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Abstract

Purpose Point spread function (PSF) reconstruction improves
spatial resolution throughout the entire field of view of a PET
system and can detect smaller metastatic deposits than con-
ventional algorithms such as OSEM. We assessed the impact
of PSF reconstruction on quantitative values and diagnostic
accuracy for axillary staging of breast cancer patients,
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compared with an OSEM reconstruction, with emphasis on
the size of nodal metastases.

Methods This was a prospective study in a single referral
centre in which 50 patients underwent an '*F-FDG PET
examination before axillary lymph node dissection. PET data
were reconstructed with an OSEM algorithm and PSF recon-
struction, analysed blindly and validated by a pathologist who
measured the largest nodal metastasis per axilla. This size was
used to evaluate PET diagnostic performance.

Results On pathology, 34 patients (68 %) had nodal involve-
ment. Overall, the median size of the largest nodal metastasis per
axilla was 7 mm (range 0.5 — 40 mm). PSF reconstruction
detected more involved nodes than OSEM reconstruction (p=
0.003). The mean PSF to OSEM SUV,,,,, ratio was 1.66 (95 %
CI 1.01 — 2.32). The sensitivities of PSF and OSEM reconstruc-
tions were, respectively, 96 % and 92 % in patients with a largest
nodal metastasis of >7 mm, 60 % and 40 % in patients with a
largest nodal metastasis of <7 mm, and 92 % and 69 % in patients
with a primary tumour <30 mm. Biggerstaff graphical compar-
ison showed that globally PSF reconstruction was superior to
OSEM reconstruction. The median sizes of the largest nodal
metastasis in patients with nodal involvement not detected by
either PSF or OSEM reconstruction, detected by PSF but not by
OSEM reconstruction and detected by both reconstructions were
3, 6 and 16 mm (p=0.0064) respectively. In patients with nodal
involvement detected by PSF reconstruction but not by OSEM
reconstruction, the smallest detectable metastasis was 1.8 mm.
Conclusion As aresult of better activity recovery, PET with PSF
reconstruction performed better than PET with OSEM reconstruc-
tion in detecting nodal metastases <7 mm. However, its sensitivity
is still insufficient for it to replace surgical approaches for axillary
staging. PET with PSF reconstruction could be used to perform
sentinel node biopsy more safely in patients with a primary
tumour <30 mm and with unremarkable PET results in the axilla.
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Introduction

Breast cancer is the most frequent malignancy in women in
Western countries and the second leading cause of cancer-
related deaths among women. Axillary lymph node status is
the most important prognostic factor for recurrence and sur-
vival. Therefore, accurate staging at the time of initial diag-
nosis is crucial. PET using '*F-FDG has been used for staging,
restaging and therapy monitoring in a variety of cancer types,
including breast cancer [1-5]. In newly diagnosed breast
cancer, ' *F-FDG PET is not recommended for routine staging
of axillary lymph nodes because its sensitivity is too low [1].
A recent systematic review found that the sensitivity of PET/
CT systems in the detection of axillary nodal metastases
ranges from 44 % to 67 % [6]. This low sensitivity is due in
part to the limited spatial resolution of PET systems, leading to
partial volume effects (PVE) that cause significant underesti-
mation of the radioactivity concentration in lesions smaller
than two to three times the spatial resolution of the system.
Consequently, small cancer deposits and especially
micrometastases (<2 mm) are very unlikely to be detected.

In recent years, major hardware and software improve-
ments have been implemented in PET imaging. In particular,
advanced reconstruction algorithms that model the point
spread function (PSF) of a system have recently become
commercially available [7, 8]. PSF reconstruction improves
spatial resolution throughout the entire field of view (FOV),
reduces PVE and improves image contrast. As a result, newer-
generation clinical PET systems equipped with such algo-
rithms can be expected to detect small-volume metastases
better.

