-
ential Evolution (DE) algorithm. In simple DE, generally
known as DE/rand/1/bin [23,24], an initial random pop-
ulation consists of NP vectors �X ,∀ i = 1, 2, . . . , N P ,
is randomly generated according to a uniform distribution
within the lower and upper boundaries (xLj , x

U
j ). After ini-

tialization, these individuals are evolved by DE operators
(mutation and crossover) to generate a trial vector. A com-
parison between the parent and its trial vector is then done to
select the vector which should survive to the next generation
[9]. DE steps are discussed below:

Initialization

To establish a starting point for the optimization process,
an initial population P0 must be created. Typically, each j
th component ( j = 1, 2, . . . , D)of the i th individuals (i =
1, 2, . . . , N P) in the P0 is obtained as follows:

x0j,i = x j,L + rand(0, 1) · (x j,U − x j,L) (2)
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where rand (0,1) returns a uniformly distributed random
number in [0, 1].

Mutation

At generation G, for each target vector xGi , a mutant vector
vGi is generated according to the following:

vGi = xGr1 + F · (xGr2 − xGr3 ).r1 �= r2 �= r3 �= i (3)

With randomly chosen indices r1, r2, r3 ∈ {1, 2, . . . , N P},
F is a real number to control the amplification of the differ-
ence vector (xGr2 − xGr3 ). According to Storn and Price [4], the
range of F is in [0, 2]. In thiswork, if a component of amutant
vector violates search space, then the value of this compo-
nent is generated a new using (2). The other most frequently
used mutations strategies are

“DE/best/1′′[17] : vGi = xGbest + F · (xGr1 − xGr2 ) (4)

“DE/best/2′′[17] : vGi = xGbest + F · (xGr1 − xGr2 )

+ F · (xGr3 − xGr4 ) (5)

“DE/rand/2′′[17] : vGi = xGr1 + F · (xGr2 − xGr3 )

+F · (xGr4 − xGr5 ) (6)

“DE/current-to-best/1′′[17] : vGi = xGi
+ F · (xGbest − xGi ) + F · (xGr1 − xGr2 ) (7)

“DE/current-to-rand/1′′[17] : vGi = xGi
+ F · (xGr1 − xGi ) + F · (xGr2 − xGr3 ). (8)

The indices r1, r2, r3, r4, r5 are mutually integers randomly
generated within the range [1,NP], which are also different
from the index i . These indices are randomly generated once
for eachmutant vector. The scale factor F is a positive control
parameter for scaling the difference vector. xGbest is the best
individual vector with the best fitness value in the population
at generation G.

Crossover

There are two main crossover types, binomial and exponen-
tial.Wehere elaborate the binomial crossover. In the binomial
crossover, the target vector is mixed with the mutated vector,
using the following scheme, to yield the trial vector uGi .

uGj,i =
{

vGj,i , if(rand j,i ≤CRor j= jrand)

xGj,i , otherwise (9)

where rand j,i (i ∈ [1, N P] and j ∈ [1, D]) is a uniformly
distributed random number in [0,1], CR ∈ [0, 1] called the
crossover rate that controls howmany components are inher-
ited from the mutant vector, jrand is a uniformly distributed

random integer in [1, D] that makes sure at least one compo-
nent of trial vector is inherited from the mutant vector.

Selection

DE adapts a greedy selection strategy. If and only if the trial
vector uGi yields as good as or a better fitness function value
than xGi , then uGi is set to xG+1

i . Otherwise, the old vector
xGi is retained. The selection scheme is as follows (for a
minimization problem):

xG+1
i =

{
uGi , f (uGi )≤ f (xGi )

xGi , otherwise (10)

A detailed description of standard DE algorithm is given in
Fig. 1.

Related work

As previously mentioned, during the past few years, LSGO
has attracted much attention by the researches due to its sig-
nificance as many real-world problems and applications are
high-dimensional problems in nature. Basically, the current
EA-based LSGO research can be classified into two cate-
gories:

• Cooperative Co-evolution (CC) framework algorithms or
divide-and-conquer methods.

• Non Cooperative Co-evolution (CC) framework algo-
rithms or no divide-and-conquer methods.

Cooperative Co-evolution (CC) has become a popular and
effective technique in Evolutionary Algorithms (EAs) for
large-scale global optimization since its initiation in the pub-
lication of Potter and De Jong [26]. The main idea of CC is to
partition the LSGO problem into a number of sub-problems,
i.e., the decision variables of the problem are divided into
smaller subcomponents, each of which is optimized using
a separate EA. Using this divide-and-conquer method, the
classical EAs are able to effectively solve many separable
problems [26]. CC shows better performance on separa-
ble problems, but deteriorated on non-separable problems,
because the interacting variables could not be grouped in
one subcomponent. Recently, different versions of CC-based
EAs have been developed and shown excellent performance.
Yang et al. [27] proposed anewdecomposition strategy called
random grouping as a simple way of increasing the probabil-
ity of grouping interacting variables in one subcomponent.
According to this strategy, without any prior knowledge of
the non-separability of a problem, subdivide a n-dimensional
decision vector into m s-dimensional subcomponents. Later,
Omidvar et al. [28] proposed DECC-DML algorithm which
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01. Begin
02. G=0
03. Create a random initial population G

ix
r , 1,...,i i NP∀ =

04. Evaluate ( )G
if xr , 1,...,i i NP∀ =

05. For G=1 to Gmax Do
06. For i=1 to NP Do
07. Select randomly 1 2 3 [1, ]r r r i NP≠ ≠ ≠ ∈
08. jrand= randint(1,D)
09. For j=1 to D Do
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20. End If
21. End For
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24. End

Fig. 1 Description of standard DE algorithm. rand [0,1) is a function that returns a real number between 0 and 1. randint (min, max) is a function
that returns an integer number between min and max. NP, Gmax, CR, and F are user-defined parameters. D is the dimensionality of the problem

is a differential evolution algorithm adoptingCC frame. They
suggested a new decomposition strategy called delta group-
ing. The central idea of this technique was the improvement
interval of interacting variables that would be limited if they
were in different subcomponents. Delta method measures
the averaged difference in a certain variable across the entire
population and uses it for identifying interacting variables.
The experimental results show that this new method is more
effective than the existing random grouping method. How-
ever,DECC-DML is less efficient on non-separable functions
with more than one group of rotated variables. Many CC-
based algorithms have been developed during the past decade
such as FEPCC [29], DECC-I, DECC-II [30], MLCC [31],
SEE [32], and AM-CCPSO [33]. On the other hand, there
are many other approaches that optimize LSGO problems as
a whole, that is, no divide-and-conquer methods were used.
Actually, it is considered as a challenging task as it needs
to develop novel evolutionary operators that can promote
and strengthen the capability of the algorithms to improve
the overall optimization process in high-dimensional search
space. Takahama and Sakai [34] proposedDEwith landscape

modality detection and a diversity archive (LMDEa). In this
method, the landscape modality is observed at every fixed
generation. Based on the modality detection, F is controlled
dynamically. LMDEa showed excellent performance for the
large-scale optimization problems. Brest et al. [35] presented
self-adaptive Differential Evolution algorithm (jDElsgo). In
this approach, self-adaptive F and Cr control parameters and
“rand/1/bin” strategy along with population size reduction
mechanism are used. Similarly, Wang et al. [36] introduced
a sequential Differential Evolution (DE) enhanced by neigh-
borhood search (SDENS), where hybrid crossover strategy
“rand/1/bin” and “rand/1/exp” are used. To search the neigh-
bors of each individual, two trial individuals by local and
global neighborhood search strategies are created. Then,
the fittest one among the current individual and the two
created trial individuals is selected as a new current indi-
vidual. Molina et al. [37] put forward a memetic algorithm
based on local search chains, named MA-SW-Chains, which
assigned local search intensity to each individual depending
on its features by changing different local search applica-
tions. Kabán et al. [38] proposed some fundamental roots
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of the problem and make a start at developing a new and
generic framework to yield effective and efficient estima-
tions of distribution algorithms (EDAs)-type algorithms for
large-scale continuous global optimization problems. Cheng
and Jin [39] introduced a novel competitive swarm optimizer
(CSO). The algorithm is fundamentally inspired by the par-
ticle swarm optimization but is conceptually very different.
In the proposed CSO, neither the personal best position of
each particle nor the global best position (or neighborhood
best positions) is involved in updating the particles. Instead,
a pair wise competition mechanism is introduced, where the
particle that loses the competition will update its position by
learning from thewinner. Recently, different versions of non-
CC-based EAs have been developed and shown excellent
performance such as SL-PSO [40], GODE [41], and EDA-
MCC[42]. In general, the proposedEADEalgorithmbelongs
to this category.

EADE algorithm

In this section, we outline a novel DE algorithm, EADE, and
explain the steps of the algorithm in details.

Novel mutation scheme

DE/rand/1 is the fundamental mutation strategy developed
by Storn and Price [23,25], and it is reported to be the most
successful andwidely used scheme in the literature [9]. Obvi-
ously, in this strategy, the three vectors are chosen from the
population at random for mutation and the base vector is then
selected at random among the three. The other two vectors
form the difference vector that is added to the base vector.
Consequently, it is able to maintain population diversity and
global search capability with no bias to any specific search
direction, but it slows down the convergence speed of DE
algorithms [15]. DE/rand/2 strategy, like the former scheme
with extra two vectors that form another difference vector,
which might lead to better perturbation than one-difference-
vector-based strategies [15]. Furthermore, it can provide
more various differential trial vectors than the DE/rand/1/bin
strategy which increase its exploration ability of the search
space. On the other hand, greedy strategies like DE/best/1,
DE/best/2, and DE/current-to-best/1 incorporate the infor-
mation of the best solution found so far in the evolutionary
process to increase the local search tendency that leads to fast
convergence speed of the algorithm. However, the diversity
of the population and exploration capability of the algorithm
may deteriorate or may be completely lost through a very
small number of generations, i.e., at the beginning of the
optimization process, that cause problems such stagnation
and/or premature convergence. Consequently, to overcome
the shortcomings of both types ofmutation strategies,most of

the recent successful algorithms utilize the strategy candidate
pool that combines different trail vector generation strategies
that have diverse characteristics and distinct optimization
capabilities, with different control parameter settings to be
able to deal with a variety of problems with different features
at different stages of evolution [15,17,41]. Contrarily, taking
into consideration theweakness of existing greedy strategies,
[16] introduced a new differential evolution (DE) algo-
rithm, named JADE, to improve optimization performance
by implementing a new mutation strategy “DE/current-to-
pbest” with optional external archive and updating control
parameters in an adaptive manner. Consequently, proposing
new mutations strategies that can considerably improve the
search capability of DE algorithms and increase the possibil-
ity of achieving promising and successful results in complex
and large-scale optimization problems is still an open chal-
lenges for the evolutionary computation research. Therefore,
this research uses a new mutation rule with a view of balanc-
ing the global exploration ability and the local exploitation
tendency and enhancing the convergence rate of the algo-
rithm. The proposed mutation strategy uses two random
chosen vectors of the top and bottom 100p% individuals
in the current population of size NP, while the third vector
is selected randomly from the middle (NP-2(100p%)) indi-
viduals. The proposed mutation vector is generated in the
following manner:

νG+1
i = xGr + F1 · (xGp_best − xGr )+ F2 · (xGr − xGp_worst)

(11)

where xGr is a random chosen vector from the middle (NP-
2(100p%)) individuals, and xGp_best and x

G
p_worst are randomly

chosen as one of the top and bottom 100p% individuals in
the current population, respectively, with p ∈ (0, 1], F1 and
F2 are the mutation factors that are independently generated
according to uniform distribution in (0,1). Really, the main
idea of the proposed novel mutation is based on that each
vector learns from the position of the top best and the bottom
worst individuals among the entire population of a partic-
ular generation. Obviously, from mutation Eq. (11), it can
be observed that the incorporation of the objective function
value in themutation schemehas twobenefits. First, the target
vectors are not always attracted toward the same best posi-
tion found so far by the entire population. Thus, the premature
convergence at local optima can be almost avoided by follow-
ing the same direction of the top best vectors which preserves
the exploration capability. Secondly, avoiding the direction
of the bottomworst vectors can enhances the exploitation ten-
dency by guiding the search process to the promising regions
of the search space, i.e., it concentrates the exploitation of
some sub-regions of the search space. Therefore, the directed
perturbations in the proposed mutation resemble the concept
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of gradient as the difference vectors are directed from the
worst vectors to the best vectors [43]. Thus, it is consider-
ably used to explore the landscape of the objective function
being optimized in different sub-regions around the best vec-
tors within search space through optimization process. Thus,
by utilizing and sharing the best and worst information of
the DE population, the proposed directed mutation balances
both global exploration capability and local exploitation ten-
dency. The new mutation strategy is embedded into the DE
algorithm and combined with the basic mutation strategy
DE/rand/1/bin, where only one of the two mutation rules is
applied with the probability of 0.5.

