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Abstract W-doped ZnO nanocomposite (W-ZnO) is easily

prepared and characterized using a variety of techniques

including XRD, TEM, BET, ICP-OES and SEM. This reagent

can be used as an efficient and heterogeneous catalyst for the

preparation of biscoumarins in water under mild conditions.

Easy preparation of the catalyst, mild reaction conditions, easy

work-up procedure, excellent yields and short reaction times

are some of the advantages of this work. In addition, in this

article and for the first time, the preparation of biscoumarins

from the protected derivatives of aldehydes including oximes,

hydrazones and 1,1-diacetates is reported.

Keywords Biscoumarins � Aldehydes � Protected

aldehydes �W-doped ZnO nanocomposite � Heterogeneous

reaction conditions

Background

Biscoumarins are a large group of heterocycles with

diverse, interesting and important biological and pharma-

ceutical activities [1–5] activities. In recent years and

because of these important activities, several methods are

reported for the synthesis of biscoumarins using a variety

of catalysts and reagents [6–14]. These methods although

useful but most of them suffer from disadvantages such as

long reaction times (e.g., in the presence of piperidine [4],

the reactions are performed during 3–4 h), unsatisfactory

yields (e.g., when HBF4 is used as the catalyst the products

are obtained in 55–70 % yields [9] ), harsh reaction con-

ditions, expensive reagents, hazardous and toxic solvents

(e.g., refluxing toluene is used as the solvent in some of

these methodologies [13]) or catalysts and tedious work-

up. Therefore, introduction of efficient and economical

catalysts that solve these drawbacks is desirable.

Oximes and semicarbazones are used not only for the

isolation, purification and characterization but also for the

protection of carbonyl compounds [15, 16]. Since oximes

can be prepared from non-carbonyl compounds [17–19],

the regeneration of carbonyl compounds from oximes

provides an alternative method for the preparation of

aldehydes and ketones. In addition, oximes can also be

used as intermediates for the preparation of nitriles [20–

22], nitrones [23], amines [24], amides [25], isoxazoles

[26] and chiral a-sulfinyloximes [27]. Because of the

remarkable stability of the acylals to neutral and basic

conditions, these compounds have been introduced as the

other suitable protection group for aldehydes [28]. In

addition, they can be converted into other useful functional

groups by reaction with appropriate nucleophiles [29] and

used as carbonyl surrogates for asymmetric synthesis [30].

1,1-Diacetates, on the other hand, are ambient substrates

containing two types of reactive carbon centers, the carbon

atom of the protected aldehyde function and the carbonyl

group in the ester moieties [31]. To the best of our

knowledge and in spite of the abovementioned important

applicabilities of oximes, semicarbazones and acylals,

there is no any report about the preparation of biscoumarins

using these types of substrates.
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In recent years and because of the unique properties of

nanocatalysts, synthetic chemists focused on the prepara-

tion and characterization of these types of compounds [32].

Among them nano metal oxides are under considerable

attention of many researchers. Nano-ZnO, as a solid acid

reagent, is one of these catalysts which have found a wide

range of applications in organic transformations [33–41].

One of the most important applicabilities of nano-ZnO is

based on its photocatalytic activity which occurs under

ultraviolet light excitation [42–46]. In 2008, Ma et al. [47]

reported that the catalytic activity of TiO2 in photocatalytic

degradation of methyl orange can be highly improved by

doping with tungsten. They attributed this result to the help

of the doped W in trapping of photogenerated electrons and

the enhancement of the surface acidity of TiO2. In 2013

and on the basis of the Ma’s report, Moafi et al. [48]

showed that doping of ZnO with 4 mol % of tungsten, in

the same manner, can improve the photocatalytic activity

of this reagent in photodegradation of methylene blue.

Methods

General

All chemicals were purchased from Merck, Aldrich and

Fluka Chemical Companies and used without further

purification. Products were characterized by their physical

constants and comparison with authentic samples. The

purity determination of the substrates and reaction moni-

toring were accompanied by TLC using silica gel SIL

G/UV 254 plates.