The aim of this prospective study in single referral centre
was to evaluate the impact of PSF reconstruction on quantita-
tive values and the diagnostic accuracy of '*F-FDG PET for
the axillary staging of breast cancer patients, as compared with
a conventional algorithm, OSEM (ordered subsets expectation
maximization). PET results were compared with pathological
results with special emphasis on the size of nodal metastases.

Materials and methods

Study design

This single-centre prospective study was approved by the
local Ethics Committee (CPP Nord-Ouest III, reference
2009-10). Informed and signed consent was obtained from

all patients. Patients with newly diagnosed, histologically
proven breast cancer for which breast surgery plus axillary
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lymph node dissection (ALND) was indicated were included
from April 2009 to June 2012. ALND was indicated for a
tumour of >30 mm and/or for multifocal disease, or for
suspected nodal involvement on physical examination. None
of the patients had received neoadjuvant chemotherapy. '*F-
FDG PET/CT was used for pretherapeutic staging of patients.
The OSEM algorithm and PSF reconstruction were used to
reconstruct all PET data, but only PSF reconstruction was
used in the patients’ diagnostic work-up.

PET/CT scanning

PET imaging studies were performed on a Biograph TrueV
(Siemens Medical Solutions) containing a six-slice spiral CT
component. The TrueV system has been described in detail
elsewhere [9]. "®F-FDG injection was preceded by a 6-h
fasting period and a 15-min rest in a warm room. Mean+=SD
injected activity was 4.1+£0.5 MBq per kg of body weight.
Patients were scanned 60+5 min after '*F-FDG injection from
the skull base to the mid-thighs using the following
parameters:

* CT acquisition: 60 mAs, 130 kVp, pitch 1, and 6 x2 mm
collimation

* PET emission: 3-D mode, 2 min 40 s per bed position in
patients of low and average weight, or 3 min 40 s per bed
position in overweight patients

*  PET reconstruction: OSEM 3-D algorithm (four iterations
and eight subsets) and PSF algorithm (HD; TrueX,
Siemens Medical Solutions; three iterations and 21
subsets)

A 5-mm gaussian filter was applied to the OSEM images,
but no postfiltering was used in the PSF images because PSF
reconstruction has been shown to achieve maximal perfor-
mance with little or no filtering [10]. These reconstruction
parameters were as recommended by Siemens Healthcare for
whole-body PET/CT scan oncological reading, and the OSEM
parameters meet the EANM requirements regarding activity
recoveries when scanning the National Electrical
Manufacturers Association (NEMA) NU 2 phantom as per
EANM standards of procedure [11]. For both reconstructions,
the matrix size was 1682, resulting in a 4.07x4.07x5 mm
voxel size. Scatter and attenuation corrections were applied.

In order to evaluate the spatial resolution of our PET system
using a geometry similar to a clinical PET examination, i.e. at
a location in the FOV similar to that of the axilla, linear
sources were imaged on both sides of the NEMA NU 2
phantom at a 15-cm radial offset. These sources were capil-
laries (inner diameter 1 mm) filled with a 70 or 87 MBg/cm®
"F_FDG solution. The phantom was filled with a 20 kBg/cm’
"E_-FDG solution, as recommended by the EANM guidelines
for PET tumour imaging [11]. Acquisition and reconstruction
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parameters were similar to those of a clinical PET scan de-
scribed above. Full-width at half-maximum (FWHM) of the
PSF was determined in the radial direction along profiles
passing through the distribution peak, as recommended by
the NEMA NU 2-2001 standard [12].