Parameter adaptation schemes in EADE

The successful performance of DE algorithm is significantly
dependent upon the choice of its three control parameters:
The scaling factor F , crossover rate CR, and population size
NP [23,25]. In fact, they have a vital role, because they
greatly influence the effectiveness, efficiency, and robust-
ness of the algorithm. Furthermore, it is difficult to determine
the optimal values of the control parameters for a variety of
problems with different characteristics at different stages of
evolution. In the proposed HDE algorithm, NP is kept as
a user-specified parameter, since it highly depends on the
problem complexity. Generally speaking, F is an important
parameter that controls the evolving rate of the population,
i.e., it is closely related to the convergence speed [15]. A
small F value encourages the exploitation tendency of the
algorithm that makes the search focus on neighborhood of
the current solutions; hence, it can enhance the convergence
speed. However, it may also lead to premature convergence
[43]. On the other hand, a large F value improves the explo-
ration capability of the algorithm that can makes the mutant
vectors distribute widely in the search space and can increase
the diversity of the population [43]. However, it may slow
down the search [43] with respect to the scaling factors in the
proposed algorithm, at each generation G, the scale factors
F1 and F2 of each individual target vector are independently
generated according to uniform distribution in (0,1) to enrich
the search behavior. The constant crossover (CR) reflects the
probability with which the trial individual inherits the actual
individual’s genes, i.e., which and howmany components are
mutated in each element of the current population [17,43].
The constant crossover CR practically controls the diversity
of the population [44]. As a matter of fact, if CR is high, this
will increase the population diversity. Nevertheless, the sta-
bility of the algorithm may reduce. On the other hand, small
values of CR increase the possibility of stagnation that may
weak the exploration ability of the algorithm to open up new
search space. In addition, CR is usually more sensitive to
problems with different characteristics such as unimodality
and multi-modality, and separable and non-separable prob-

lems. For separable problems, CR from the range (0, 0.2) is
the best, while for multi-modal, parameter dependent prob-
lems, CR in the range (0.9,1) is suitable [45]. On the other
hand, there are wide varieties of approaches for adapting or
self-adapting control parameters values through optimization
process. Most of these methods based on generating ran-
dom values from uniform, normal, or Cauchy distributions
or by generating different values from pre-defined parame-
ter candidate pool besides use the previous experience (of
generating better solutions) to guide the adaptation of these
parameters [11,15–17,19,45–49]. The presented work pro-
posed a novel self-adaptation scheme for CR. The core idea
of the proposed self-adaptation scheme for the crossover rate
CR is based on the following fundamental principle. In the
initial stage of the search process, the difference among indi-
vidual vectors is large, because the vectors in the population
are completely dispersed or the population diversity is large
due to the random distribution of the individuals in the search
space that requires a relatively smaller crossover value. Then,
as the population evolves through generations, the diversity
of the population decreases as the vectors in the population
are clustered, because each individual gets closer to the best
vector found so far. Consequently, to maintain the popula-
tion diversity and improve the convergence speed, crossover
should be gradually utilized with larger values along with the
generations of evolution increased to preserve well genes in
so far as possible and promote the convergence performance.
Therefore, the population diversity can be greatly enhanced
through generations. However, there is no an appropriate CR
value that balances both the diversity and convergence speed
when solve a given problem during overall optimization pro-
cess. Consequently, to address this problem and following
the SaDE algorithm [15], in this paper, a novel adaptation
scheme for CR is developed that can benefit from the past
experience through generations of evolutionary.

Crossover rate Adaptation At each generation G, the cross-
over probability CRi of each individual target vector is
independently generated randomly from pool A according
to uniform distribution and the following procedure exists
through generations. Where A is the pool of values of
crossover rate CR that changes during and after the learn-
ing period LP, we set LP = 10% of GEN, G is the current
generation number, and GEN is the maximum number of
generations. The lower and upper limits of the ranges for (G)
are experimentally determined, CR_Flag_List [i] is the list
that contains one of two binary values (0,1) for each indi-
vidual i through generation G, where 0 represents failure,
no improvement, when the target vector is better than the
trial vector during and after the learning period and 1 rep-
resent success, improvement, when the trial vector is better
than the target vector during and after the learning period,
the failure_counter_list [i] is the list that monitors the work-
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ing of individuals in terms of fitness function value during
generations after completion the learning period, if there is
no improvement in fitness, then the failure counter of this
target vector is increased by unity. This process is repeated
until it achieves pre-specified value of Max_failure_counter
which assigned a value 20 that is experimentally determined,
CR_Ratio_List [k] is the list that records the relative change
improvement ratios between the trial and target objective
function values with respect to each value k of the pool of
values A of CR through generation G. It can be clearly seen
from procedure 1 that, at G = 1, CR = 0.05 for each target
vector and then, at each generation G, if the generated trial
vector produced is better than the target vector, the relative
change improvement ratio (RCIR) associated with this CR
value is computed and the correspondence ratio is updated.
On the other hand, during the learning period, if the target
vector is better than the trial vector, then the CR value is cho-
sen randomly from the associated pool A of CR values, that is
gradually added more values, according to generation num-
ber and hence, for this CR value, there is no improvement
and its ratio remains unchanged. However, after termination
of the learning period, if the target vector is better than the
trial vector, i.e., if there is no improvement in fitness, then the
failure_counter is increased by one in each generation till this
value achieves a pre-specified value of Max_failure_counter
which assigned a value 20, then this CR value should change
to anewvalue that is randomly selected from thepool A ofCR
values that is taken in range 0.1–0.9 in steps of 0.1 and 0.05
and 0.95 which are also included as lower and upper values,
respectively. Note that the (RCIR) is only updated if there
is an improvement; Otherwise, it remains constant. Thus,
the CR value with maximum ratio is continuously changing
according to the evolution process at each subsequent gen-
eration. In fact, although all test problems included in this
study have optimum of zero, the absolute value is used in
calculating (RCIR) as a general rule to deal with positive,
negative, or mixed values of objective function. Concretely,
Fig. 2 shows that, during the first half of the learning period,
the construction of pool A of CR values ensures the diversity
of the population, such that the crossover probability for i th
individual target increases gradually in staircase along with
the generations of evolution process increased. Taking into
consideration that the probability of chosen small CR values
is greater than the probability of chosen the larger CR values
as the diversity of the population is still large. In addition, in
the second half of the learning period, there is a larger values
of 0.9 and 0.95 which are added to the pool as it favors non-
separable functions. However, all the values have an equally
likely chance of occurrence to keep on the diversity with dif-
ferent values of CR. Consequently, the successful CR values
with high relative change improvement ratio in this period
will be survive to be used in the next generations of the opti-
mization process until it fails to achieve improvement for a

specific value of 20, then it must be changed randomly by
a new value. Thus, the value of CR is adaptively changed
as the diversity of the population changes through gener-
ations. Distinctly, it varies from one individual to another
during generations, and also, it is different from one function
to another one being optimized. In general, adaptive con-
trol parameters with different values during the optimization
process in successive generations enrich the algorithm with
controlled-randomness which enhances the global optimiza-
tion performance of the algorithm in terms of exploration and
exploitation capabilities. Therefore, it can be concluded that
the proposed novel adaptation scheme for gradual change of
the values of the crossover rate can excellently benefit from
the past experience of the individuals in the search space
during evolution process which, in turn, can considerably
balance the common trade-off between the population diver-
sity and convergence speed. The pseudocode of EADE is
presented in Fig. 3.

Experimental study

Benchmark functions

The performance of the proposed EADE algorithm has been
tasted on 20 scalable optimization functions for the CEC
2010 special session and competition on large-Scale Global
Optimization. A detailed description of these test functions
can be found in [1]. These 20 test functions can be divided
into four classes:

1. Separable functions F1–F3;
2. Partially separable functions, in which a small number of

variables are dependent, while all the remaining ones are
independent (m = 50) F4–F8;

3. Partially separable functions that consist of multiple
independent subcomponents, each of which is m-non-
separable (m = 50) F9–F18;

4. Fully non-separable functions F19–F20;

where the sphere function, the rotated elliptic function,
Schwefels Problem 1.2, Rosenbrock function, the rotated
Rastrigins function, and the rotatedAckleys function are used
as the basic functions. The control parameter used to define
the degree of separability of a given function in the given test
suite is set as m = 50. The dimensions (D) of functions are
1000. In addition, the performance of the proposed EADE
algorithm has also been tasted on 7 scalable optimization
functions for the CEC 2008 special session and competition
on Large-Scale Global Optimization. A detailed description
of these test functions can be found in [2]. These 7 test
functions are Shifted Sphere Function (F1), Shifted Schwe-
fel’s Problem2.21 (F2), ShiftedRosenbrock’s Function (F3),
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If ((CR_Flag_List [ i ] = 0 )and (G<=LP)) ,If the target vector is better than the trial vector 
during the learning period, then :

, [0.05] , 0 (1 / 6) * ( )

, [0.05 , 0.1, 0.2] , (1 / 6) * ( ) (1 / 4) * ( )

, [0.05 , 0.1, 0.2, 0.3, 0.4] , (1 / 4) * ( ) (1 / 3) * ( )
i

Randomly select one value from A A G LP

Randomly select one value from A A LP G LP

Randomly select one value from A A LP G LP
Cr

R

= ≤ <

= ≤ <

= ≤ <
=

, [0.05 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] , (1 / 3) * ( ) (5 / 12) * ( )

, [0.05 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] , (5 / 12) * ( ) (1 / 2) * ( )

andomly select one value from A A LP G LP

Randomly select one value from A A LP G LP

Randomly select one value f

= ≤ <

= ≤ <

, [0.05 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95] , (1 / 2) * ( ) (1) * ( )rom A A LP G LP= ≤ <

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Else If ((CR_Flag_List [ i ] = 0 )and (G>LP)) ,If the target vector is better than the trial vector 

after the learning period, then:

If the failure_counter_list [ i ] = Max_failure_counter , 

Randomly select one value from list A , A= [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95].

else

failure_counter_list[i]= failure_counter_list[i]+1;

End If

Else ((CR_Flag_List [ i ] = 1 )) ,If the trial vector is better than the target vector through 

generations, then:

Select the CR value from A with maximum relative change improvement ratio (RCIR) from 

CR_Ratio_List [ k ].

End IF

Fig. 2 Pseudocode of crossover rate CR

Shifted Rastrigin’s Function (F4), Shifted Griewank’s Func-
tion (F5), Shifted Ackley’s Function (F6), and FastFractal
“DoubleDip” Function (F7). The dimensions (D) of func-
tions are 100, 500, and 1000. These functions can be divided
into two classes:

1. Separable functions: F1, F4, F5 and F6;
2. non-separable functions F2, F3 and F7.

Note that F5is grouped as a non-separable function, because
the product component becomes less significant with the
increase of dimension [39].

