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Abstract A series of 172 molecular structures that block

the hERG K? channel were used to develop a classification

model where, initially, eight types of PaDEL fingerprints

were used for k-nearest neighbor model development. A

consensus model constructed using Extended-CDK, Pub-

Chem and Substructure count fingerprint-based models was

found to be a robust predictor of hERG activity. This

consensus model demonstrated sensitivity and specificity

values of 0.78 and 0.61 for the internal dataset compounds

and 0.63 and 0.54 for the external (PubChem) dataset

compounds, respectively. This model has identified the

highest number of true positives (i.e. 140) from the Pub-

Chem dataset so far, as compared to other published

models, and can potentially serve as a basis for the pre-

diction of hERG active compounds. Validating this model

against FDA-withdrawn substances indicated that it may

even be useful for differentiating between mechanisms

underlying QT prolongation.

Keywords Classification model � hERG blockers � Ikr �
KCNH2 � k-nearest neighbor (k-NN) � Toxicity

Abbreviations

CDK Chemistry development kit

CV Cross validation

hERG Human ether-a-go-go-related gene

IUPAC International union of pure and applied

chemistry

k-NN k-nearest neighbor

MACCS Molecular ACCess system

NER Non-error rate

QSAR Quantitative structure–activity relationship

SMARTS SMILES arbitrary target specification

SMILES Simplified molecular-input line-entry system

Introduction

The human ether-a-go-go related gene (hERG, KCNH2)

encodes for a voltage dependent K? ion channel (Kv11.1).

Blocking of this channel has been associated with potential

severe heart arrhythmia, and because of this, several drugs

have been withdrawn from the market [1–6]. Further, the

drug-induced longQT syndromemay cause avoidable sudden

cardiac arrest [3, 4]. With the intention of protecting clinical

trial participants and patients, the International Conference of

Harmonization published a guideline (S7B) recommending

that ‘‘all new drugs’’ should be tested pre-clinically for hERG

sensitivity and cardiac safety before submitting an application

to regulatory reviews [7]. Accordingly, the early assessment

of hERG-related cardiotoxicity has become a common

practice in drug discovery.
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Many in vitro assays exist for the pre-clinical evaluation

of hERG-related cardiotoxicity [8], examples include

rubidium-flux assays, radioligand binding assays, in vitro

electrophysiology measurements, and fluorescence-based

assays [9]. In addition, in silico models have been proposed

for identifying potential hERG blockers in drug discovery

processes [10, 11].

Efforts to use computational methods for the prediction

of hERG blocking effects have ranged from the use of

simple rules based on structural and functional features,

through to more complex quantitative structure–activity

relationship (QSAR) models [12–16]. A number of QSAR

models have been developed for the hERG toxicity end-

point using different machine learning algorithms, such as

multiple linear regressions [17], partial least squares (PLS)

[18], k-nearest neighbor algorithms (k-NN) [19], artificial

neural networks [20], support vector machines (SVM) [21],

random forest [22] and naive Bayesian classifications [23].

Despite these efforts there is significant scope for devel-

opment of more powerful and more easily deployed pre-

dictive models.

The recent development of open source fingerprints,

such as PaDEL fingerprints, which are libraries of

descriptors [24], allows for ready access to tools for pre-

dicting biological endpoints. A recent report on the use of

PaDEL fingerprints in conjunction with a k-NN strategy

aimed at the prediction of chronic toxicity [25] prompted

us to apply this approach to hERG-channel blockers, a far

more focused system. It was envisaged that publicly

available data on a series of hERG-channel blockers could

function as a starting point for model construction, and a

series of 1953 PubChem compounds could act as basis for

validation.

Methodology

Description of dataset

IC50 data for 172 Ikr (‘rapid’ delayed rectifier current)

channel blockers were retrieved from the webservers

OCHEM [26] and Fenichel [27]. These 172 compounds are

structurally diverse and belong to different therapeutic

classes. The compounds were authenticated with respect to

structure and IUPAC name. After authentication, the

SMILES notations for all the 172 compounds were verified

using ChemSpider [28], SigmaAldrich [29] and PubChem

[30]. A PubChem dataset comprised of 1953 entries was

chosen for the external validation [31]. Dataset entries that

were mixtures or salts were discarded, leading to a final

PubChem validation set of 1795 compounds. More details

about the training and test set compounds are provided in

the Online Resources 1 and 2, respectively.