To investigate the morphology of the W-doped sample,

scanning electron microscopy (SEM) images were obtained

on a Philips, XL30. The particles sizes were obtained by

transmission electron microscope (TEM) images on a

Philips CM10 instrument with an accelerating voltage of

100 kV. Elemental analyses of the samples were carried

out by ICP-OES. Measurements were made on an ICP-OES

Vista-Pro (Varian), after dissolution of the samples in a

HNO3:HF:H2O mixture.

The BET specific surface areas of the synthesized

nanocomposite were determined by nitrogen adsorption at

liquid nitrogen temperature on a Sibata SA-1100 surface

area analyzer. X-ray diffraction measurements were

recorded by a Philips PW1840 diffractometer with Cu-Ka
radiation, scan rate 0.02 9 2h/s and within a range of 2h of

10�–80� at room temperature.

A Perkin Elmer 781 Spectrophotometer was used to

record the IR spectra. The 1H NMR spectra were recorded

with Bruker Avance 300, 400 and 500 MHz instruments.

All chemical shifts are quoted in parts per million (ppm)

relative to TMS using deuterated solvent. The 13C NMR

data were collected on Bruker Avance 100 MHz instru-

ment. Melting points were recorded on a Büchi B-545

apparatus in open capillary tubes.

Catalyst preparation

The W-doped ZnO nanocomposite was prepared by sol–gel

method using the precursors of zinc and tungsten. Zinc

acetate dihydrate [Zn(Ac)2�2H2O] was used as zinc oxide

source. In a typical procedure, 0.02 mol of zinc acetate

dihydrate was dissolved in 50 mL of methanol and heated

at 50 �C with stirring for half an hour. Then, certain

amounts of sodium tungstate (8 mol % with respect to zinc

acetate dihydrate) was dissolved in a mixture of water/

methanol [10 mL (2:8)] under vigorous stirring and then

the solution was added dropwise into the mixture of zinc

acetate dihydrate and methanol, thus making precursor

solution A. Afterwards, 0.04 mol of sodium hydroxide was

dissolved in 50 mL of methanol and heated at 50 �C with

stirring for 1 h, making precursor solution B. To make ZnO

nano-sol, the solution of sodium hydroxide (solution B)

was added dropwise into the solution A under constant

stirring for half an hour and then the mixture was heated at

50 �C for further half an hour. Subsequently, a homoge-

nous sol was obtained. The obtained solution was precip-

itated after continuous stirring for 2 h and cooling at room

temperature. After 24 h, the colloidal solution was washed

several times with methanol. Finally, so obtained precipi-

tate was dried at 80 �C and then calcinated at 300 �C for

3 h. Using the same procedure, 2, 4, 6.0 mol % W-doped

ZnO and undoped ZnO samples were obtained. The

obtained results clarified that the sample with 8 mol % W

has highest catalytic activity.

General procedure

General procedure for the synthesis of biscoumarins

A mixture of the aldehyde and/or the protected derivative

of aldehyde (1 mmol), 4-hydroxycoumarin (2 mmol) and

W-ZnO (20 mg) in H2O (3 mL) was stirred at 80 �C for the

appropriate time. After completion of the reaction (moni-

tored by TLC), the mixture was cooled to room tempera-

ture and the solvent was evaporated. Then the solid residue

was dissolved in CH2Cl2 (5 mL) and filtered to separate the

catalyst. After evaporation of the solvent, the residue was

recrystallized from EtOH and water (95:5) to afford the

pure product.

Spectral data of the selected products

(a) Biscoumarin derivative of benzaldehyde with 4-hy-

droxycoumarin: 1H NMR (CDCl3, 300 MHz):
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d = 6.12 (1H, s), 7.24–8.10 (13H, m), 11.33 (1H, s),

11.56 (1H, s) ppm.

(b) Biscoumarin derivative of 4-chlorobenzaldehyde

with 4-hydroxycoumarin: 1H NMR (CDCl3,

500 MHz): d = 6.04 (1H, s), 8.09–7.17 (12H, m),

11.32 (1H, s), 11.54 (1H, s) ppm.

(c) Biscoumarin derivative of 2-chlorobenzaldehyde

with 4-hydroxycoumarin: 1H NMR (CDCl3,

300 MHz,): d = 6.14 (1H, s), 8.03–7.22 (12H, m),

10.93 (1H, s), 11.63 (1H, s) ppm.