Parameter settings and involved algorithms

To evaluate the performance of algorithm, experiments were
conducted on these two test suites. We adopt the solution

error measure ( f (x) − f (x∗)), where f (x) is the best
solution obtained by algorithms in one run and f (x∗) is well-
known global optimum of each benchmark function, which
is recorded after 1.2e+05, 6.0e+05, and 3.0e+06 function
evaluations (FEs) for CEC’2010 and 5.0e+03*D function
evaluations (FEs) for CEC’2008, respectively. All experi-
ments for each function run 25 times independently and
statistical results are provided including the best, median,
mean, worst results, and the standard deviation. The pop-
ulation size in EADE was set to 50 for CEC’2010 and
50 for D = 100 and 100 for D = 500 and 1000 for
CEC’2008, respectively. The p parameter is set to 0.1, i.e.,
the top 10% high-quality and bottom 10% low-quality solu-
tions in the mutation are considered. The learning period
(LP) and the maximum failure counter (MFC) are set to
10% of total generations and 20 generations, respectively.
It is a comparatively good parameter combination that has
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01. Begin
02. G=0 
03. Create a random initial population G

ix
r , 1,...,i i NP∀ = ,

04. set the Learning Period (LP )= 10% GEN, set the Max_failure_counter = 20, p=0.1
05. For each G

ix
r

, set the failure_counter_list[ i ] = 0 , set the CR_Flag_List [ i ] = 0,

06. For each CR values in the list, set the CR_Ratio_List [ k ] = 0 , 1,...,11.k k∀ =
07. Evaluate ( )G

if xr , 1,...,i i NP∀ =
08. For G=1 to GEN Do
09. For i=1 to NP Do
10. Compute the (crossover rate) Cri according to procedure (1).
11. If ( rand[0,1]<=0.5) Then (Use New Directed Mutation Scheme)    

12. Randomly choose _
G
p bestx as one of the 100p% best vectors (top individuals).

13. Randomly choose _
G
p worstx as one of the 100p% worst vectors (bottom individuals).

14. Randomly choose G
rx as one of the (NP-2(100p %)) vectors (middle individuals).

15. jrand= randint(1,D) , 1F = rand(0,1)
16. For j=1 to D Do
17. If (randj[0,1]< CR or j= jrand) Then 

18. 21 __
1 ) ( )(G G G

r r r
GG
p worstp best

G
i FFx x xx xν + ⋅ + ⋅ −= + −

19. Else

20. ,
1

,
G
i j

G
i ju x+ =

21. End If
22. End For
23. Else (Use Basic Mutation Scheme)
24. Select randomly 1 2 3 [1, ]r r r i NP≠ ≠ ≠ ∈
25. jrand= randint(1,D), F = rand(0,1)
26. For j=1 to D Do
27. If (randj[0,1]< CR or j= jrand) Then 

28. 1, 2, 3,
1

, ( )G G G
r j r j r j

G
i j Fu x x x+ ⋅= + −

29. Else

30. ,
1

,
G
i j

G
i ju x+ =

31. End If              
32. End For
33. End If

34. If( f ( 1Gui
+r

) ≤ f ( Gxi
r

))Then

35. 11 G
i

G
ix u ++ =
r r

, ( f ( 1G
ix

+r
)= f ( 1G

iu
+r

))

36. If( f ( 1Gui
+r

) ≤ f ( G
bestxr ))Then

37. 11 G
i

G
bestx u ++ =
r r

, ( f ( 1G
bestx +r

)= f ( 1G
iu

+r
))

38. End

Fig. 3 Description of EADE algorithm

been experimentally investigated and tuned by us. For sep-
arable functions F1–F3 in CEC’2010 and F1, F4, F5 andF6
in CEC’2008, CR is chosen to be 0.05 as they are separa-

ble functions. Regarding CEC’2010, EADE was compared
to DE-based algorithms that were all tested on this test suite
in this competition. These algorithms are:
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39. CR_Flag_List [ i ] =1
The relative change improvement ratio (RCIR) is updated

40. CR_Ratio_List[k]= CR_Ratio_List[k] + (
,

,

) ) )
1

) ) )(

1min( ( (
1max( ( f x

G Gf u f xi i
G Gf ui i

−

+

+ r

r r

r ))

41. Else  
42. 1 G

i
G
ix x+ =
r r

43. CR_Flag_List [ i ] =0
44. End If
45. End For
46. G=G+1
47. End For
48. End

Fig. 3 continued

• CooperativeCo-evolutionwithDeltaGrouping forLarge-
Scale Non-separable Function Optimization (DECC-
DML) [28].

• Large-scale optimization by Differential Evolution with
Landscape modality detection and a diversity archive
(LMDEa) [34].

• Large-Scale Global Optimization using Self-adaptive
Differential Evolution Algorithm (jDElsgo) [35].

• DE Enhanced by Neighborhood Search for Large-Scale
Global Optimization (SDENS) [36].

Besides, Memetic algorithm based on local search chains
for large-scale continuous global optimization (MA-SW-
Chains) algorithm, which is non-DE-based algorithm, as it
won the CEC’2010 LSGO competition [37].

On the other hand, regarding CEC’2008, EADEwas com-
pared to different evolutionary algorithms that were all tested
on this test suite in this competition or recently. These algo-
rithms are:

• A competitive swarm optimizer for large-scale optimiza-
tion (CEO) [39].

• A social learning particle swarm optimization algorithm
for scalable optimization (SL-PSO) [40].

• Cooperatively co-evolving particle swarms for large-
scale optimization (CCPSO2) [50].

• A simple modification in CMA-ES achieving linear time
and space complexity (sep-CMA-ES) [51].

• Solving large-scale global optimization using improved
particle swarm optimizer (EPUS-PSO) [52].

• Multilevel cooperative co-evolution for large-scale opti-
mization (MLCC) [31].

• Dynamic multi-swarm particle swarm optimizer with
local search for large-scale global Optimization (DMS-
L-PSO) [53].

Among these seven algorithms, CEO [39] is the most
recently proposed state-of-the-art for large-scale optimiza-

tion, which belongs to the cooperative co-evolution (CC)
framework [26] for large-scale optimization. In the proposed
CSO, neither the personal best position of each particle nor
the global best position (or neighborhood best positions)
is involved in updating the particles. Instead, a pairwise
competition mechanism is introduced, where the particle
that loses the competition will update its position by learn-
ing from the winner. To understand the search behavior of
the proposed CSO, a theoretical proof of convergence is
also provided. Similarly, a social learning PSO (SL-PSO)
[40] has also been proposed belonging to the CC frame-
work. Unlike classical PSO variants, each particle in the
proposed SL-PSO learns from any better particles (termed
demonstrators) in the current swarm. In addition, to ease the
burden of parameter settings, the proposed SL-PSO adopts
a dimension-dependent parameter control method. CCPSO2
also belongs to the cooperative co-evolution (CC) framework
[50] for large-scale optimization, where a random grouping
strategy is adopted based on the idea of divide-and-conquer
[26]. The sep-CMA-ES is an extension of the original CMA-
ES algorithm [51], which has been shown more efficient and
fairly scalable to some high-dimensional test functions up to
1000-D. EPUS-PSO is another PSOvariantwhich adjusts the
swarm size according to the search results [52], and DMS-L-
PSO is the DMS-PSO enhanced with a local search operator
[53].

To compare the solution quality from a statistical angle
of different algorithms and to check the behavior of the
stochastic algorithms [54], the results are compared using
multi-problem Wilcoxon signed-rank test at a 0.05 signifi-
cance level. Wilcoxon signed-rank test is a non-parametric
statistical test that allows us to judge the difference between
paired scores when it cannot make the assumption required
by the paired-sample t test, such as that the population should
be normally distributed, where R+ denotes the sum of ranks
for the test problems in which the first algorithm performs
better than the second algorithm (in the first column), and
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R− represents the sum of ranks for the test problems in
which the first algorithm performs worse than the second
algorithm (in the first column). Larger ranks indicate larger
performance discrepancy. The numbers in Better, Equal, and
Worse columns denote the number of problems in which the
first algorithm is better than, equal, or worse than the second
algorithm. As a null hypothesis, it is assumed that there is no
significance difference between the mean results of the two
samples. Whereas the alternative hypothesis is that there is
significance in the mean results of the two samples, the num-
ber of test problems N = 20 for 1.25e+05, 6.00e+05, and
3.00e+006 Function evaluations for CEC’2010, while the
number of test problems N = 7 for 5.00e+005, 2.50E+06,
and 5.00e+006 Function evaluations with D = 100, D =
500, D = 1000 for CEC’2008 and 5% significance level.
Use the smaller of the values of the sums as the test value
and compare it with the critical value or use the p value and
compare it with the significance level. Reject the null hypoth-
esis if the test value is less than or equal to the critical value
or if the p value is less than or equal to the significance level
(5%). Based on the result of the test, one of three signs (+,
−, and ≈) is assigned for the comparison of any two algo-
rithms (shown in the last column), where (+) sign means
the first algorithm is significantly better than the second, (−)
sign means that the first algorithm is significantly worse than
the second, and (≈) sign means that there is no significant
difference between the two algorithms. In addition, to obtain
the final rankings of different algorithms for all functions, the
Friedman test is used at a 0.05 significance level. All the p
values in this paper were computed using SPSS (the version
is 20.00).

To perform comprehensive evaluation and to assess the
effectiveness of the proposed self-adaptive crossover rate
scheme and newmutation scheme, another version of EADE,
named EADE*, has been tested and compared against EADE
andotherDE-based algorithms. EADE* is the same asEADE
except that the new mutation scheme is only used.

Experimental results and discussions

In this section,we compare directly themean results obtained
by EADE and EADE* with the ones obtained by LMDEa
[34], SDENS [36], jDElsgo [35], DECC-DML [28], and
MA-SW-chains [37] for CEC’2010. Tables 1, 2, 3 contain
the results obtained by all algorithms in 1.2e+05, 6.0e+05,
and 3.0e+06 function evaluations (FEs), respectively. For
remarking the best algorithm, best mean for each function
is highlighted in boldface. From these tables, we have high-
lighted the following direct comparisons and conclusions:

• For many test functions, the worst results obtained by
the proposed algorithms are better than the best results
obtained by other algorithms with all FEs.

• For many test functions, there are continuous improve-
ment in the results obtained by our proposed algorithms,
especially EADE and EADE*, with all FEs, while the
results with FEs = 6.0E+05 are very close to the
results with FEs = 3.0E+06 obtained by some of the
compared algorithms which indicate that our proposed
approaches are scalable enough and can balance greatly
the exploration and exploitation abilities for solving
high-dimensional problems until the maximum FEs are
reached.

• For many functions, the remarkable performance of
EADE and EADE* with FEs = 1.20E+05, and FEs =
6.0E+05 compared to the performance of other algo-
rithms shows its fast convergence behavior. Thus, our
proposed algorithms can perform well and achieve good
results within limited number of function evaluations
which is very important issue when dealing with real-
world problems.

• EADE and EADE* got very close to the optimum of
single-group m-non-separable multi-modal functions F6
in all statistical results with 1.20E+05 FEs.

• EADE and LMDEa, among all other algorithms, got very
close to the optimum in all runs of single-group m-non-
separable multi-modal functions F8 with 3.0E+06 FEs.

• The performance of EADE and EADE* performs well in
all types of problemswhich indicate that it is less affected
than the most of other algorithms by the characteristics
of the problems.

Furthermore, compared to the complicated structures and
number of methods and number of control parameters used
in other algorithms, we can see that our proposed EADE and
EADE* are very simple and easy to be implemented and pro-
grammed in many programming languages. They only use
very simple self-adaptive crossover rate with two parame-
ters and a novel mutation rule with one parameters and basic
mutation. Thus, they neither increase the complexity of the
original DE algorithm nor the number of control parameters.
To investigate and compare the performance of the proposed
algorithms EADE and EADE* against other algorithms in
statistical sense, multi-problem Wilcoxon signed-rank test
at a significance level 0.05 is performed on mean errors
of all problems with (1.25E+05 FES, 6.00E+05 FES, and
3.00E+06 FES), and the results are presented in Tables
4, 5, and 6, respectively. Where R+ is the sum of ranks
for the functions in which first algorithm outperforms the
second algorithm in the row, and R− is the sum of ranks
for the opposite. From Table 4 and 5, it can be obviously
seen that EADE and EADE* are significantly better than
SDENS, jDElsgo, and DECC-DML algorithms. Moreover,
there is no significant difference between EADE*, LMDEa,
and EADE algorithm. However, MA-SW chains are signif-
icantly better than EADE and EADE* algorithms. Finally,
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Table 1 Experimental comparisons between EADE, EADE*, and state-of-the-art algorithms, FES = 1.20E+05