Descriptor calculation

The descriptor calculation was a primary requirement for

the construction of the classification model. Eight types of

PaDEL fingerprints were calculated for both the training

and test set compounds using PaDEL software [24]. These

consisted of the CDK, Extended CDK, CDK Graph, Estate,

MACCS, PubChem, Sub-structure and Sub-structure count

fingerprints. Each of the eight types of fingerprints was

then used, separately, to develop a classification model.

Class assignment

The training set compounds were split into one of the two

classes (active and inactive) using an IC50 threshold value

of 5 lM. The PubChem dataset derived test set compounds

were similarly classified, i.e. as either active or inactive,

here using a % inhibition threshold of 20 %. A summary of

the numbers of the compounds and their classes is provided

in Table 1.

Software and modules

The Matlab module ‘‘classification_toolbox’’ [32] was

employed for the development of the k-NN classification

model. The Matlab module is freely available at [33].

Classification model development

The k-nearest neighbor (k-NN) classification method

employed used cross validation (CV) to identify optimal

k values [34, 35]. A series of k values (from 1 to 10) were

assigned to construct the model, and by determining the

lowest class error, optimal k values were identified.

A five-step cross validation was implemented by first

dividing the training set into five equal groups, four of

which were used for model construction and the remaining

for validation. This procedure was repeated so that each of

the five groups was used for validating the models con-

structed using the remaining four. After cross validation,

the models were subjected to external validation using the

1795 PubChem compounds. The performance of each

classification model was assessed by means of statistical

parameters, such as non-error rate (NER), sensitivity,

specificity, precision and error rate [36]. The models were

Table 1 Classification of training and test set compounds

Class 1 (hERG active) Class 2 (hERG inactive) Total

Training 93 79 172

Test 221 1574 1795
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then analysed and compared on the basis of these statistical

parameters.

Results and discussion

Construction of eight k-NN classification models

The k-nearest neighbor (k-NN) classification method was

employed to construct classification models using each of

the eight PaDEL fingerprints. Employing the k-NN algo-

rithm requires that the optimal value of k is determined

[34]. There are several ways to determine the k value, e.g.

through application of a risk function or empirical rules, or

through cross validation. Here, cross validation was used to

determine the optimal k value.

A series of eight k-NN classification models was con-

structed using each of the PaDEL fingerprints, and com-

pared with respect to a series of statistical parameters,

Table 2.

CDK fingerprints are one-dimensional 1024 bit long

arrays that are arranged based upon the occurrence of

particular structural elements. The Extended CDK finger-

prints are extended versions of CDK fingerprints that

include ring features. Graph fingerprints are specialized

versions of the CDK fingerprints that exclude bond orders.

Estate fingerprints represent the influence of substituent

electronic effects in a given compound. PubChem

Table 2 Summary of statistical

parameters for the k-NN

classification models

Entry Fingerprints NER k Sensitivity Specificity

Class 1 Class 2 Class 1 Class 2

1 CDK

Fitting 0.68 1 0.72 0.65 0.65 0.72

CV 0.66 1 0.72 0.61 0.61 0.72

External 0.54 1 0.52 0.57 0.57 0.52

2 Estate

Fitting 0.68 1 0.73 0.62 0.62 0.73

CV 0.66 1 0.72 0.61 0.61 0.72

External 0.53 1 0.49 0.57 0.57 0.49

3 Extended CDK

Fitting 0.67 1 0.70 0.63 0.63 0.70

CV 0.65 1 0.70 0.61 0.61 0.70

External 0.56 1 0.56 0.57 0.57 0.56

4 CDK graph

Fitting 0.64 1 0.69 0.59 0.59 0.69

CV 0.64 1 0.70 0.58 0.58 0.70

External 0.55 1 0.52 0.57 0.57 0.52

5 MACCS

Fitting 0.68 6 0.76 0.59 0.59 0.76

CV 0.67 6 0.76 0.57 0.57 0.76

External 0.55 6 0.54 0.55 0.55 0.54

6 PubChem

Fitting 0.60 3 0.69 0.52 0.52 0.69

CV 0.60 3 0.71 0.49 0.49 0.71

External 0.57 3 0.62 0.52 0.52 0.62

7 Sub-structure

Fitting 0.68 1 0.70 0.67 0.67 0.70

CV 0.67 1 0.69 0.66 0.66 0.69

External 0.57 1 0.54 0.59 0.59 0.54

8 Sub-structure count

Fitting 0.67 1 0.74 0.61 0.61 0.74

CV 0.68 1 0.72 0.65 0.65 0.72

External 0.58 1 0.61 0.56 0.56 0.61
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fingerprints are binary substructure fingerprints of length

881. MACCS fingerprints consist of 166 keys that are

based on SMARTS patterns [37, 38]. The Sub-structure

fingerprints represent 307 SMARTS patterns for different

functional groups, whereas the count of these SMARTS

patterns is referred to as the Sub-structure count fingerprint

[37].