PET/CT interpretation

All nuclear medicine physicians involved in this study had
more than 2 years experience reading PET/CT images recon-
structed with a PSF algorithm. After randomization,
anonymize PET/CT examinations were reviewed on an
eSoft/TrueD workstation (Siemens Medical Solutions) by a
board-certified nuclear medicine physician (N.A.) who was
not informed of patient outcome. With each reconstruction
algorithm, the reader qualitatively interpreted axillary lymph
node involvement defined as uptake superior to background
noise, and the number of positive nodes in each PET exami-
nation. A second reader (D.B.) analysed all PET datasets to
extract PET quantitative values for OSEM and PSF recon-
structions as follows. Circular two-dimensional (2-D) regions
of interest (ROIs) were drawn over axillary nodes considered
to have pathologically increased uptake. ROIs were drawn on
the axial slice where nodes displayed the highest '*F-FDG
uptake. A 1-cm circular 2-D ROI was drawn over the
pectoralis major at the level of the acromioclavicular joint to
assess regional background uptake. ROIs were placed at ex-
actly the same position on both OSEM and PSF images by
using an ROI copy/paste function. The maximum and mean
pixel values were extracted from each ROI. Maximum SUVs
(SUV ax) as well as node/background (N/B) ratios were com-
puted as follows:

sy - umour activity (Bg/cc) x body weight(g)

)

injected dose (Bq)

Maximal node activity (Bg/cc)
Mean pectoralis activity (Bq/cc)’

N/B ratio =

Finally, the length of the short axis (millimetres) as deter-
mined on CT slices was recorded for each axillary lymph
node.

Histological diagnosis

All but 3 patients underwent breast surgery with ALND
within a month of PET imaging. The median delay between
PET imaging and surgery was 7 days (range 1 — 56 days).
After formalin fixation and paraffin embedding of the entire
node, histological slides (4-pum thick) were stained with
haematoxylin and eosin for histopathological examination.
All pathological specimens were analysed by the same

pathologist who measured the greatest diameter of each nodal
metastatic deposit.

Data analysis and statistical analysis
Quantitative data analysis

Quantitative data are presented as mean=standard deviation
(SD) or median (min—max) if necessary. The numbers of
involved nodes detected by the PSF and OSEM algorithms
were compared using the Wilcoxon rank test for paired sam-
ples. The sizes of the largest nodal metastasis per axilla
depending on the PET status for both algorithms (PSF+/
OSEM+: nodal involvement detected by both algorithms;
PSF+/OSEM—: nodal involvement detected by PSF but not
by OSEM; and PSF-/OSEM-— nodal involvement not detect-
ed by either algorihtm) were compared using the Kruskal-
Wallis rank sum test. The situation PSF—/OSEM+ (nodal
involvement detected by OSEM but not by PSF) did not
occur. A two-tailed p value less than 0.05 was considered
statistically significant. The relationship between PSF and
OSEM quantitative values was assessed using Bland-Altman
plots.

Diagnostic performance evaluation

A positive PET/CT examination confirmed by pathology was
considered as true-positive and otherwise as false-positive. A
negative PET examination with no histological nodal involve-
ment was considered as true-negative and if there was metastatic
invasion on pathology as false-negative. Sensitivity, specificity,
positive and negative predictive values, and accuracy were ob-
tained on a per-patient basis for OSEM and PSF PET/CT with
the 95 % confidence intervals. Positive and negative likelihood
ratios (LR+, LR—) were computed for both algorithms:LR+
= sensitivity/(1 — specificity), LR— = (1 — sensitivity)/specificity.
The LR incorporates the sensitivity and specificity of a test into a
single measure. The LR— of a test is the probability of a patient
who has the disease testing negative divided by the probability of
a patient who does not have the disease testing negative. The best
test to rule out a disease is the one with the smaller LR—.
Likewise, the best diagnostic test to detect the disease is the
one with the larger LR+ [13, 14].