F1 F2 F3 F4 F5 F6 F7

EADE

Best 3.45E+07 7.51E+03 6.79E+00 8.85E+12 2.48E+08 1.86E+01 1.14E+09

Median 3.96E+07 7.67E+03 7.00E+00 1.30E+13 2.95E+08 1.89E+01 1.94E+09

Worst 4.54E+07 7.92E+03 7.32E+00 3.13E+13 3.11E+08 2.14E+01 3.38E+09

Mean 3.94E+07 7.70E+03 7.00E+00 1.48E+13 2.87E+08 1.93E+01 2.11E+09

Std 2.80E+06 1.08E+02 1.51E−01 6.09E+12 1.80E+07 9.98E−01 8.17E+08

EADE*

Best 3.21E+07 7.94E+03 6.83E+00 3.94E+12 4.58E+07 2.00E+01 1.28E+08

Median 3.58E+07 8.19E+03 7.08E+00 5.27E+12 1.56E+08 2.03E+01 2.63E+08

Worst 4.07E+07 8.32E+03 7.73E+00 1.01E+13 2.39E+08 2.04E+01 1.06E+09

Mean 3.61E+07 8.16E+03 7.12E+00 6.29E+12 1.52E+08 2.03E+01 4.22E+08

Std 2.44E+06 1.25E+02 2.28E−01 2.01E+12 6.45E+07 1.06E−01 3.10E+08

LMDEa

Best 4.40E+08 9.68E+03 1.43E+01 2.60E+13 2.35E+08 4.09E+04 6.05E+09

Median 4.92E+08 9.84E+03 1.51E+01 6.08E+13 2.98E+08 6.44E+04 1.46E+10

Worst 6.07E+08 1.02E+04 1.55E+01 9.40E+13 3.41E+08 1.53E+05 2.34E+10

Mean 5.08E+08 9.89E+03 1.51E+01 6.25E+13 2.94E+08 6.90E+04 1.52E+10

Std 4.76E+07 1.37E+02 2.50E−01 1.72E+13 2.51E+07 2.30E+04 3.94E+09

SDENS

Best 3.93E+09 1.16E+04 1.99E+01 3.90E+13 3.14E+08 9.88E+05 3.07E+10

Median 4.74E+09 1.19E+04 2.01E+01 4.60E+13 3.32E+08 2.03E+06 3.57E+10

Worst 6.19E+09 1.20E+04 2.02E+01 7.90E+13 3.41E+08 2.39E+06 4.70E+10

Mean 5.01E+09 1.19E+04 2.01E+01 5.10E+13 3.29E+08 1.84E+06 3.75E+10

Std 9.18E+08 9.89E+01 1.17E−01 1.46E+13 1.04E+07 4.77E+05 5.46E+09

jDElsgo

Best 2.78E+09 1.06E+04 1.81E+01 8.06E+13 2.98E+08 3.36E+06 2.89E+10

Median 3.72E+09 1.09E+09 1.88E+01 1.43E+14 3.38E+08 4.24E+06 5.40E+10

Worst 4.89E+09 1.13E+04 1.97E+01 2.30E+14 3.75E+08 4.84E+06 7.23E+10

Mean 3.70E+09 1.09E+04 1.87E+01 1.40E+14 3.39E+08 4.26E+06 5.39E+10

Std 5.11E+08 1.75E+02 4.46E−01 3.69E+13 1.82E+07 3.91E+05 1.07E+10

DECC-DML

Best 2.28E+08 5.51E+03 8.22E+00 3.80E+13 1.43E+08 1.25E+06 2.65E+09

Median 2.85E+08 5.76E+03 9.71E+00 6.40E+13 2.85E+08 1.96E+06 5.50E+09

Worst 7.02E+08 5.96E+03 1.01E+01 1.20E+14 5.21E+08 2.00E+07 1.17E+10

Mean 4.09E+08 5.75E+03 9.51E+00 6.76E+13 3.00E+08 2.70E+06 5.97E+09

Std 1.75E+08 1.35E+02 5.55E−01 2.02E+13 9.31E+07 3.62E+06 2.49E+09

MA-SW-chains

Best 2.15E+07 3.32E+03 1.13E+01 1.22E+12 9.35E+07 2.02E+01 4.54E+06

Median 2.76E+07 3.75E+03 1.15E+01 2.04E+12 2.64E+08 2.08E+01 4.91E+06

Worst 3.51E+07 1.00E+04 1.22E+01 3.35E+12 3.42E+08 1.16E+06 5.71E+06

Mean 2.83E+07 5.09E+03 1.16E+01 2.12E+12 2.52E+08 8.14E+04 4.90E+06

Std 3.06E+06 2.38E+03 2.68E−01 6.21E+11 6.49E+07 2.84E+05 2.59E+05
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Table 1 continued

F8 F9 F10 F11 F12 F13 F14

EADE

Best 4.32E+07 2.05E+09 1.25E+04 7.47E+01 2.66E+06 5.06E+06 4.09E+09

Median 4.54E+07 2.67E+09 1.29E+04 9.71E+01 3.00E+06 9.22E+06 4.49E+09

Worst 1.04E+08 3.38E+09 1.33E+04 1.34E+02 4.13E+06 1.47E+07 5.41E+09

Mean 5.31E+07 2.63E+09 1.29E+04 1.01E+02 3.10E+06 9.03E+06 4.59E+09

Std 2.04E+07 3.30E+08 2.46E+02 1.94E+01 4.04E+05 2.49E+06 3.92E+08

EADE*

Best 1.28E+07 1.58E+09 6.36E+03 1.71E+02 1.41E+06 1.40E+07 3.05E+09

Median 9.20E+07 1.98E+09 6.58E+03 1.87E+02 1.54E+06 2.04E+07 3.71E+09

Worst 1.54E+08 2.55E+09 7.07E+03 2.06E+02 1.78E+06 1.41E+08 4.14E+09

Mean 8.05E+07 2.02E+09 6.63E+03 1.88E+02 1.56E+06 3.71E+07 3.67E+09

Std 4.12E+07 2.87E+08 1.85E+02 9.52E+00 1.08E+05 3.30E+07 2.99E+08

LMDEa

Best 6.79E+07 4.06E+09 1.22E+04 2.16E+02 2.67E+06 2.11E+07 7.54E+09

Median 1.71E+08 5.25E+09 1.27E+04 2.26E+02 2.84E+06 2.87E+07 9.59E+09

Worst 4.46E+08 6.33E+09 1.34E+04 2.29E+02 3.05E+06 4.58E+07 1.16E+10

Mean 1.88E+08 5.21E+09 1.27E+04 2.25E+02 2.85E+06 2.90E+07 9.64E+09

Std 9.84E+07 5.87E+08 2.67E+02 2.90E+00 1.07E+05 5.51E+06 8.85E+08

SDENS

Best 6.05E+08 1.13E+10 1.37E+04 2.27E+02 2.71E+06 1.70E+10 1.42E+10

Median 6.23E+08 1.52E+10 1.38E+04 2.27E+02 2.83E+06 1.91E+10 1.73E+10

Worst 1.20E+09 1.89E+10 1.42E+04 2.28E+02 3.29E+06 2.01E+10 2.31E+10

Mean 7.71E+08 1.56E+10 1.39E+04 2.27E+02 2.95E+06 1.88E+10 1.84E+10

Std 2.27E+08 2.77E+09 2.51E+02 3.49E−01 2.37E+05 1.07E+09 3.56E+09

jDElsgo

Best 1.04E+09 1.43E+10 1.31E+04 2.02E+02 2.76E+06 2.23E+09 1.95E+10

Median 2.29E+09 1.59E+10 1.43E+04 2.20E+02 3.18E+06 3.70E+09 2.32E+10

Worst 5.42E+09 2.07E+10 1.51E+04 2.26E+02 3.65E+06 5.44E+09 2.76E+10

Mean 2.39E+09 1.64E+10 1.43E+04 2.19E+02 3.15E+06 3.76E+09 2.32E+10

Std 9.13E+08 1.73E+09 4.38E+02 5.92E+00 2.19E+05 1.04E+09 2.03E+09

DECC-DML

Best 2.23E+09 4.09E+09 1.32E+04 1.02E+02 4.07E+06 1.09E+08 1.26E+10

Median 4.92E+09 4.91E+09 1.39E+04 1.22E+02 4.68E+06 1.82E+08 1.37E+10

Worst 1.35E+10 5.54E+09 1.45E+04 1.70E+02 5.35E+06 3.72E+08 1.51E+10

Mean 5.57E+09 4.89E+09 1.38E+04 1.24E+02 4.70E+06 2.11E+08 1.37E+10

Std 2.56E+09 3.77E+08 3.24E+02 1.38E+01 2.99E+05 9.68E+07 6.86E+08

MA-SW-chains

Best 3.30E+07 4.48E+08 3.62E+03 5.01E+01 2.20E+05 7.64E+05 8.16E+08

Median 4.17E+07 5.60E+08 4.15E+03 6.41E+01 2.40E+05 9.04E+05 8.81E+08

Worst 8.55E+08 6.45E+08 1.00E+04 7.13E+01 2.62E+05 1.11E+06 1.04E+09

Mean 1.21E+08 5.54E+08 5.12E+03 6.31E+01 2.40E+05 9.13E+05 8.95E+08

Std 2.11E+08 5.20E+07 2.20E+03 5.53E+00 1.26E+04 8.09E+04 6.60E+07
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Table 1 continued

F15 F16 F17 F18 F19 F20

EADE

Best 1.36E+04 2.68E+02 3.12E+06 4.89E+09 2.22E+07 7.66E+09

Median 1.40E+04 3.27E+02 3.68E+06 7.15E+09 2.51E+07 1.01E+10

Worst 1.46E+04 3.74E+02 4.84E+06 1.00E+10 3.04E+07 1.26E+10

Mean 1.40E+04 3.21E+02 3.81E+06 7.00E+09 2.54E+07 9.97E+09

Std 2.93E+02 3.73E+01 4.48E+05 1.47E+09 2.23E+06 1.30E+09

EADE*

Best 6.86E+03 3.91E+02 1.84E+06 1.48E+10 6.28E+06 1.68E+10

Median 7.59E+03 3.99E+02 2.07E+06 1.81E+10 7.26E+06 2.83E+10

Worst 1.21E+04 4.05E+02 2.26E+06 3.07E+10 8.11E+06 4.08E+10

Mean 7.92E+03 3.98E+02 2.04E+06 1.96E+10 7.18E+06 2.75E+10

Std 1.21E+03 3.65E+00 1.10E+05 4.53E+09 5.79E+05 5.74E+09

LMDEa

Best 1.32E+04 4.14E+02 4.21E+06 2.38E+09 8.75E+06 2.40E+09

Median 1.37E+04 4.17E+02 4.70E+06 2.95E+09 9.96E+06 3.52E+09

Worst 1.42E+04 4.18E+02 5.06E+06 3.97E+09 1.10E+07 4.80E+09

Mean 1.37E+04 4.16E+02 4.65E+06 3.07E+09 1.00E+07 3.57E+09

Std 2.66E+02 7.76E−01 2.37E+05 4.01E+08 5.88E+05 5.43E+08

SDENS

Best 1.36E+04 4.15E+02 3.84E+06 2.00E+11 1.19E+07 2.39E+11

Median 1.45E+04 4.15E+02 4.25E+06 2.09E+11 1.57E+07 2.62E+11

Worst 1.45E+04 4.15E+02 4.98E+06 2.35E+11 2.31E+07 2.82E+11

Mean 1.43E+04 4.15E+02 4.31E+06 2.11E+11 1.67E+07 2.61E+11

Std 3.72E+02 1.08E−01 4.04E+05 1.27E+10 3.71E+06 1.49E+10

jDElsgo

Best 1.44E+04 4.09E+02 4.28E+06 5.25E+10 2.07E+07 5.80E+10

Median 1.55E+04 4.17E+02 4.79E+06 6.37E+10 2.88E+07 8.14E+10

Worst 1.59E+04 4.24E+02 5.71E+06 8.76E+10 3.56E+07 1.11E+11

Mean 1.54E+04 4.17E+02 4.85E+06 6.60E+10 2.85E+07 7.99E+10

Std 3.33E+02 3.28E+00 3.53E+05 9.47E+09 3.38E+06 1.25E+10

DECC-DML

Best 1.58E+04 3.22E+02 7.48E+06 1.56E+09 1.77E+07 2.04E+09

Median 1.65E+04 3.73E+02 8.77E+06 3.30E+09 2.23E+07 3.93E+09

Worst 1.73E+04 4.28E+02 1.01E+07 4.06E+09 2.72E+07 5.09E+09

Mean 1.65E+04 3.75E+02 8.81E+06 3.08E+09 2.20E+07 3.84E+09

Std 3.61E+02 3.60E+01 6.86E+05 7.84E+08 2.36E+06 7.72E+08

MA-SW-chains

Best 3.94E+03 2.01E+02 5.80E+05 2.22E+04 3.23E+06 2.01E+03

Median 4.29E+03 2.12E+02 6.78E+05 5.18E+04 3.63E+06 2.22E+03

Worst 9.63E+03 2.31E+02 7.50E+05 8.33E+04 4.05E+06 4.69E+03

Mean 4.83E+03 2.13E+02 6.78E+05 5.14E+04 3.63E+06 2.43E+03

Std 1.51E+03 9.19E+00 3.52E+04 1.64E+04 1.94E+05 5.43E+02
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Table 2 Experimental comparisons between EADE, EADE*, and state-of-the-art algorithms, FES = 6.00E+05