The sensitivity expresses the prediction accuracy of

hERG-active compounds, whereas specificity reflects the

prediction accuracy for hERG-inactive compounds. The

models performed similarly in terms of the statistical

parameters examined. Thus, to further improve the pre-

dictive power of these models we developed a series of

consensus models. Several methods have been reported for

consensus model development [39]. For classification

models, the majority principle [40] is commonly employed

and we have used this strategy to develop consensus

models based upon three, five and seven different finger-

print-based models. As it is more important to identify

hERG-active compounds than hERG-inactive compounds,

the eight models (from Table 2) were examined with

respect to their sensitivity in the external prediction. The

Estate-fingerprint-based model exhibited relatively poor

sensitivity (0.49) and was discarded from the consensus

model building procedure to provide an odd number

(seven) of fingerprints. Six consensus models were built

using different combinations of the seven remaining fin-

gerprint-based models, Table 3.

Although consensus model 1 shows better overall

accuracy of prediction (Q), consensus model 2 shows

higher sensitivity for test set prediction, and was thus

chosen for further studies.

Individual contribution of each model

With consensus model 2 in hand, we then examined how

individual training set compounds were handled by the

consensus model as well as the individual models, i.e.

Extended CDK, PubChem and Substructure count finger-

print based, Fig. 1.

The consensus model correctly predicted 121 of the 172

training set compounds. 69 of these 121 compounds were

predicted correctly by all three individual models, while

the remaining 52 compounds were correctly predicted by

any two of the three models. Conversely, the consensus

Table 3 Statistical parameters for the consensus models

Modela Dataset TPb FPc TNd FNe TP ? TN Totalf Qg Sens.h Spec.i Prec.j G-meank

1 Training 72 25 54 21 126 172 0.73 0.77 0.68 0.74 0.73

Validation 130 654 920 91 1050 1795 0.58 0.59 0.58 0.17 0.59

2 Training 73 31 48 20 121 172 0.70 0.78 0.61 0.70 0.69

Validation 140 723 851 81 991 1795 0.55 0.63 0.54 0.16 0.59

3 Training 71 31 48 22 119 172 0.69 0.76 0.61 0.70 0.68

Validation 135 707 867 86 1002 1795 0.56 0.61 0.55 0.16 0.58

4 Training 74 32 47 19 121 172 0.70 0.80 0.59 0.70 0.69

Validation 128 718 856 93 984 1795 0.55 0.58 0.54 0.15 0.56

5 Training 73 29 50 20 123 172 0.72 0.78 0.63 0.72 0.70

Validation 132 685 889 89 1021 1795 0.57 0.60 0.56 0.16 0.58

6 Training 73 28 51 20 124 172 0.72 0.78 0.65 0.72 0.71

Validation 131 675 899 90 1030 1795 0.57 0.59 0.57 0.16 0.58

a Model 1 = substructure (SS) ? substructure count (SSC) ? extended CDK (ECDK), 2 = PubChem (PC) ? SSC ? ECDK,

3 = PC ? SSC ? SS, 4 = PC ? SSC ? MACCS, 5 = PC ? SSC ? ECDK ? SC ? MACCS, 6 = PC ? SSC ? ECDK ? SS ?

MACCS ? CDK ? CDK Graph, b true positives, c false positives, d true negatives, e false negatives, f TP ? TN ? FP ? FN, g overall

accuracy of prediction, h sensitivity, i specificity, j precision, k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sensitivity� Specificity
p

Fig. 1 Venn diagram representing the number of training set

compounds correctly predicted by all three models (yellow), by any

two models (magenta), by only one model (blue) and by none of the

models (green). The shaded area represents compounds correctly

predicted by the consensus model
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model incorrectly predicted 51 training set compounds. Of

these 51, 25 compounds were predicted correctly by any

one of the three models, whereas the remaining 26 com-

pounds were incorrectly predicted by all three models.

In the case of the Extended fingerprint based model, 113

of 172 compounds were correctly predicted, 65 of which

were hERG actives. The PubChem fingerprint based model

predicted 105 compounds correctly from the training set.

Among the 105 correctly predicted compounds, 66 were

from class 1 and 39 from class 2. The Substructure count

fingerprint based model predicted 118 training set com-

pounds correctly. These 118 compounds were comprised

of 67 compounds from class 1 and 51 compounds from

class 2.