(d) Biscoumarin derivative of 4-bromobenzaldehyde

with 4-hydroxycoumarin: 1H NMR (CDCl3,

300 MHz,): d = 6.01 (1H, s), 7.10–8.06 (12H, m),

11.31 (1H, brs), 11.54 (1H, brs)

(e) Biscoumarin derivative of 4-nitrobenzaldehyde with

4-hydroxycoumarin: 1H NMR (CDCl3, 300 MHz,):

d = 6.14 (1H, s), 7.28–8.22 (12H, m), 11.40 (1H, s),

11.59 (1H, s) ppm.

(f) Biscoumarin derivative of 3-nitrobenzaldehyde with

4-hydroxycoumarin: 1H NMR (DMSO-d6,

400 MHz): d = 6.39 (1H, s), 7.28–8.04 (12H, m),

8.04–9.52 (2H, m) ppm.

(g) Biscoumarin derivative of 2-nitrobenzaldehyde with

4-hydroxycoumarin: 1H NMR (CDCl3, 300 MHz,):

d = 6.6 (1H, s), 6.72–7.94 (12H, m), 11.24 (2H, brs)

ppm.

(h) Biscoumarin derivative of 4-methoxybenzaldehyde

with 4-hydroxycoumarin: 1H NMR (CDCl3,

300 MHz): d = 3.80 (3H, s), 6.05 (1H, s), 6.85

(2H, d, J = 8.7 Hz), 7.13 (2H, d, J = 8.7 Hz),

7.30–7.42 (4H, m), 7.63 (2H, t, J = 8.2 Hz), 8.03

(2H, dd, J = 8.4 Hz), 11.29 (1H, brs), 11.51 (1H,

brs)

(i) Biscoumarin derivative of 2-hydroxybenzaldehyde

with 4-hydroxycoumarin: 1H NMR (CDCl3,

500 MHz): d = 5.41 (1H, s), 7.10–7.20 (2H, m),

7.23 (2H, d, J = 8.0 Hz), 7.30–7.38 (3H, m),

7.40–7.50 (2H, m), 7.53 (1H, td, J1 = 7.5,

J2 = 1.5 Hz), 7.67 (1H, td, J1 = 7.8, J2 = 1.5 Hz),

8.07 (1H, dd, J1 = 7.9, J2 = 1.5 Hz), 8.19 (1H, dd,

J1 = 8.0, J2 = 1.5 Hz), 10.43 (1H, s) ppm.

(j) Biscoumarin derivative of 4-(N,N-dimethyl)benzal-

dehyde with 4-hydroxycoumarin: 1H NMR (DMSO-

d6, 400 MHz): d = 3.2 (6H, s), 6.31 (1H, s),

7.23–7.84 (12H, m) ppm.

(k) Biscoumarin derivative of cinnamaldehyde with

4-hydroxycoumarin: 1H NMR (CDCl3, 300 MHz):

d = 4.9 (1H, d, J = 3.5 Hz) 6.85 (1H, d,

J = 15.4 Hz), 7.15–7.18 (5H, m), 7.20 (2H, td,

J1 = 8.0, J2 = 2.5 Hz), 7.25 (1H, dd, J1 = 15.4,

J2 = 3.5 Hz), 7.29 (2H, d, J = 8.0 Hz), 7.51 (2H,

td, J1 = 8.0, J2 = 1.7 Hz), 7.89 (2H, d, J = 8.0 Hz)

ppm.

(l) Biscoumarin derivative of pyridine-4-carbaldehyde

with 4-hydroxycoumarin: 1H NMR (DMSO-d6,

400 MHz): d = 6.49 (s, 1H, s), 7.23 (2H, t,

J = 7.2 Hz), 7.28 (2H, d, J = 8.4 Hz), 7.5 (2H, t,

J = 7.2 Hz), 7.81–7.83 (4H, m), 8.6 (2H, d,

J = 6 Hz), 16.97 (2H, brs) ppm.