F1 F2 F3 F4 F5 F6 F7

EADE

Best 1.11E−02 1.94E+03 1.06E−04 4.63E+11 4.08E+07 1.59E+01 2.39E+05

Median 1.38E−02 2.06E+03 2.01E−04 9.89E+11 6.37E+07 1.98E+01 4.24E+05

Worst 2.19E−02 2.15E+03 4.90E−04 1.56E+12 1.06E+08 2.01E+01 6.62E+05

Mean 1.45E−02 2.06E+03 2.18E−04 9.17E+11 6.58E+07 1.96E+01 4.18E+05

Std 3.17E−03 5.46E+01 1.04E−04 3.40E+11 1.70E+07 1.02E+00 9.99E+04

EADE*

Best 3.46E−02 2.21E+03 1.28E+00 3.54E+11 4.88E+07 1.65E+01 2.83E+05

Median 4.57E−02 2.69E+03 1.63E+00 1.04E+12 5.77E+07 2.04E+01 3.72E+05

Worst 1.26E−01 2.90E+03 1.87E+00 1.63E+12 8.56E+07 1.03E+06 6.42E+05

Mean 5.45E−02 2.68E+03 1.56E+00 9.84E+11 6.25E+07 4.11E+04 3.99E+05

Std 2.32E−02 1.88E+02 1.92E−01 3.84E+11 1.04E+07 2.05E+05 8.65E+04

LMDEa

Best 3.00E+02 3.23E+03 6.17E−01 1.65E+12 3.68E+07 4.73E+00 2.37E+07

Median 4.32E+02 3.35E+03 9.23E−01 4.23E+12 6.17E+07 5.50E+00 5.03E+07

Worst 6.90E+02 3.53E+03 1.10E+00 9.52E+12 1.50E+08 6.46E+00 1.34E+08

Mean 4.59E+02 3.37E+03 9.16E−01 4.49E+12 7.21E+07 5.60E+00 5.85E+07

Std 1.09E+02 6.88E+01 1.10E−01 1.81E+12 2.74E+07 3.91E−01 2.99E+07

SDENS

Best 3.82E+06 7.00E+03 5.13E+00 8.47E+12 1.51E+08 1.38E+01 5.73E+09

Median 4.59E+06 7.12E+03 6.27E+00 1.53E+13 1.83E+08 1.53E+01 7.73E+09

Worst 1.95E+07 7.17E+03 6.76E+00 2.85E+13 2.12E+08 1.74E+01 1.36E+10

Mean 7.87E+06 7.09E+03 6.12E+00 1.72E+13 1.81E+08 1.53E+01 9.28E+09

Std 5.94E+06 6.76E+01 6.30E−01 6.68E+12 2.29E+07 1.18E+00 3.44E+09

jDElsgo

Best 7.04E+04 3.67E+03 9.70E−01 7.89E+12 1.42E+08 2.20E+01 3.36E+09

Median 8.71E+04 3.93E+03 1.18E+00 1.29E+13 1.87E+08 3.24E+01 6.41E+09

Worst 1.23E+05 4.20E+03 1.58E+00 2.67E+13 2.30E+08 3.14E+02 1.10E+10

Mean 8.99E+04 3.95E+03 1.22E+00 1.39E+13 1.88E+08 5.97E+01 6.43E+09

Std 1.39E+04 1.32E+02 1.38E−01 4.60E+12 2.31E+07 5.81E+01 2.123+09

DECC-DML

Best 6.95E+01 2.51E+03 1.06E−02 7.92E+12 1.42E+08 4.59E+01 3.14E+08

Median 4.63E+02 2.64E+03 1.83E−02 1.51E+13 2.85E+08 1.09E+02 5.42E+08

Worst 1.22E+03 2.78E+03 2.20E−02 3.29E+13 5.20E+08 1.98E+07 9.17E+08

Mean 6.02E+02 2.64E+03 1.81E−02 1.61E+13 2.99E+08 7.94E+05 5.84E+08

Std 4.11E+02 5.88E+01 3.08E−03 6.19E+12 9.31E+07 3.97E+06 1.68E+08

MA-SW-chains

Best 8.52E+02 2.36E+03 3.44E+00 4.29E+11 3.68E+07 3.61E+00 6.33E+04

Median 1.55E+03 2.68E+03 3.83E+00 5.75E+11 2.59E+08 1.78E+01 7.78E+05

Worst 7.28E+03 2.97E+03 4.60E+00 7.42E+11 3.24E+08 1.16E+06 4.61E+06

Mean 2.24E+03 2.67E+03 3.84E+00 5.79E+11 2.17E+08 8.14E+04 8.35E+05

Std 1.71E+03 1.63E+02 2.13E−01 6.46E+10 8.56E+07 2.84E+05 9.08E+05
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Table 2 continued

F8 F9 F10 F11 F12 F13 F14

EADE

Best 2.58E+07 1.79E+08 3.11E+03 1.58E+02 3.40E+05 3.24E+03 7.66E+08

Median 3.61E+07 2.20E+08 3.65E+03 1.67E+02 3.82E+05 5.06E+03 7.76E+08

Worst 1.28E+08 2.62E+08 4.02E+03 1.77E+02 4.35E+05 1.85E+04 8.80E+08

Mean 5.95E+07 2.21E+08 3.66E+03 1.68E+02 3.89E+05 6.21E+03 8.13E+08

Std 3.40E+07 2.28E+07 2.10E+02 6.33E+00 2.89E+04 3.96E+03 5.65E+07

EADE*

Best 9.90E+06 1.81E+08 3.73E+03 1.56E+02 3.25E+05 5.17E+03 6.75E+08

Median 3.44E+07 2.27E+08 4.09E+03 1.72E+02 3.99E+05 1.89E+04 7.34E+08

Worst 9.69E+07 4.29E+08 4.46E+03 1.84E+02 4.78E+05 4.79E+04 8.01E+08

Mean 4.64E+07 2.40E+08 4.05E+03 1.73E+02 4.00E+05 2.01E+04 7.33E+08

Std 2.99E+07 5.32E+07 1.49E+02 7.50E+00 3.52E+04 1.20E+04 3.85E+07

LMDEa

Best 3.19E+07 2.26E+08 7.82E+03 4.18E+01 3.91E+05 1.48E+03 6.49E+08

Median 3.30E+07 2.76E+08 9.68E+03 6.70E+01 4.51E+05 2.07E+03 7.55E+08

Worst 3.49E+07 3.25E+08 1.02E+04 1.14E+02 5.17E+05 5.72E+03 1.01E+09

Mean 3.32E+07 2.71E+08 9.65E+03 6.91E+01 4.50E+05 2.34E+03 7.70E+08

Std 8.55E+05 2.40E+07 4.76E+02 1.71E+01 3.21E+04 9.90E+02 7.45E+07

SDENS

Best 4.64E+07 1.78E+09 1.02E+04 2.25E+02 1.25E+06 4.37E+05 3.91E+09

Median 6.40E+07 2.13E+09 1.09E+04 2.26E+02 1.30E+06 6.67E+05 5.02E+09

Worst 1.09E+08 2.88E+09 1.15E+04 2.26E+02 1.42E+06 7.64E+05 6.93E+09

Mean 7.41E+07 2.23E+09 1.10E+04 2.26E+02 1.32E+06 6.43E+05 5.14E+09

Std 2.73E+07 3.70E+08 4.59E+02 3.83E−01 5.98E+04 1.10E+05 9.89E+08

jDElsgo

Best 3.57E+07 1.45E+09 7.66E+03 7.73E+01 8.61E+05 2.90E+04 3.61E+09

Median 4.65E+07 1.64E+09 8.69E+03 1.14E+02 9.35E+05 4.95E+04 4.11E+09

Worst 1.39E+08 1.82E+09 9.49E+03 1.49E+02 9.88E+05 9.02E+04 4.72E+09

Mean 6.82E+07 1.66E+09 8.67E+03 1.17E+02 9.39E+05 5.32E+04 4.10E+09

Std 3.53E+07 8.29E+07 3.99E+02 1.87E+01 2.96E+04 1.70E+04 2.89E+08

DECC-DML

Best 4.19E+07 2.82E+08 1.25E+04 4.00E−01 3.64E+06 8.29E+02 9.82E+08

Median 1.15E+08 3.85E+08 1.30E+04 7.09E−01 4.22E+06 1.71E+03 1.18E+09

Worst 2.38E+08 4.21E+08 1.36E+04 1.72E+00 4.65E+06 1.47E+04 1.29E+09

Mean 1.24E+08 3.73E+08 1.30E+04 7.66E−01 4.19E+06 3.15E+03 1.17E+09

Std 5.40E+07 3.13E+07 2.93E+02 2.81E−01 2.18E+05 3.09E+03 8.20E+07

MA-SW-chains

Best 3.42E+06 6.93E+07 2.79E+03 2.77E+01 1.39E+03 1.08E+03 1.51E+08

Median 1.90E+07 8.08E+07 3.25E+03 3.79E+01 1.64E+03 3.06E+03 1.70E+08

Worst 6.11E+08 1.00E+08 3.54E+03 5.15E+01 1.91E+03 1.07E+04 1.95E+08

Mean 6.13E+07 8.18E+07 3.22E+03 3.83E+01 1.63E+03 4.34E+03 1.69E+08

Std 1.27E+08 8.36E+06 1.85E+02 7.23E+00 1.53E+02 3.21E+03 1.17E+07
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Table 2 continued

F15 F16 F17 F18 F19 F20

EADE

Best 3.97E+03 2.74E+02 9.31E+05 1.67E+04 7.60E+06 7.13E+03

Median 4.34E+03 3.24E+02 1.04E+06 4.47E+04 1.15E+07 9.68E+03

Worst 9.42E+03 3.58E+02 1.14E+06 6.22E+04 1.50E+07 1.24E+04

Mean 4.96E+03 3.21E+02 1.04E+06 4.39E+04 1.12E+07 9.73E+03

Std 1.75E+03 2.21E+01 5.41E+04 1.29E+04 2.47E+06 1.64E+03

EADE*

Best 4.40E+03 3.44E+02 7.51E+05 1.70E+05 2.73E+06 2.12E+05

Median 4.63E+03 3.57E+02 8.07E+05 5.63E+05 2.93E+06 4.61E+05

Worst 4.81E+03 3.95E+02 8.98E+05 1.47E+06 3.19E+06 3.73E+07

Mean 4.63E+03 3.63E+02 8.10E+05 5.81E+05 2.95E+06 3.13E+06

Std 1.39E+02 1.55E+01 3.95E+04 3.75E+05 1.32E+05 9.47E+06

LMDEa

Best 1.14E+04 4.09E+02 1.27E+06 6.11E+03 2.91E+06 3.33E+03

Median 1.21E+04 4.13E+02 1.38E+06 1.80E+04 3.15E+06 3.99E+03

Worst 1.24E+04 4.14E+02 1.48E+06 3.24E+04 3.40E+06 4.56E+03

Mean 1.20E+04 4.13E+02 1.38E+06 1.90E+04 3.17E+06 4.02E+03

Std 3.04E+02 1.21E+00 5.84E+04 6.80E+03 1.44E+05 2.94E+02

SDENS

Best 7.32E+03 4.13E+02 1.96E+06 1.65E+08 4.92E+06 1.36E+08

Median 1.18E+04 4.13E+02 2.02E+06 1.86E+08 5.39E+06 2.78E+08

Worst 1.26E+04 4.14E+02 2.29E+06 3.00E+08 6.18E+06 3.52E+08

Mean 1.03E+04 4.13E+02 2.07E+06 2.02E+08 5.41E+06 2.69E+08

Std 2.29E+03 3.49E−01 1.17E+05 5.02E+07 4.31E+05 7.57E+07

jDElsgo

Best 1.10E+04 2.67E+02 1.81E+06 6.95E+05 4.16E+06 5.98E+05

Median 1.22E+04 2.97E+02 1.97E+06 1.04E+06 5.48E+06 1.05E+06

Worst 1.26E+04 3.53E+02 2.10E+06 1.39E+06 1.22E+07 1.66E+06

Mean 1.20E+04 2.99E+02 1.95E+06 1.03E+06 6.09E+06 1.01E+06

Std 5.30E+02 1.91E+01 6.54E+04 2.08E+05 1.65E+06 2.48E+05

DECC-DML

Best 1.53E+04 3.46E+00 6.50E+06 5.64E+03 1.54E+07 1.43E+03

Median 1.59E+04 8.65E+00 7.29E+06 1.48E+04 1.84E+07 1.67E+03

Worst 1.67E+04 4.28E+02 7.99E+06 3.96E+04 2.46E+07 2.02E+03

Mean 1.59E+04 4.47E+01 7.27E+06 1.74E+04 1.87E+07 1.69E+03

Std 3.63E+02 1.16E+02 3.77E+05 8.26E+03 1.99E+06 1.58E+02

MA-SW-chains

Best 2.95E+03 8.51E+01 3.59E+04 1.80E+03 1.29E+06 1.02E+03

Median 3.19E+03 9.71E+01 4.29E+04 3.89E+03 1.42E+06 1.18E+03

Worst 3.45E+03 1.26E+02 5.01E+04 1.61E+04 1.58E+06 1.65E+03

Mean 3.19E+03 1.02E+02 4.31E+04 5.53E+03 1.41E+06 1.21E+03

Std 1.46E+02 1.42E+01 3.42E+03 3.94E+03 7.44E+04 1.42E+02
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Table 3 Experimental comparisons between EADE, EADE*, and state-of-the-art algorithms, FES = 3.0E+06