Compounds for which activities were not correctly

predicted by our models are of interest as awareness of

factors contributing to the incorrect prediction of com-

pounds can help in the refinement of models. In this case,

the IC50 value-based endpoints are derived from a range of

studies so impact of inter-laboratory variation in the

reported IC50 data on model performance cannot be

excluded.

Comparison of our model with other models

External validation provides an assessment of the QSAR

model’s performance, and to compare models it is neces-

sary that the external validations are performed on the same

dataset. The PubChem dataset is comprised of 221 hERG-

actives and 1574 hERG-inactives. Sensitivity and speci-

ficity are generally used to assess classification perfor-

mance in imbalanced binary class studies [41]. G-mean,

which is a geometric mean of sensitivity and specificity,

was also used to measure the performance of the classifi-

cation method in predicting actives and inactives. In

studies aimed at the effective detection of only one class, as

in our case where the prediction of hERG-actives is a

priority, sensitivity and F-measures are often adopted [41].

Accordingly, we have compared our model with previously

published models that were externally validated with the

PubChem dataset [18, 42–44], with respect to sensitivity,

specificity, G-mean and F-measure, Table 4.

As presented in Table 4, three of the four previously

described models demonstrate lower overall sensitivities

than our model, though it should be pointed out that IC50

Table 4 Comparison of the k-NN classification model with other models

Model Our study Su et al. [42] Wang et al. [43] Su et al. [18] Li et al. [44]

Method k-NN SVM Naive Bayesian classifier PLS transformed into

binary QSAR

SVM

Descriptors 2D PaDEL

fingerprints

2D and 3D MOE, 4D

fingerprints from MD

simulation

Physico-chemical property

based and geometry based

descriptors, and fingerprints

2D and 3D MOE

descriptors and 4D

fingerprints

GRIND descriptors

derived from

docking

Training set

Cut-off (lM) 5 – 10 40 40

Total 172 546 719 250 495

True positives 73 188 247 – 83

True negatives 48 242 315 – 283

Sensitivity 0.78 0.90 0.89 – 0.55

Specificity 0.61 0.72 0.72 – 0.83

Q 0.70 0.79 0.78 – 0.74

F-measurea 0.74 0.76 0.76 – 0.56

G-mean 0.69 0.80 0.80 – 0.67

Test set

Cut-off (%)b 20 20 20 20 20

Total 1795 1668 1953 1668 1877

True positives 140 67 135 121 107

True negatives 851 1298 1247 963 1271

Sensitivity 0.63 0.41 0.54 0.74 0.57

Specificity 0.54 0.86 0.73 0.64 0.75

Q 0.55 0.82 0.71 0.65 0.73

F-measure 0.26 0.31 0.32 0.29 0.30

G-mean 0.59 0.60 0.63 0.69 0.66

a 2[(precision*sensitivity)/(precision ? sensitivity)], b % hERG blockage
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thresholds used in the various studies varied between 5 and

40 lM. From a drug development perspective, it may be

argued that it is of more interest to identify the potent hERG

blockers (class 1) than hERG inactive compounds (class 2).

Comparison on this point reveals that our model demon-

strates better performance in predicting the hERG active

compounds (True positives = 140, Sensitivity = 0.63) than

the other models except that of Su et al. [18] in their model

presented 2010. There, 163 hERG actives from the Pub-

Chem dataset were used for the external validation, whereas

in our study a somewhat more comprehensive external

validation was performed using 221 hERG actives.

From a practical perspective, ease of use is an issue of

importance and an advantage of our model is that PaDEL

fingerprints are fast and easy to calculate and do not involve

complicated descriptor selection procedures. This is in

contrast with all the other models presented in Table 4 that

all employed 3D and 4D descriptors that require geometry

optimization, a task necessitating significant computational

resources. In addition, the application of different descriptor

selection procedures makes these tasks more cumbersome.

Therefore, in comparison to the other models, our model

has the advantage of being fast, simple and relatively effi-

cient in predicting hERG toxic compounds.