Among metastatic patients, two groups were defined ac-
cording to the size of the largest metastasis measured on
pathology. The cut-off (7 mm) was the median size of all
nodal metastatic deposits. We also evaluated the diagnostic
performance of both algorithms in patients in whom the size
of the primary tumour was <30 mm versus those patients in
whom the size of primary tumour was >30 mm, a size above
which the risk of macrometastases in the axilla is higher [15].
For this analysis, only the largest tumour was considered in
patients with multifocal disease. The diagnostic performance
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achieved by the two algorithms were compared in each sub-
group using the graphic representation proposed by Biggerstaff
[16]. Briefly, to compare two diagnostic procedures, sensitivities,
specificities or LRs are evaluated separately or using a summary
statistic (e.g. Youden’s index). The graphical comparison pro-
posed by Biggerstaff was chosen because it summarizes all these
measures in one plot and is associated with a simple decision rule
deciding if one test is superior for confirming the absence and/or
presence of disease. In practice, the point that determines the
true-positive and false-positive rates of a diagnostic procedure is
plotted, e.g. on a ROC curve. Two lines are then created by
connecting this point to points (0,0) and (1,1) separately. Thus,
the LR+ is represented by the slope of the first line, and the LR—
by the slope of the second line. Finally, the true-positive and
false-positive rates of a second diagnostic procedure are plotted
to determine which area among the four created by these lines it
belong to.

Prism (GraphPad software) and Vassar University clinical
research calculators (http://www.vassarstats.net) were used for
graphs and statistics.

Results
Phantom acquisitions

For evaluation of the spatial resolution of the PET system with
PSF and OSEM reconstructions, rather than computing
FWHM in air as recommended in the NEMA standards, we
evaluated FWHM in the geometry of a human breast and
axilla PET examination by placing linear sources at a 15-cm
radial offset on both sides of an anthropomorphic phantom
filled with an activity in the range of the average activity
expected in a human body.

Radial FWHM was measured on four linear sources and
ranged from 2.35 mm to 2.48 mm for PSF reconstruction and
from 6.19 mm to 6.46 mm for OSEM reconstruction.

Patient demographics

Amongst the 55 patients included in this study accrued
from April 2009 to June 2012, five were excluded from
the analysis. The causes of exclusion were as follows:
hyperglycaemia >3 g/L at the time of PET examination in
one patient, decision to treat with neoadjuvant chemothe-
rapy in one, metastatic disease requiring chemotherapy in
two, and PET not possible prior to surgery in one. The
tumour subtypes confirmed on histopathology included 43
infiltrating ductal carcinomas, two infiltrating lobular car-
cinomas, four mixed ductal/lobular infiltrating carcinomas
and one infiltrating undifferentiated carcinoma. Patient
characteristics are presented in Table I; refer to the
Supplementary material for more detailed data).

@ Springer

Table 1 Patient

characteristics Characteristic Number (%)
of patients

Clinical tumour stage

Tx 1(2)

Tl 10 (20)

T2 27 (54)

T3 9(18)

T4 3(6)
Clinical node stage

NO 28 (56)

N1 22 (44)
Oestrogen receptor status

Positive 43 (86)

Negative 7 (14)
Progesterone receptor status

Positive 33 (66)

Negative 17 (34)
HER-2/neu status

Positive 7 (14)

Negative 43 (86)
Triple-negative 6 (12)
Histological grade status

I 6(12)

I 23 (46)

11 21 (42)
Size of tumour (cm)

<3 29 (58)

>3 21 (42)

Pathological results

Pathology confirmed axillary lymph node involvement in 34
of 50 axillae. Of 782 resected lymph nodes, 151 showed
involvement and 35 of these showed capsular invasion.
Patients with lymph node involvement had an average of 4.4
metastatic lymph nodes on ALND. Overall, the median size of
nodal metastases was 7 mm (0.5 — 40 mm).

Impact of PSF reconstruction on quantitative values
SUV in nodal metastases

We measured SUV on the PSF and OSEM reconstructions by
drawing ROIs over 93 axillary or retropectoral lymph nodes in
the 34 metastatic patients in whom PET showed nodes con-
sidered to have pathologically increased uptake of '*F-FDG.
Of these 93 lymph nodes, 72 (77.4 %) had a short axis <1 cm,
and their mean short-axis diameter was 0.82+0.43 cm and
their overall, mean SUV,,,, values for the PSF and OSEM
reconstructions were 4.50+4.39 and 2.60+2.44 cm,
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Fig. 1 Impact of PSF reconstruction on quantitative values and number
of detected nodes. Bland and Altman analysis for SUV,,,, (a) and
node/background ratio (b) and the numbers of involved nodes accurately
detected by PET with PSF reconstruction and OSEM reconstruction (c)
are shown

respectively. The mean ratio between SUV ., measured on
the PSF reconstructions and that on the OSEM reconstructions
was 1.66 with narrow 95 % limits of confidence as shown on
the Bland-Altman plot (Fig. 1a).