F1 F2 F3 F4 F5 F6 F7

EADE

Best 1.53E−23 3.80E+02 5.68E−14 4.94E+10 4.48E+07 1.89E+01 3.31E−03

Median 1.23E−22 4.17E+02 6.39E−14 8.91E+10 8.66E+07 1.90E+01 3.60E−02

Worst 2.75E−21 4.53E+02 6.39E−14 2.69E+11 1.69E+08 1.91E+01 1.92E+00

Mean 4.70E−22 4.16E+02 6.25E−14 1.08E+11 8.79E+07 1.90E+01 2.11−001

Std 8.65E−22 2.07E+01 2.62E−15 6.56E+10 3.11E+07 7.06E−02 4.87E−01

EADE*

Best 1.09E−22 7.43E+02 1.35E+00 6.80E+10 5.57E+07 1.95E+01 1.54E−02

Median 3.27E−22 8.39E+02 1.68E+00 1.33E+11 7.96E+07 1.96E+01 3.88E−01

Worst 1.19E−21 8.97E+02 1.74E+00 2.25E+11 1.19E+08 1.96E+01 1.85E+00

Mean 4.18E−22 8.27E+02 1.60E+00 1.37E+11 8.48E+07 1.96E+01 4.18E−01

Std 3.12E−22 4.89E+01 1.47E−01 3.79E+10 1.80E+07 2.22E−02 4.81E−01

LMDEa

Best 2.42E−24 5.31E+02 7.86E−14 1.14E+11 3.68E+07 4.00E−09 3.79E−02

Median 7.36E−24 6.87E+02 8.79E−01 2.06E+11 6.07E+07 4.02E−09 1.91E−01

Worst 1.55E−22 8.62E+02 1.09E+00 3.15E+11 1.13E+08 1.01E+00 6.42E−01

Mean 1.35E−23 6.97E+02 6.44E−01 2.08E+11 6.62E+07 2.63E−01 2.45E−01

Std 2.91E−23 8.22E+01 4.46E−01 5.89E+10 2.02E+07 4.22E−01 1.68E−01

SDENS

Best 1.75E−06 2.14E+03 1.23E−05 3.26E+12 7.66E+07 1.53E−04 6.36E+07

Median 2.54E−06 2.17E+03 2.35E−05 3.72E+12 1.17E+08 1.76E−04 8.57E+07

Worst 1.16E−05 2.39E+03 5.50E−05 8.99E+12 1.52E+08 2.57E−04 2.39E+08

Mean 5.73E−06 2.21E+03 2.70E−05 5.11E+12 1.18E+08 2.02E−04 1.20E+08

Std 4.46E−06 8.95E+01 1.54E−05 2.16E+12 2.88E+07 4.29E−05 6.56E+07

jDElsgo

Best 4.78E−20 1.09E−11 1.63E−12 3.09E+10 7.42E+07 7.14E−09 2.69E−05

Median 6.63E−20 4.69E−11 2.35E−12 8.28E+10 9.82E+07 7.22E−09 1.04E−04

Worst 2.24E−19 1.12E+00 2.24E−11 1.34E+11 1.24E+08 2.10E−07 3.19E−01

Mean 8.86E−20 1.25E−01 3.81E−12 8.06E+10 9.72E+07 1.70E−08 1.31E−02

Std 4.51E−20 3.45E−01 5.02E−12 3.08E+10 1.44E+07 4.03E−08 6.38E−02

DECC-DML

Best 9.05E−27 1.62E+02 1.10E−13 1.38E+12 1.42E+08 3.55E−09 7.09E+07

Median 1.22E−25 2.12E+02 1.14E−13 3.32E+12 2.85E+08 7.11E−09 1.23E+08

Worst 7.12E−25 2.94E+02 1.35E−13 6.89E+12 5.20E+08 1.98E+07 4.82E+08

Mean 1.93E−25 2.17E+02 1.18E−13 3.58E+12 2.99E+08 7.93E+05 1.39E+08

Std 1.86E−25 2.98E+01 8.22E−15 1.54E+12 9.31E+07 3.97E+06 7.72E+07

MA-SW-chains

Best 3.18E−15 7.04E+02 3.34E−13 3.04E+11 2.89E+07 8.13E−07 3.35E−03

Median 1.50E−14 7.90E+02 6.11E−13 3.54E+11 2.31E+08 1.60E+00 9.04E+01

Worst 8.15E−14 9.37E+02 1.58E−12 3.97E+11 2.90E+08 1.16E+06 2.68E+02

Mean 2.10E−14 8.10E+02 7.28E−13 3.53E+11 1.68E+08 8.14E+04 1.03E+02

Std 1.99E−14 5.88E+01 3.40E−13 3.12E+10 1.04E+08 2.84E+05 8.70E+01
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Table 3 continued

F8 F9 F10 F11 F12 F13 F14

EADE

Best 2.40E−10 3.08E+07 2.53E+03 1.02E+02 1.67E+04 7.18E+02 1.28E+08

Median 2.97E−05 3.59E+07 2.64E+03 1.15E+02 2.77E+04 9.89E+02 1.47E+08

Worst 1.63E−03 4.29E+07 2.78E+03 1.22E+02 4.12E+04 1.36E+03 1.61E+08

Mean 2.26E−04 3.67E+07 2.62E+03 1.14E+02 2.80E+04 1.01E+03 1.46E+08

Std 4.41E−04 3.48E+06 8.12E+01 6.43E+00 5.72E+03 1.83E+02 9.60E+06

EADE*

Best 5.49E−08 2.82E+07 2.78E+03 1.07E+02 2.75E+04 5.73E+02 1.19E+08

Median 1.50E−03 3.22E+07 3.01E+03 1.23E+02 4.92E+04 1.04E+03 1.35E+08

Worst 3.99E+06 3.86E+07 3.24E+03 1.34E+02 7.08E+04 1.39E+03 1.54E+08

Mean 2.66E+05 3.29E+07 3.00E+03 1.23E+02 4.98E+04 1.06E+03 1.35E+08

Std 1.03E+06 2.94E+06 1.07E+02 8.88E+00 1.32E+04 2.10E+02 1.12E+07

LMDEa

Best 7.80E−05 2.25E+07 2.45E+03 6.49E−11 1.35E+04 4.56E+02 7.65E+07

Median 3.29E−04 2.65E+07 2.76E+03 2.74E+00 1.81E+04 5.64E+02 8.67E+07

Worst 9.20E−04 2.98E+07 3.97E+03 5.40E+01 2.49E+04 9.38E+02 1.03E+08

Mean 3.61E−04 2.64E+07 2.80E+03 1.19E+01 1.83E+04 5.95E+02 8.63E+07

Std 2.33E−04 1.89E+06 2.84E+02 1.50E+01 2.62E+03 1.06E+02 6.30E+06

SDENS

Best 3.96E+07 4.77E+08 5.78E+03 2.20E+02 3.80E+05 1.16E+03 1.61E+09

Median 4.09E+07 5.75E+08 7.03E+03 2.21E+02 3.95E+05 1.80E+03 1.86E+09

Worst 9.35E+07 6.38E+08 7.37E+03 2.22E+02 4.97E+05 4.13E+03 2.30E+09

Mean 5.12E+07 5.63E+08 6.87E+03 2.21E+02 4.13E+05 2.19E+03 1.88E+09

Std 2.12E+07 5.78E+07 5.60E+02 5.09E−01 4.28E+04 1.03E+03 2.33E+08

jDElsgo

Best 3.40E−03 2.36E+07 2.10E+03 1.27E+00 8.32E+03 4.79E+02 1.28E+08

Median 1.25E+06 3.04E+07 2.66E+03 1.95E+01 1.18E+04 6.91E+02 1.72E+08

Worst 8.08E+06 4.22E+07 3.30E+03 5.81E+01 1.71E+04 1.02E+03 2.02E+08

Mean 3.15E+06 3.11E+07 2.64E+03 2.20E+01 1.21E+04 7.11E+02 1.69E+08

Std 3.27E+06 5.00E+06 3.19E+02 1.53E+01 2.04E+03 1.37E+02 2.08E+07

DECC-DML

Best 7.34E+05 4.51E+07 1.21E+04 1.63E−13 3.46E+06 6.19E+02 1.54E+08

Median 1.57E+07 5.97E+07 1.24E+04 1.78E−13 3.81E+06 1.06E+03 1.89E+08

Worst 1.21E+08 7.09E+07 1.30E+04 2.03E−13 4.11E+06 2.09E+03 2.22E+08

Mean 3.46E+07 5.92E+07 1.25E+04 1.80E−13 3.80E+06 1.14E+03 1.89E+08

Std 3.56E+07 4.71E+06 2.66E+02 9.88E−15 1.50E+05 4.31E+02 1.49E+07

MA-SW-chains

Best 1.54E+06 1.19E+07 1.81E+03 2.74E+01 2.65E−06 3.86E+02 2.79E+07

Median 3.43E+06 1.40E+07 2.07E+03 3.75E+01 3.50E−06 1.07E+03 3.09E+07

Worst 1.80E+08 1.62E+07 2.28E+03 5.11E+01 4.98E−06 2.92E+03 3.67E+07

Mean 1.41E+07 1.41E+07 2.07E+03 3.80E+01 3.62E−06 1.25E+03 3.11E+07

Std 3.68E+07 1.15E+06 1.44E+02 7.35E+00 5.92E−07 5.72E+02 1.93E+06
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Table 3 continued