(m) Biscoumarin derivative of pyridine-3-carbaldehyde

with 4-hydroxycoumarin: 1H NMR (DMSO-d6,

400 MHz): d = 6.43 (1H, s), 7.26 (2H, t,

J = 7.6 Hz), 7.3 (2H, d, J = 8 Hz), 7.56 (2H, td,

J1 = 7.6 Hz, J2 = 1.2 Hz), 7. 82 (2H, dd,

J1 = 7.8 Hz, J2 = 1.2 Hz), 7.94 (1H, td,

J1 = 7 Hz, J2 = 2 Hz), 8.37 (1H, d, J = 8 Hz),

8.66 (1H, s), 8.72 (1H, d, J = 5.2 Hz), 16.93 (2H,

brs) ppm.

(n) Biscoumarin derivative of 3-phenylpropanal with

4-hydroxycoumarin: 1H NMR (DMSO-d6,

400 MHz): d = 1.89 (2H, m), 2.67 (2H, m), 5.8

(1H, t, J = 6.8 Hz), 6.5–6.8 (5H, m), 7.30 (2H, td,

J1 = 8.0, J2 = 2.4 Hz), 7.33 (2H, d, J = 8.0 Hz),

7.65 (2H, td, J1 = 8.0, J2 = 2.2 Hz), 7.88 (2H, d,

J1 = 8.0 Hz) ppm.

Results and discussion

Catalyst characterization

Powder X-ray diffraction

Figure 1 shows the XRD patterns of W-doped ZnO

nanocomposite. The sample showed a hexagonal wurtzite

crystal structure and high crystallinity of ZnO. The peaks

at 2h = 31.7�, 34.5�, 36.7�, 47.7�, 56.5�, 62.9� and 67.9�
are associated with the (100), (002), (101), (102), (110),

Fig. 1 XRD pattern of W-ZnO
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(103) and (112) planes of the ZnO hexagonal wurtzite

structure. The diffraction peaks of the W-ZnO are broad,

indicating a small crystal size of this sample. The XRD

pattern of the W-ZnO catalyst shows that there is no

change in the crystal structure upon tungsten doping

process. However, it can be indicated that W?6 ions are

uniformly dispersed on ZnO nanoparticles in the form of

highly dispersed WO3 clusters.

There were no detectable peaks relating to the existence

of a separate dopant metal phase in any corresponding

pattern. This could be attributed to the fact that the dopant

metals/metal oxides were too low in concentration and/or

amorphous structure to be seen as a separate phase. The

real W content in W-ZnO sample was measured by ICP-

OES (Table 1). The weight ratio of W/Zn in the W-ZnO

nanocomposite was 0.228 %.

Surface area and pore distribution measurements

The surface area of W-ZnO nanocomposite, which influ-

ences the catalytic activity, was determined using the

nitrogen gas adsorption method. The BET surface area of

the prepared W-ZnO yielded relatively high surface area

(93.70 m2/g). The average grain size are calculated using

the Scherrer’s equation based on the full width at half

maximum (FWHM) of the (101) peak of the compounds.

The results are summarized in Table 5.

SEM analysis

The surface morphology and dispersion of the sample were

determined by scanning electron microscopy (SEM). Fig-

ure 2 shows SEM micrographs of 8 mol % W-ZnO. The

image reveals that the particles in this sample have rela-

tively a sphere-like morphology and the nano particles

were composed of agglomerates of fine W-doped ZnO

nanoparticles and particle size less than 100 nm. The small

and uniform size of the prepared reagent can be affected by

its catalytic performance.

TEM analysis

Figure 3 depicts transmission electron micrograph of

8 mol % W-ZnO. The TEM image of W-ZnO shows that

the sample consists of fine particles with diameters less

than 20 nm in size.

Catalytic activity

In recent years, preparation and use of nanocatalysts in

organic transformations became an important part of our

ongoing research program [32, 49–51]. In continuation of

Table 1 Some characteristics of W-ZnO

Sample Crystalline

structure

Contents BET surface area

(m2/g)

Pore volume

(cm3/g)

XRD crystal size

(nm)

TEM crystal size

(nm)
Nominal

(mol %)

ICP

W/Zn %

W-ZnO

(8 mol %)

Wurtzite 8 0.228 93.70 0.033 11 10–15

Fig. 2 SEM image of W-ZnO

Fig. 3 TEM image of W-ZnO
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these studies, and on the basis of the Fallah Moafi’s report

[48], we anticipated that W-doped ZnO nanocomposite can

be used as an efficient solid acid catalyst for the acceler-

ation of the reactions which need the use of an acidic

catalyst to speed up. So we were interested to investigate

the applicability of this reagent in the promotion of the

synthesis of biscoumarins.