Node/background ratio

The mean ratio between node/background ratios measured on
PSF reconstructions and those obtained on OSEM

reconstructions was 1.67 with wider 95 % limits of confidence
as compared with the SUV ., analysis (Fig. 1b).

Impact of PSF reconstruction on diagnostic performance

PSF and OSEM reconstruction gave false-negative results in five
and eight patients, respectively. Amongst the five patients with
false-negative results by both PSF and OSEM reconstruction,
four had just one lymph node involved with a median metastatic
deposit size of 3 mm (3 — 7 mm). The results with PSF and
OSEM reconstruction were concordant in 46 patients and dis-
cordant in 4 patients in whom PSF reconstruction was positive
(three true-positive and one false-positive) and OSEM recon-
struction was negative. It is noteworthy that the three patients in
whom PSF reconstruction was true-positive and OSEM false-

positive, whereas OSEM reconstruction was false-negative.
Figure 4 shows a patient in whom both reconstructions were
true-positive, but more nodes were detected by PSF
reconstruction.

PSF reconstruction detected more involved nodes (93) than
OSEM reconstruction (83; p=0.003; Fig. 1c). OSEM recon-
struction detected axillary lymph node metastases with 76 %
sensitivity and 75 % specificity, whereas PSF reconstruction
achieved a better sensitivity (85 %) but a slightly lower
specificity (69 %, Table 2).

In patients with a primary tumour <30 mm, the sensitivity of
PSF reconstruction was higher than that of OSEM reconstruction
(93 % vs. 69 %) at the expense of a lower specificity (60 % vs.
70 %). However, globally, using the Biggerstaff graphical

clinical status Pathology PET status

10N- |--| 3 PSF+ OSEM+|
| asnoc |
18N+ (3 psr+osem |

1 PSF+ OSEM+

22N1c

4 PSF+ OSEM

Fig. 2 Flow-chart of clinical, pathological and PET status in 50 patients
analysed (PSF-/PSF+ negative/positive by PSF reconstruction, OSEM-/
OSEM+) negative/positive by OSEM reconstruction
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Fig.3 A 64-year-old patient with
grade II infiltrating ductal
carcinoma initially classified as
T2NOc, in whom PSF
reconstruction was positive and
OSEM reconstruction was
negative. Pathology revealed 4-
mm and 6-mm lymph node
metastasesred arrows. Both
OSEM and PSF reconstructions
are scaled to the same maximum
value (a CT images, b
pathological specimen (HES
staining), ¢ corresponding PET
slices)

comparison, PSF reconstruction is superior to OSEM reconstruc-
tion (Fig. 5). In patients with a primary tumour >30 mm, both

a

OSEM

.

reconstructions performed equally well (Table 2, Fig. 5).

Fig.4 A 51-year-old patient with
grade III infiltrating ductal
carcinoma initially classified as
T3NOc, in whom both PSF
reconstruction and OSEM
reconstruction were positive, but
PSF reconstruction depicted an
additional involved lymph node
(vellow arrows) (a CT images, b
PSF reconstruction, ¢ OSEM
reconstruction). Both OSEM and
PSF reconstructions are scaled to
the same maximum value. Note
how PSF reconstruction improves
activity recovery in small lesions
(red and yellow arrows) as
compared with the largest node
(orange arrows)
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In metastatic patients with the largest nodal metastasis
>7 mm, the sensitivities were 96 % and 92 % for PSF recon-
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Table 2 Diagnostic performance of PSF and OSEM reconstructions for axillary staging