F15 F16 F17 F18 F19 F20

EADE

Best 2.93E+03 2.86E+02 1.33E+05 1.74E+03 1.20E+06 1.93E+03

Median 3.20E+03 2.99E+02 1.55E+05 2.27E+03 1.30E+06 2.06E+03

Worst 3.41E+03 3.12E+02 1.66E+05 3.16E+03 1.38E+06 2.39E+03

Mean 3.18E+03 3.00E+02 1.52E+05 2.26E+03 1.29E+06 2.10E+03

Std 1.33E+02 5.81E+00 1.14E+04 3.63E+02 8.25E+04 1.33E+02

EADE*

Best 3.18E+03 2.89E+02 1.23E+05 2.07E+03 1.35E+06 1.72E+03

Median 3.50E+03 3.00E+02 1.59E+05 2.21E+03 1.47E+06 2.17E+03

Worst 3.78E+03 3.10E+02 1.86E+05 2.94E+03 1.59E+06 2.53E+03

Mean 3.50E+03 3.00E+02 1.59E+05 2.28E+03 1.47E+06 2.20E+03

Std 1.54E+02 6.07E+00 2.28E+04 3.04E+02 8.18E+04 2.15E+02

LMDEa

Best 5.15E+03 3.75E+02 1.92E+05 1.34E+03 4.07E+05 1.11E+03

Median 5.64E+03 3.85E+02 2.13E+05 1.65E+03 4.43E+05 1.38E+03

Worst 6.34E+03 4.00E+02 2.43E+05 2.24E+03 4.93E+05 1.60E+03

Mean 5.63E+03 3.87E+02 2.14E+05 1.68E+03 4.42E+05 1.38E+03

Std 2.81E+02 5.24E+00 1.47E+04 2.09E+02 1.85E+04 1.16E+02

SDENS

Best 7.14E+03 4.03E+02 8.78E+05 1.16E+04 7.57E+05 9.81E+02

Median 7.32E+03 4.09E+02 1.14E+06 3.32E+04 8.02E+05 9.83E+02

Worst 7.44E+03 4.10E+02 1.18E+06 4.51E+04 1.19E+06 1.02E+03

Mean 7.32E+03 4.08E+02 1.08E+06 3.08E+04 8.80E+05 9.90E+02

Std 9.63E+01 2.53E+00 1.11E+05 1.22E+04 1.59E+05 1.62E+01

jDElsgo

Best 5.20E+03 7.30E+01 7.75E+04 1.31E+03 2.39E+05 1.24E+03

Median 5.78E+03 1.46E+02 1.00E+05 1.88E+03 2.77E+05 1.55E+03

Worst 6.84E+03 2.00E+02 1.28E+05 2.57E+03 3.21E+05 1.83E+03

Mean 5.84E+03 1.44E+02 1.02E+05 1.85E+03 2.74E+05 1.53E+03

Std 4.48E+02 3.43E+01 1.26E+04 3.18E+02 2.12E+04 1.32E+02

DECC-DML

Best 1.48E+04 2.74E−13 5.65E+06 1.64E+03 1.30E+07 9.69E+02

Median 1.53E+04 3.20E−13 6.55E+06 2.21E+03 1.59E+07 9.75E+02

Worst 1.62E+04 1.27E+00 7.63E+06 7.52E+03 2.16E+07 1.10E+03

Mean 1.54E+04 5.08E−02 6.54E+06 2.47E+03 1.59E+07 9.91E+02

Std 3.59E+02 2.54E−01 4.63E+05 1.18E+03 1.72E+06 3.51E+01

MA-SW-chains

Best 2.56E+03 8.51E+01 1.04E+00 7.83E+02 2.49E+05 9.25E+02

Median 2.72E+03 9.44E+01 1.26E+00 1.19E+03 2.85E+05 1.06E+03

Worst 2.96E+03 1.24E+02 1.63E+00 2.55E+03 3.32E+05 1.21E+03

Mean 2.74E+03 9.98E+01 1.24E+00 1.30E+03 2.85E+05 1.07E+03

Std 1.22E+02 1.40E+01 1.25E−01 4.36E+02 1.78E+04 7.29E+01
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Table 4 Results of
multiple-problem Wilcoxon’s
test for EADE and EADE*
versus LMDEa, SDENS,
jDElsgo, and DECC-DML over
all functions at a 0.05
significance level with
(1.25E+05 FES)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs EADE* 77 133 0.296 9 0 11 ≈
EADE vs LMDEa 148 62 0.108 14 0 6 ≈
EADE vs SDENS 193 17 0.001 18 0 2 +
EADE vs jDElsgo 210 0 0.000 20 0 0 +
EADE vs DECC-DML 162 48 0.033 16 0 4 +
EADE vs MA-SW-chains 22 188 0.002 3 0 17 −
EADE* vs LMDEa 162 48 0.033 17 0 3 +
EADE* vs SDENS 210 0 0.000 20 0 0 +
EADE* vs jDElsgo 210 0 0.000 20 0 0 +
EADE* vs DECC-DML 164 46 0.028 15 0 5 +
EADE* vs MA-SW-chains 35 175 0.009 4 0 16 −

Table 5 Results of
multiple-problem Wilcoxon’s
test for EADE and EADE*
versus LMDEa, SDENS,
jDElsgo, and DECC-DML over
all functions at a 0.05
significance level with
(6.00E+05 FES)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs EADE* 116 94 0.681 13 0 7 ≈
EADE vs LMDEa 130 80 0.351 12 0 8 ≈
EADE vs SDENS 198 12 0.001 18 0 8 +
EADE vs jDElsgo 190 20 0.002 17 0 3 +
EADE vs DECC-DML 182 28 0.004 15 0 5 +
EADE vs MA-SW-chains 71 139 0.204 7 0 13 ≈
EADE* vs LMDEa 147 63 0.117 13 0 7 ≈
EADE* vs SDENS 172 38 0.000 13 0 7 +
EADE* vs jDElsgo 183 27 0.004 15 0 5 +
EADE* vs DECC-DML 203 7 0.012 19 0 1 +
EADE* vs MA-SW-chains 61 149 0.10 6 0 14 ≈

Table 6 Results of
multiple-problem Wilcoxon’s
test for EADE and EADE*
versus LMDEa, SDENS,
jDElsgo, and DECC-DML over
all functions at a 0.05
significance level with
(3.00E+06 FES)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs EADE* 138 52 0.084 15 1 4 ≈
EADE vs LMDEa 83 127 0.411 9 0 11 ≈
EADE vs SDENS 188 22 0.002 17 0 3 +
EADE vs jDElsgo 81 129 0.370 7 0 13 ≈
EADE vs DECC-DML 186 24 0.002 15 0 5 +
EADE vs MA-SW-chains 98 112 0.794 10 0 10 ≈
EADE* vs LMDEa 51 159 0.044 4 0 16 −
EADE* vs SDENS 185 25 0.003 16 0 4 +
EADE* vs jDElsgo 66 144 0.145 4 0 16 ≈
EADE* vs DECC-DML 182 28 0.004 14 0 6 +
EADE* vs MA-SW-chains 79 131 0.332 7 0 13 ≈

from Table 5, it can be obviously seen that EADE and
EADE* are significantly better than SDENS and DECC-
DMLalgorithms,EADE* is significantlyworse thanLMDEa
algorithm. Besides, there is no significant difference between
EADE*, LMDEa, and jDElsgo and EADE. From Tables 4
and 5, it is noteworthy that EADE* is better than all DE s
algorithms (LMDEa, SDENS, jDElsgo, and DECC-DML).

Moreover, from Table 6, EADE* outperforms SDENS and
DECC-DML algorithms and it is competitive with jDElsgo
algorithmwhich indicate that the newmutation scheme helps
to maintain effectively the balance between the global explo-
ration and local exploitation abilities for searching process
of the DE during the search process. EADE outperforms
SDENS and DECC-DML algorithms, and it is competi-
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Table 7 Average ranks for all
algorithms across all problems
and 1.2e+05, 6.0e+05, and
3.0e+06 function evaluations
(FEs)

Rank Algorithm 1.2e+05 6.0e+05 3.0e+06 Mean ranking

1 EADE 3.00 2.90 3.33 3.08

2 EADE* 2.65 3.35 4.53 3.51

3 LMDEa 4.05 3.45 3.20 3.57

4 SDENS 5.75 6.08 5.85 5.89

5 jDElsgo 6.40 5.08 2.78 4.75

6 DECC-DML 4.70 4.65 5.03 4.79

7 MA-SW-chains 1.45 2.50 3.30 2.42

Table 8 Experimental comparisons between EADE and state-of-the-art algorithms, D = 100

EADE CEO SL-PSO CCPSO2 sep-CMA-ES EPUS-PSO MLCC DMS-L-PSO

F1

Mean 0.00E+00 9.11E−29 1.09E−27 7.73E−14 9.02E−15 7.47E−01 6.82E−14 0.00E+00

Std 0.00E+00 1.10E−28 3.50E−28 3.23E−14 5.53E−15 1.70E−01 2.32E−14 0.00E+00

F2

Mean 3.58E−03 3.35E+01 9.45E−06 6.08E+00 2.31E+01 1.86E+01 2.53E+01 3.65E+00

Std 3.49E−03 5.38E+00 4.97E−06 7.83E+00 1.39E+01 2.26E+00 8.73E+00 7.30E−01

F3

Mean 9.36E+01 3.90E+02 5.74E+02 4.23E+02 4.31E+00 4.99E+03 1.50E+02 2.83E+02

Std 5.10E+01 5.53E+02 1.67E+02 8.65E+02 1.26E+01 5.35E+03 5.72E+01 9.40E+02

F4

Mean 0.00E+00 5.60E+01 7.46E+01 3.98E−02 2.78E+02 4.71E+02 4.39E−13 1.83E+02

Std 0.00E+00 7.48E+00 1.21E+01 1.99E−01 3.43E+01 5.94E+01 9.21E−14 2.16E+01

F5

Mean 0.00E+00 0.00E+00 0.00E+00 3.45E−03 2.96E−04 3.72E−01 3.41E−14 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 4.88E−03 1.48E−03 5.60E−02 1.16E−14 0.00E+00

F6

Mean 1.42E−14 1.20E−14 2.10E−14 1.44E−13 2.12E+01 2.06E+00 1.11E−13 0.00E+00

Std 0.00E+00 1.52E−15 5.22E−15 3.06E−14 4.02E−01 4.40E−01 7.87E−15 0.00E+00

F7

Mean −1.17E+03 −7.28E+05 −1.48E+03 −1.50E+03 −1.39E+03 −8.55E+02 −1.54E+03 −1.14E+03

Std 1.83E+01 1.88E+04 1.90E+01 1.04E+01 2.64E+01 1.35E+01 2.52E+00 8.48E+00

tive with jDElsgo, LMDEa, and MA-SW-chains algorithms.
Furthermore, the performance of all algorithms is analyzed
using all function evaluations (Fes) and different categories
of functions. Therefore, the mean aggregated rank of all
the 6 algorithms across all problems (20) and all 1.2e+05,
6.0e+05, and 3.0e+06 function evaluations (FEs) is pre-
sented in Table 7. The best ranks are marked in bold and
the second ranks are underlined. From Table 7, it can be
clearly concluded that MA-SW-chains is the best followed
by EADE as second best among all algorithms while EADE*
is ranked third. Note that the main contribution of this study
is to propose a DE framework, and not to propose a “Best”
algorithm or competitor to defeat other state-of-the-art algo-
rithms. However, it is noteworthy to mentioning that the
performance of EADE considerably increases as the num-

ber of functions evaluation increases from 1.25E+05 to
3.00E+06 which means that it benefits from extra FES.
Therefore, it can be obviously observed from Tables 4, 5,
and 6 that EADE is inferior toMA-SW chains for 17, 13, and
10 functions in 1.25E+05, 6.00E+05, and 3.00E+06 FES,
respectively. Thus, it can be concluded that the inferiority
of the EADE algorithm against MA-SW chains algorithm
considerably decreases as the FEs increases.

On the other hand, regarding CEC’2008 benchmark func-
tions, Tables 8, 9, and 10 contain the results obtained by
all algorithms in D = 100, D = 500, and D = 1000,
respectively. It includes the obtained best and the standard
deviations of error fromoptimumsolutionofEADEandother
seven state-of-the-art algorithms over 25 runs for all 7 bench-
mark functions. The results provided by these approaches
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Table 9 Experimental comparisons between EADE and state-of-the-art algorithms, D = 500

EADE CEO SL-PSO CCPSO2 sep-CMA-ES EPUS-PSO MLCC DMS-L-PSO

F1

Mean 0.00E+00 6.57E−23 7.24E−24 7.73E−14 2.25E−14 8.45E+01 4.30E−13 0.00E+00

Std 0.00E+00 3.90E−24 2.05E−25 3.23E−14 6.10E−15 6.40E+00 3.31E−14 0.00E+00

F2

Mean 7.28E+01 2.60E+01 3.47E+01 5.79E+01 2.12E+02 4.35E+01 6.67E+01 6.89E+01

Std 4.35E+00 2.40E+00 1.03E+00 4.21E+01 1.74E+01 5.51E−01 5.70E+00 2.01E+00

F3

Mean 1.02E+03 5.74E+02 6.10E+02 7.24E+02 2.93E+02 5.77E+04 9.25E+02 4.67E+07

Std 106E+02 1.67E+02 1.87E+02 1.54E+02 2.59E+01 8.04E+03 1.73E+02 5.87E+06

F4

Mean 2.54E+01 3.19E+02 2.72E+03 3.98E−02 2.18E+03 3.49E+03 1.79E−11 1.61E+03

Std 6.65E+00 2.16E+01 3.25E+02 1.99E−01 1.51E+02 1.12E+02 6.31E−11 1.04E+02

F5

Mean 3.10E−16 2.22E−16 3.33E−16 1.18E−03 7.88E−04 1.64E+00 2.13E−13 0.00E+00

Std 4.68E−17 0.00E+00 0.00E+00 4.61E−03 2.82E−03 4.69E−02 2.48E−14 0.00E+00

F6

Mean 4.26E−14 4.13E−13 1.46E−13 5.34E−13 2.15E+01 6.64E+00 5.34E−13 2.00E+02

Std 0.00E+00 1.10E−14 2.95E−15 8.61E−14 3.10E−01 4.49E−01 7.01E−14 9.66E−02

F7

Mean −4.41E+03 −1.97E+06 −5.94E+03 −7.23E+03 −6.37E+03 −3.51+03 −7.43E+03 −4.20E+03

Std 4.11E+01 4.08E+04 1.72E+02 4.16E+01 7.59E+01 2.10E+01 8.03E+00 1.29E+01

Table 10 Experimental comparisons between EADE and state-of-the-art algorithms, D = 1000