To further assess the potential of our consensus model,

we turned our attention to the series of 47 substances

withdrawn from use on account of QT-prolongation, which

can be hERG-derived, as present in the WITHDRAWN

database [45] (database last updated December 2015). Our

training set had included 32 of these 47 drugs (shown in

bold in Online Resource 1) of which our model had cor-

rectly predicted the IC50-based classes of 22. We interro-

gated the remaining 15 withdrawn substances (see Online

Resource 3) using our model, which correctly predicted the

IC50-based classes of 11 (73 %, see Online Resource 4). It

is important to note that our model is solely based upon

in vitro data (hERG IC50), while the basis for withdrawal,

QT prolongation, is in vivo data-derived. The interpretation

of the QT prolongation endpoint is itself a major challenge

as mechanisms other than hERG activity can also underlie

QT prolongation [4, 46, 47]. This is reflected in the fact

that substances were correctly classified as class 1 or class

2, five and six substances respectively, based on their

hERG IC50. This observation suggests that the model may

even be useful for differentiating between mechanisms

underlying QT prolongation.

A general reflection upon examining the hERG active

compounds predicted by our model was the prevalence of

aromatic and basic functionalities in these compounds (for

example, see Online Resource 2). These features have

previously been identified as essential components in a

pharmacophore for central nervous system activity [48, 49]

and we believe should be considered in future model

development. Moreover, this may be considered indicative

of a common evolutionary origin for the hERG voltage

dependent K? ion channel and CNS receptors [50, 51].

Conclusion

In conclusion, PaDEL fingerprint-based k-NN classification

models presented here show potential as tools for the

prediction of the hERG toxicity endpoint, an important

issue in modern drug development. In particular, the con-

sensus model developed using the Extended CDK, Pub-

Chem and Sub-structure count fingerprint-based models

performed comparably with models employing more

complicated descriptors in the validation with external

datasets. Moreover, the model presented here, in terms of

the prediction of hERG toxicity, compares most favorably

with these previously published models. Moreover, vali-

dating this model against FDA-withdrawn substances

indicates that the model may be useful for differentiating

between hERG-derived QT prolongation and other QT

prolongation mechanisms. Accordingly, we believe that

this model may provide a basis for improved drug design.

Acknowledgments We acknowledge financial support from the EU

FP-7 Environmental Chemoinformatics (ECO) project (Grant Num-

ber-238701) and Linnaeus University, Sweden, and express our sin-

cere thanks to Dr. Igor Tetko for valuable advice, comments and

guidance during this work. The authors also thank Dr. Yurii Sushko,

Dr. Robert Körner and Dr. Sergii Novotarskyi from eADMET, Ger-

many, for their assistance with data collection and technical support.

Finally, the authors sincerely thank Prof. Roberto Todeschini (Che-

mometrics and QSAR research group, University of Milan, Italy) for

sharing the classification_toolbox Matlab routines for the k-NN model

development.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

References

1. Warmke JW, Ganetzky B (1994) A family of potassium channel

genes related to eag in Drosophila and mammals. Proc Natl Acad

Sci 91(8):3438–3442

2. Choe H, Nah KH, Lee SN, Lee HS, Lee HS, Jo SH, Leem CH,

Jang YJ (2006) A novel hypothesis for the binding mode of

HERG channel blockers. Biochem Biophys Res Commun

344(1):72–78

234 J Comput Aided Mol Des (2016) 30:229–236

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


3. Raschi E, Ceccarini L, De Ponti F, Recanatini M (2009) hERG-

related drug toxicity and models for predicting hERG liability

and QT prolongation. Expert Opin Drug Metab Toxicol

5(9):1005–1021

4. Redfern W, Carlsson L, Davis A, Lynch W, MacKenzie I,

Palethorpe S, Siegl P, Strang I, Sullivan A, Wallis R (2003)

Relationships between preclinical cardiac electrophysiology,

clinical QT interval prolongation and torsade de pointes for a

broad range of drugs: evidence for a provisional safety margin in

drug development. Cardiovasc Res 58(1):32–45

5. De Ponti F, Poluzzi E, Montanaro N (2000) QT-interval pro-

longation by non-cardiac drugs: lessons to be learned from recent

experience. Eur J Clin Pharmacol 56(1):1–18

6. Meyer T, Boven KH, Günther E, Fejtl M (2004) Micro-electrode

arrays in cardiac safety pharmacology. Drug Saf 27(11):763–772

7. Darpo B, Nebout T, Sager PT (2006) Clinical evaluation of QT/

QTc prolongation and proarrhythmic potential for nonantiar-

rhythmic drugs: the international conference on harmonization of

technical requirements for registration of pharmaceuticals for

human use E14 guideline. J Clin Pharmacol 46(5):498–507

8. Mitcheson JS (2008) hERG potassium channels and the structural

basis of drug-induced arrhythmias. Chem Res Toxicol

21(5):1005–1010
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