Breast tumour <30 mm

Breast tumour >30 mm

All patients
OSEM PSF OSEM PSF OSEM PSF
Sensitivity (%) 76 (58 — 89) 85 (68 — 94) 69 (39 — 90) 93 (62 — 100) 81 (57— 94) 81 (57 — 94)
Specificity (%) 75 (47 - 92) 69 (41 — 88) 70 (35 -92) 60 (27 — 86) 83 (36 — 99) 83 (36 — 99)
Positive predictive 87 (68 — 96) 85 (68 — 94) 75 (43 —93) 75 (47 - 92) 94 (71 — 100) 94 (71 — 100)
value (%)
Negative predictive 60 (36 — 80) 69 (41 — 88) 64 (32 — 88) 86 (42 — 99) 56 (23 — 85) 56 (23 — 85)
value (%)
Accuracy (%) 76 (62 — 86) 80 (66 — 89) 70 (47 — 86) 78 (56 — 92) 81 (61 —93) 81 (61 —93)
Positive LR 3.06 (1.28 —7.29) 2.73(1.30-5.72) 2.31(0.84 —6.36) 2.31(1.06—5.01) 4.86(0.80—29.42) 4.86(0.80 —29.42)
Negative LR 0.31(0.16 — 0.59) 0.21 (0.09 — 0.51) 0.44(0.18 = 1.09) 0.13(0.02-0.9) 0.23(0.09 - 0.59)  0.23 (0.09 — 0.59)

The data are presented as % (95 % CI)

with the largest nodal metastasis <7 mm, the sensitivities were
60 % and 40 %, respectively. The sizes of the largest nodal
metastasis per axilla in relation to nodal involvement status as
detected by PET using PSF or OSEM reconstruction are
shown in Fig. 6. The median size was 3 mm amongst patients
with nodal involvement not detected by either reconstruction,
6 mm amongst patients in whom nodal involvement was
detected only by PSF reconstruction and 16 mm amongst
patients in whom nodal involvement was correctly detected
by both reconstructions. This difference was statistically sig-
nificant (p=0.0064). In the patients in whom PSF reconstruc-
tion detected nodal involvement but OSEM reconstruction did
not, the smallest detectable metastasis was 1.8 mm.

Discussion

Evaluation of new technologies that are being implemented in
PET imaging is needed. Some of them such as advanced
reconstruction algorithms are likely to not only improve

Fig. 5 Graphical comparison a
between the two algorithms. Each
subgroup is defined according to ;
the size of the primary tumour (a | ;}' 1
<30 mm, b >30 mm; 23 and 27 Superior
patients, respectively). Compared
with OSEM reconstruction, a
diagnostic procedure in the first
quadrant (/) will be interpreted as
superior overall, in the second
quadrant (/7) as superior for
confirming the absence of
metastases, in the third quadrant
(1) as superior for confirming the
presence of metastases, or in the /
last quadrant (/V) as inferior

1.0

0.8

0.6

n / %
Inferior

True Positive Rate

tumours < 30mm

/' Absence

diagnostic performance but also change quantitative and im-
age features, requiring new diagnostic thresholds to be de-
fined. PSF reconstruction is a new reconstruction algorithm
available from all major vendors of whole-body PET/CT
systems (namely TrueX from Siemens Healthcare [17],
SharpIR for GE Healthcare [18] and Astonish TF from
Philips Healthcare) which improves spatial resolution and is
therefore expected to lead to the detection of smaller metasta-
ses than can be achieved by conventional algorithms such as
OSEM. So far, PET imaging has failed to solve the clinical
issue of proper axillary lymph node staging in breast cancer
patients at least in part because of its limited spatial resolution,
and could therefore benefit from PSF reconstruction. In this
prospective study in a single referral centre, the use of PSF
reconstruction led to an increase in SUV,,,, of 66 % on
average (Fig. 1) as compared with OSEM reconstruction.
PSF reconstruction was able to detect more involved nodes
and to improve PET sensitivity in the detection of axillary
nodal involvement, especially in patients in whom the largest
nodal metastasis was <7 mm.