Our initial studies clarified that to obtain the best results

the amounts of tungsten should be enhanced to 8 mol %.

So we have prepared, identified and studied the role of the

8 mol % W-doped ZnO nanocomposite in the synthesis of

biscoumarins.

At the first step and to optimize the reaction conditions,

the prepared catalyst was used for the promotion of the

condensation of 4-chlorobenzaldehyde with 4-hydroxy-

coumarin and compared the effect of different solvents and

solvent-free conditions and also the effect of the catalyst

load on the reaction yield and time at thermal conditions.

The results are shown in Table 2. On the basis of these

Table 2 The effect of different solvents and different amounts of the

catalyst on the model reaction

Entry Solvent W-ZnO (mg) Time (min) Conversion (%)a

1 H2O 20 32 100

2 H2O 10 44 100

3 H2Ob 20 60 80

4 H2Oc 20 60 80

5 EtOH 30 85 100

6 CH3CN 30 115 40

7 CH2Cl2 30 100 30

8 CCl4 30 130 20

9 n-Hexane 30 80 10

10 Solvent-free 30 80 0

Reaction conditions: 4-chlorobenzaldehyde (1 mmol), 4-hydroxy-

coumarin (2 mmol), 80 �C
a GC
b 6 mol % W-ZnO
c 4 mol % W-ZnO

Table 3 Preparation of

biscoumarins using W-ZnO as

the catalyst

a Isolated yield

Entry Aldehydes Time (min) Yield (%)a mp (�C)

Found Reported [References]

1 C6H5CHO 15 98 226–229 229–231 [51]

2 4-ClC6H4CHO 32 98 248–250 250 [53]

3 2-ClC6H4CHO 60 97 200–202 201–203 [54]

4 4-BrC6H4CHO 41 98 263–266 264–266 [7]

5 4-NO2C6H4CHO 37 98 232–233 230 [53]

6 3-NO2C6H4CHO 68 98 231–233 229–231 [7]

7 2-NO2C6H4CHO 15 95 196–198 198–200 [53]

8 4-MeOC6H4CHO 45 98 248–250 250–252 [53]

9 3-MeOC6H4CHO 37 95 232–234 238–240 [7]

10 2-MeOC6H4CHO 20 95 252–254 258–260 [54]

11 4-OHC6H4CHO 60 98 222–225 228–230 [55]

12 4-NMe2C6H4CHO 75 90 215–218 222–224 [12]

13 Cinnamaldehyde 20 95 226–228 230–232 [11]

14 Pyridine-4-carbaldehyde 90 90 263–265 261–263 [56]

15 Pyridine-3-carbaldehyde 75 90 270–272 274–276 [56]

16 PhCH2CH2CHO 45 98 182–185 190 [4]

17 2-Naphthaldehyde 45 98 262–263 263–265 [56]

18 1,4-C6H4(CHO)2 120 98 310–312 313–315 [57]

O O

OH

+
O O

OH

O

OH

O

Ar

2 ArCHX
H2O, 80 oC

W-ZnO (20 mg)

X: O, NOH, NNHCONH2, (OAc)2

Scheme 1 Synthesis of

biscoumarins using W-ZnO as

the catalyst
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results it can be concluded that the best results can be

obtained under the conditions shown in Scheme 1. It is

interesting to note that using lower amounts of the catalyst

(Table 2, entry 2) and/or lower amounts of W in the

preparation of the catalyst (Table 2, entries 3, 4) resulted

the products’ longer reaction times and/or lower yields.

To study the efficiency of W-ZnO in the preparation of

biscoumarin derivatives, a wide range of aromatic, ali-

phatic and heterocyclic aldehydes were reacted with

4-hydroxycoumarin under the optimal reaction conditions

and the obtained results are tabulated in Table 3.

It was observed that under the selected conditions,

aromatic aldehydes containing electron-withdrawing

groups as well as electron-donating groups were easily

reacted in short reaction times with good to excellent iso-

lated yields (Table 3, entries 1–12). a,b-Unsaturated

aldehydes were also reacted in high yields using this pro-

cedure without the formation of any by-products (Table 3,

entry 13).