EADE CEO SL-PSO CCPSO2 sep-CMA-ES EPUS-PSO MLCC DMS-L-PSO

F1

Mean 4.06E−028 1.09E−21 7.10E−23 5.18E−13 7.81E−15 5.53E+02 8.46E−13 0.00E+00

Std 5.73E−028 4.20E−23 1.40E−24 9.61E−14 1.52E−15 2.86E+01 5.01E−14 0.00E+00

F2

Mean 8.97E+01 4.15E+01 8.87E+01 7.82E+01 3.65E+02 4.66E+01 1.09E+02 9.15E+01

Std 2.77E+00 9.74E−01 5.25E+00 4.25E+01 9.02E+00 4.00E−01 4.75E+00 7.14E−01

F3

Mean 2.15E+03 1.01E+03 1.04E+03 1.33E+03 9.10E+02 8.37E+05 1.80E+03 8.98E+09

Std 1.51E+02 3.02E+01 5.14E+01 2.63E+02 4.54E+01 1.52E+05 1.58E+02 4.39E+08

F4

Mean 1.54E+02 6.89E+02 5.89E+02 1.99E−01 5.31E+03 7.58E+03 1.37E−10 3.84E+03

Std 7.54E+00 3.10E+01 9.26E+00 4.06E−01 2.48E+02 1.51E+02 3.37E−10 1.71E+02

F5

Mean 4.88E−16 2.26E−16 4.44E−16 1.18E−03 3.94E−04 5.89E+00 4.18E−13 0.00E+00

Std 6.08E−17 2.18E−17 0.00+E00 3.27E−03 1.97E−03 3.91E−01 2.78E−14 0.00E+00

F6

Mean 5.75E−14 1.21E−12 3.44E−13 1.02E−12 2.15E+01 1.89E+01 1.06E−12 7.76E+00

Std 2.24E−15 2.64E−14 5.32E−15 1.68E−13 3.19E−01 2.49E+00 7.68E−14 8.92E−02

F7

Mean −7.99E+03 −3.83E+06 −1.30E+04 −1.43E+04 −1.25E+04 −6.62E+03 −1.47E+04 −7.50E+03

Std 3.09E+01 4.82E+04 1.04E+02 8.27E+01 9.36E+01 3.18E+01 1.51E+01 1.63E+01
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Table 11 Results of
multiple-problem Wilcoxon’s
test for EADE versus
state-of-the-art algorithms over
all functions at a 0.05
significance level with
(D = 100)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs CEO 13 8 0.6 4 1 2 ≈
EADE vs SL-PSO 13 8 0.6 4 1 2 ≈
EADE vs CCPSO2 21 7 0.237 6 0 1 ≈
EADE vs Sep-CMA-ES 17 11 0.612 5 0 2 ≈
EADE vs EPUS-PSO 28 0 0.018 7 0 0 +
EADE vs MLCC 21 7 0.237 6 0 1 ≈
EADE vs DMS-L-PSO 14 1 0.080 4 1 2 ≈

were directly taken from references [39,40]. For remarking
the best algorithm, best mean for each function is highlighted
in boldface.

As shown in Table 8, EADE is able to find the global opti-
mal solution consistently in 4 out of 7 test functions over 25
runswith the exceptionof test functions (F2, F3, andF7).With
respect to F2, although the optimal solution is not reached,
the best result achieved is very close to the global optimal
solution which can be verified by the very small function
error and standard deviation. Regarding F3, the narrow val-
ley from local optimal to global optimal present is a challenge
to all algorithms that prevent EADE fromfinding global solu-
tion. In addition, EADE gets trapped in local optima on f7 as
all other compared algorithms with exception to CEO which
provide the best mean, although its global optimal solution is
unknown. From the results presented in Tables 9 and 10, for
500D and 1000D problems, a similar trend as was observed
in 100D is continued here. It is still able to provide the same
competitive results. In general, it can be observed that EADE,
CEO, and SL-PSO do significantly better than the others on
most functions in different dimensions. On the other hand,
EPUS-PSO performs poorly on all the functions in all dimen-
sions.

In addition, in all functions for all the three dimension-
alities, EADE provides very small standard deviation which
means that the differences between mean and median are
small even in the cases when the final results are far away
from the optimum, regardless of the dimensions. That implies
that EADE is a robust algorithm. Moreover, due to insignif-
icant difference between the results in three dimensions, it
can be concluded that the performance of the EADE algo-
rithm slightly diminishes and it is still more stable and
robust against the curse of dimensionality, i.e., it is overall
steady as the dimensions of the problems increase. Obvi-
ously, it can be deduced that the performance of the proposed
EADE on large-scale optimization problems is surprisingly
good, because there is no specific mechanism for large-
scale optimization such as the divide-and-conquer or the
CC framework adopted in EADE. However, the good scal-
ability of EADE is due to the following two reasons. First,
the new mutation scheme helps to maintain effectively the

balance between the global exploration and local exploita-
tion abilities for searching process of the DE needed for
handling large-scale problems. Second, the proposed novel
self-adaptive scheme for gradual change of the values of
the crossover rate considerably balances the common trade-
off between the population diversity and convergence speed
might have contributed to the scalability. In fact, further
investigation and experimental analysis of the performance
of EADE on solving large-scale optimization are needed.
Furthermore, to investigate and compare the performance
of the proposed algorithms EADE against other algorithms
in statistical sense, the multi-problemWilcoxon signed-rank
and Friedman tests between EADE and others in 100D,
500D, and 1000Dare summarized inTables 11,12,13, and 14,
respectively. Where R+ is the sum of ranks for the functions
in which first algorithm outperforms the second algorithm in
the row, and R− is the sum of ranks for the opposite.

From Table 11, we can see that EADE obtains higher R+
values than R− in all cases, while slightly lower R+ value
than R− value in comparison with SaDE. However, from
Tables 12 and 13, in the cases of EFADE versus CEO, SL-
PSO, and CCPSO2, they get higher R− than R+ values. The
reason is that EADE gains the performance far away of what
these three algorithms do on function F7, resulting in higher
ranking values. According to theWilcoxon’s test at α = 0.05,
the significance difference can only be observed in EFADE
versus EPUS-PSO case. Besides, Table 14 lists the average
ranks EADE and other algorithms according to Friedman
test for D = 100, 500, and 1000, respectively. The best ranks
are marked in bold and the second ranks are underlined. The
p value computed through Friedman test is 0.01, 0.48, and
0.47, respectively. Thus, it can be concluded that there is a
significant difference between the performances of the algo-
rithms. It can be clearly seen from Table 14 that EADE gets
the first ranking among all algorithms in 100-dimensional
functions, followed by CEO and SL-PSO. Regarding 500D
and 1000D problems, CEO gets the first ranking, followed
by SL-PSO and EADE. Furthermore, the performance of
all algorithms is analyzed using all dimensions and differ-
ent categories of functions. Therefore, the mean aggregated
rank of all the 8 algorithms across all problems (7) and all
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Table 12 Results of
multiple-problem Wilcoxon’s
test for EADE* versus
state-of-the-art algorithms over
all functions at a 0.05
significance level with
(D = 500)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs CEO 9 19 0.398 3 0 4 ≈
EADE vs SL-PSO 13 15 0.866 4 0 3 ≈
EADE vs CCPSO2 6 22 0.176 3 0 4 ≈
EADE vs Sep-CMA-ES 17 11 0.612 5 0 2 ≈
EADE vs EPUS-PSO 22 6 0.063 6 0 1 ≈
EADE vs MLCC 6 22 0.176 3 0 4 ≈
EADE vs DMS-L-PSO 18 3 0116 4 1 2 ≈

Table 13 Results of
multiple-problem Wilcoxon’s
test for EADE* versus
state-of-the-art algorithms over
all functions at a 0.05
significance level with
(D = 1000)

Algorithm R+ R− p value Better Equal Worse Dec.

EADE vs CEO 9 19 0.398 3 0 4 ≈
EADE vs SL-PSO 9 19 0.398 3 0 4 ≈
EADE vs CCPSO2 6 22 0.176 3 0 4 ≈
EADE vs Sep-CMA-ES 17 11 0.612 5 0 2 ≈
EADE vs EPUS-PSO 25 3 0.063 6 0 1 ≈
EADE vs MLCC 10 18 0.499 3 0 4 ≈
EADE vs DMS-L-PSO 25 3 0.063 5 0 2 ≈

Table 14 Average ranks for all
algorithms across all problems
with D = 100, D = 500 and D =
1000

Rank Algorithm D = 100 D = 500 D = 1000 Mean ranking

1 EADE 2.57 3.93 3.86 3.45

2 CEO 3.64 2.43 2.86 2.98

3 SL-PSO 3.93 3.71 3.29 3.64

4 CCPSO2 5.14 4.36 4.00 4.5

5 Sep-CMA-ES 5.43 5.29 5.71 5.47

6 EPUS-PSO 7.43 6.86 6.86 7.05

7 MLCC 4.29 4.21 4.43 4.31

8 DMS-L-PSO 3.57 5.21 5.00 4.59

dimensions (100D, 500D, and 100D) is presented in Table
12. From Table 12, it can be clearly concluded that CEO
is the best followed by EADE as second best among all
algorithms, while SL-PSO is ranked third. Finally, it is note-
worthy to highlighting that EADE has shown comparable
performance to MLCC, CCPSO2, and DMS-PSO, the three
algorithms originally designed for solving large-scale opti-
mization problems. Plus, it also significantly outperforms
sep-CMA-ES and EPUS-PSO algorithms.

Overall, from the above results, comparisons, and discus-
sion, the proposed EADE algorithm is of better searching
quality, efficiency, and robustness for solving unconstrained
large-scale global optimization problems. It is clear that the
proposed EADE and EADE* algorithms perform well and
it has shown its outstanding superiority with separable, non-
separable, unimodal, andmulti-modal functionswith shifts in
dimensionality, rotation, multiplicative noise in fitness, and
composition of functions. Consequently, its performance is
not influenced by all these obstacles. Contrarily, it greatly

keeps the balance the local optimization speed and the global
optimization diversity in challenging optimization environ-
mentwith invariant performance.Besides, it can beobviously
concluded from direct and statistical results that EADE and
EADE* are powerful algorithms, and its performance is
superior and competitive with the performance of the-state-
of-the-art well-known DE-based algorithms.

Conclusion

To efficiently concentrate the exploitation tendency of some
sub-region of the search space and to significantly promote
the exploration capability in whole search space during the
evolutionary process of the conventional DE algorithm, an
enhanced adaptive Differential Evolution (EADE) algorithm
for solving large-scale global numerical optimization prob-
lems over continuous space was presented in this paper. The
proposed algorithm introduces a new mutation rule. It uses
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two random chosen vectors of the top and bottom 100p%
individuals in the current population of size NP, while the
third vector is selected randomly from the middle (NP-2p)
individuals. The mutation rule is combined with the basic
mutation strategy DE/rand/1/bin, where only one of the two
mutation rules is applied with the probability of 0.5. Further-
more, we propose a novel self-adaptive scheme for gradual
change of the values of the crossover rate that can excel-
lently benefit from the past experience of the individuals in
the search space during evolution process which, in turn,
can considerably balance the common trade-off between the
population diversity and convergence speed. The proposed
mutation rule was shown to enhance the global and local
search capabilities of the basic DE and to increase the con-
vergence speed. The algorithm has been evaluated on the
standard high-dimensional benchmark problems. The com-
parison results between EADE and EADE* and the other
four state-of-art DE-based algorithms that were all tested
on this test suite on the IEEE congress on Evolutionary
competition in 2008 and2010 indicate that the proposed algo-
rithm and its version are highly competitive algorithms for
solving large-scale global optimization problem. The exper-
imental results and comparisons showed that the EADE and
EADE* algorithms performed better in large-scale global
optimization problems with different types and complexity;
they performed better with regard to the search process effi-
ciency, the final solution quality, the convergence rate, and
robustness, when compared with other algorithms. In fact,
the performance of the EADE and EADE* algorithm was
statistically superior to and competitive with other recent
and well-known DEs algorithms. Finally, to the best of our
knowledge, this is the first study that uses all these different
types of approaches (12) to carry out evaluation and compar-
isons on CEC’2008 and CEC’2010 benchmark problems.
Virtually, this study aims to prove that EADE is a compet-
itive and an efficient approach as well as being superior to
the most recent techniques in the field of large-scale opti-
mization. Several current and future works can be developed
from this study. First, current research effort focuses on how
to control the scaling factors by self-adaptive mechanism
and develop another self-adaptive mechanism for crossover
rate. In addition, the new version of EADE combined with
Cooperative Co-evolution (CC) framework is being devel-
oped andwill be experimentally investigated soon.Moreover,
future researchwill investigate the performance of the EADE
algorithm in solving constrained and multi-objective opti-
mization problems as well as real-world applications such
as data mining and clustering problems. In addition, large-
scale combinatorial optimization problems will be taken into
consideration. Another possible direction is integrating the
proposed novel mutation scheme with all compared and
other self-adaptive DE variants plus combining the proposed
self-adaptive crossover with other DE mutation schemes. In

addition, the promising research direction is joining the pro-
posedmutationwith evolutionary algorithms, such as genetic
algorithms, harmony search, and particle swarm optimiza-
tion, as well as foraging algorithms such as artificial bee
colony, bees algorithm, and ant colony optimization. The
MATLAB source code of EADE is available upon request.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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