b

tumours > 30mm

] ]
1 / 1
Superior I/ Absence

|
1 v

n
Fresence}’ Inferior

1.0

Oi6 0.8
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0.4
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45 = p=0.0064
404 —T

35+
30+
25+

20+
15- -
10+

Size of nodal metastases (mm)

51 —+— B
0 — T T
PSF+/OSEM+ PSF+OSEM- PSF-/OSEM-
26 pts 3 pts 5 pts

Fig. 6 Sizes of the largest nodal metastasis per axilla in relation to nodal
involvement status as detected by PET using PSF or OSEM reconstruc-
tion: PSF-/OSEM- patients with nodal involvement not detected by either
reconstruction, PSF+/OSEM- patients in whom nodal involvement was
detected only by PSF reconstruction, PSF+/OSEM+ patients in whom
nodal involvement was correctly detected by both reconstructions). The
extreme values and quartiles (when »n >3) are shown together with the
median values (longest bars) and mean values (shortest bars). The sizes
were compared using the Kruskal-Wallis rank sum test

The implementation of PSF reconstruction improves spa-
tial resolution in a more important manner at the edges of the
FOV where the PSF broadens because of the oblique penetra-
tion of 511-keV photons into scintillation crystals. Evaluation
of the FWHM of our system in the geometry of a human
breast and axilla PET examination showed a strong improve-
ment thanks to PSF reconstruction (median radial FWHM:
2.50 mm) as compared to a conventional OSEM algorithm
(median radial FWHM: 6.34 mm). In addition, PSF recon-
struction minimized PVE and would be expected to improve
activity recovery more importantly in lesions smaller than
twice the spatial resolution of the PET system. Therefore,
the improvement in quantitative values and the ability to
detect small lesions would be expected to be higher in the
axillae, as compared with more centrally located malignancies
and/or larger tumours. Indeed, the 66 % improvement in
SUV hax in this study can be compared with the 48 % im-
provement observed in a previous study dealing with thoracic
lymph node staging in patients with non-small-cell lung can-
cer (NSCLC) that used the same PET system and acquisition/
reconstruction parameters [8].

In our study, PET with PSF reconstruction detected more
involved nodes than PET with OSEM reconstruction . This is
of importance, as the number of involved nodes is itself a
prognostic factor [19]. In addition, this result strengthens the
findings of Vinh-Hung et al. [5], demonstrating that PET may
be a powerful tool for distinguishing patients with a low versus
those with a high burden of lymph node involvement. PET with
PSF reconstruction did not detect involved nodes outside Berg I
and II levels that would have been overlooked by PET with
OSEM reconstruction . Detecting these nodes, which are usually
not addressed during an axillary clearance procedure, is valuable
and can change a patient’s management [20].

@ Springer

PSF reconstruction performed better than OSEM recon-
struction in detecting nodal metastases <7 mm. We chose the
median size of all nodal metastases in our series as a cut-off
value, but it is noteworthy that 7 mm was also roughly twice
the spatial resolution of our PET system, a size below which
PVE is significant. To the best of our knowledge, there is only
one study that has compared PET results to the exact size of
the intranodal metastases [2]. This is of importance in breast
cancer, a malignancy in which a given nodal metastasis is
frequently smaller than the involved node by itself. In a recent
study evaluating diagnostic full-dose '*F-FDG PET/CT for
axillary staging of breast cancer patients [2], 10 out of 61
included patients were false-negative. In these patients, apart
from an overlooked 24-mm nodal metastasis immediately
adjacent to a primary tumour, nodal size ranged from 0.8 to
6 mm (mean 3 mm). In our study, we took into account the
size of the largest nodal metastasis per axilla, because this is
the lesion most likely to be detected by PET. When taking into
account all nodal metastases to compare our results with those
of Heusner et al. [2], who used a similar methodology, the size
of the metastases in the five patients in whom both PSF and
OSEM PET were false-negative ranged from 1 to 9 mm (mean
3.3 mm). In the three patients in whom PSF reconstruction
was true-positive while OSEM reconstruction was false-
negative, the size of the largest metastases ranged from 1.8
to 8 mm (mean 4.9 mm). The median size of the largest nodal
metastasis per axilla was lower in the PSF+/OSEM— group
than in the PSF+/OSEM+ group (Fig. 6). Yet in the PSF+/
OSEM+ group there were some small metastases (Fig. 6).
This illustrates the fact that the ability of PET imaging to
detect small cancer deposits depends not only on spatial
resolution, but also on other factors such as '*F-FDG avidity
and contrast between lesion and background.