After the abovementioned studies and for the first time,

we have studied the applicability of the same method in the

preparation of biscoumarins from the protected aldehydes

(e.g., oximes, semicarbazones and 1,1-diacetates). The

obtained results showed that under the same reaction

conditions, the protected derivatives of aldehydes were

efficiently converted to the requested biscoumarins during

short reaction times in high yields (Table 4).

A plausible mechanism of the reaction is shown in

Scheme 2 [60].

To show the efficiency of the present method, we have

compared our results obtained from the synthesis of bis-

coumarins catalyzed by W-ZnO with some of the other

results reported in the literature. As it can be seen in

Table 5, some of the previously reported methods are

performed in the presence of toxic reagents (Table 5, entry

2) or solvents (Table 5, entries 4–6). It should be noted that

Table 4 Preparation of

biscoumarins from the reaction

of protected aldehydes and

4-hydroxycoumarin in the

presence of W-ZnO

a Isolated yield

Entry Protected aldehydes Time (h) Yield (%)a mp (�C)

Found Reported [References]

1 4-ClC6H4CH=NOH 3 70 248–250 250 [53]

2 4-NO2C6H4CH=NOH 2 90 232–233 230 [53]

3 2-NO2C6H4CH=NOH 3 70 196–198 198–200 [52]

4 4-BrC6H4CH=NOH 1.2 80 263–266 264–266 [7]

5 Pyridine-4-carbaldehyde oxime 2.6 80 262–263 261–263 [56]

6 4-NO2C6H4CH=NNHCONH2 2.5 90 232–233 230 [53]

7 4-MeOC6H4CH=NNHCONH2 3.6 80 248–250 250–252 [52]

8 2-OHC6H4CH=NNHCONH2 2 90 250 250–252 [58]

9 2-MeOC6H4CH(OAc)2 2.5 95 252–254 258–260 [54]

10 4-BrC6H4CH(OAc)2 1.6 90 263–266 264–266 [7]

Table 5 Comparison of our

results with some of the other

catalysts in the preparation of

biscoumarins

Bold represents the usage of

toxic solvent (Toluene)

Entry Catalyst (mol %) Reaction conditions Time (h) Yield (%) References

1 On-water H2O, 90 �C 4–5 93–98 [6]

2 I2 (10) H2O, 100 �C 0.33–0.53 91–99 [59]

3 RuCl3�nH2O (5) H2O, 80 �C 0.42–0.58 75–95 [60]

4 [P4VPy-BuSO3H]Cl-X(AlCl3) (7) Toluene, 90 �C 0.5–0.8 90–96 [13]

5 NaHSO4�SiO2 (150 mg) Toluene, 100 �C 0.5 85–91 [8]

6 Indion 190 resin (150 mg) Toluene, 100 �C 0.5 87–93 [8]

7 SDS (20) H2O, 60 �C 2.5–3 80–96 [12]

8 Phosphotungstic acid (15) H2O, 80 �C 0.23–0.42 90–98 [11]

9 W-ZnO(22.4) H2O, 80 �C 0.25–2 90–98 This work

X: O, NOH, NNHCONH2, (OAc)2

δ+

O O

OH X

HAr
+

- H2O

O O

O Ar OO

OH

+

O O

OH

O

O

O

Ar

O O

OH

O

OH

O

Ar
H

δ+

δ+

δ−

W-ZnO

δ−

W-ZnO

δ−

W-ZnO

Scheme 2 A plausible mechanism for the synthesis of biscoumarins

in the presence of W-ZnO
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in the absence of the catalyst, the reaction is completed

during much longer times (Table 5, entry 1).

Conclusion

In summary, we have introduced W-doped ZnO nano-

composite as a highly efficient nanocatalyst for the accel-

eration of the synthesis of biscoumarins under mild and

completely heterogeneous reaction conditions. This

method has several advantages such as ease of preparation

and handling of the catalyst, easy work-up procedure, high

reaction rates and excellent yields. Also, and for the first

time different types of protected aldehydes were success-

fully employed in these types of reactions and the corre-

sponding products were obtained in high to excellent

yields.
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