There is an ongoing debate as to the potential role of '*F-FDG
PET for initial staging of breast cancer [15, 21-23]. Despite a
low sensitivity, '*F-FDG PET is generally reported to have a
good specificity. Some authors advocate the use of '*F-FDG
PET to reduce the use of sentinel node biopsy (SNB) [21, 23]
(i.e. if findings are positive in the axilla, SNB is no longer
required and ALND can be performed immediately), while
others suggest that '*F-FDG PET should be used to extend the
use of SNB [2, 15]. Regarding the latter option, Heusner et al. [2]
suggested that in patients with a high risk of axillary lymph node
metastases, an unremarkable '*F-FDG PET scan could help
identify a subgroup of patients who can safely undergo SNB. It
is noteworthy that the first strategy is based on a good specificity
of PET, generally reported to be higher than 80 %. Similar to the
study by Lasnon et al. [8] in patients with NSCLC, we found that
PET with PSF reconstruction improves sensitivity at the expense
of a slightly lower specificity, probably because PSF reconstruc-
tion improves activity recovery in nodes with moderate uptake
because of benign disease. In our study, PET with PSF recon-
struction had a higher sensitivity in patients with a primary
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tumour <30 mm, whereas both reconstructions performed equal-
ly well in patients with a primary tumour >30 mm, a size above
which the risk of macrometastases is higher (Table 2). In addi-
tion, the LR— was lower with PSF reconstruction than with
OSEM reconstruction, and Biggerstaff graphical comparison
showed PSF reconstruction to be globally superior to OSEM
reconstruction (Fig. 5). Therefore, altogether these data suggest
that the use of PET with PSF reconstruction could enable SNB to
be performed more safely in patients with a primary tumour
<30 mm and with unremarkable PET results in the axilla.

Finally, it is noteworthy that this study and others evaluating
the impact of PSF reconstruction or a combination of PSF
reconstruction and time-of-flight on quantitative values in on-
cology [7, 8, 24, 25] have been performed at a time when many
efforts are being made to harmonize SUV values in multicentre
trials [26-28]. The use of different generation PET systems in
which FDG PET is used for therapy monitoring in breast cancer
patients could lead to inaccurate response evaluation. If, for
example, a patient underwent a pretreatment scan on a PET
system using a conventional algorithm and a posttreatment scan
on a PET system equipped with PSF reconstruction, response
would be incorrectly minimized. This may occur in centres
running two or more PET systems or updating their equipment
during the course of a trial. The use of PSF reconstruction may
also be an issue when pooling SUVs coming from PET systems
of different generations to determine whether the SUV of met-
astatic nodes is a prognostic factor [29]. A solution to overcom-
ing these problems is to harmonize SUV using an additional
filtering step [30] or by generating two sets of images, one to
provide optimal diagnostic quality and the second to meet
quantitative harmonizing standards [31].

Conclusion

In this prospective study in a single referral centre, the use of PSF
reconstruction led to an increase in SUV ., of 66 % on average
compared with OSEM reconstruction, detected more involved
nodes and improved PET sensitivity in the detection of axillary
nodal involvement, especially in patients in whom the largest
nodal metastasis was <7 mm. Although the sensitivity of PET
with PSF reconstruction appears to be insufficient for it to replace
surgical approaches for axillary staging, our data suggest that the
use of PET with PSF reconstruction could allow SNB to be
performed more safely in patients with a primary tumour
<30 mm and with unremarkable PET results in the axilla.
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