
Japan J. Indust. Appl. Math. (2014) 31:231–262
DOI 10.1007/s13160-013-0131-3

ORIGINAL PAPER Area 2

Convergence of the invariant scheme of the method
of fundamental solutions for two-dimensional potential
problems in a Jordan region

Hidenori Ogata · Masashi Katsurada

Received: 19 September 2012 / Revised: 9 September 2013 / Published online: 24 September 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We examine the invariant scheme of the method of fundamental solutions
for two-dimensional potential problems, that is, Dirichlet boundary value problems
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232 H. Ogata, M. Katsurada

1 Introduction

In this paper, we consider the “invariant scheme” of the method of fundamental solu-
tions (MFS) for two-dimensional potential problems, that is, Dirichlet boundary value
problems of the Laplace equation in a Jordan region, and we propose an arrange-
ment of the points used in the method by a conformal mapping. We consider the
two-dimensional Dirichlet problem of the Laplace equation

{�u = 0 in Ω

u = f on Γ,
(1)

where Ω is a region in the two-dimensional Euclidean plane and the boundary Γ = ∂Ω

is a closed Jordan curve. Throughout in this paper, we equalize the two-dimensional
Euclidean space R

2 to the complex plane C
1. The MFS gives an approximate solu-

tion of the potential problems (1) by a linear combination of the two-dimensional
fundamental solutions of the Laplace operator

u(z) � u(C)
N (z) = − 1

2π

N∑
j=1

Q j log |z − ζ j |, (2)

where ζ j ∈ C \ Ω ( j = 1, 2, . . . , N ) are called the “charge points” and given by
the user and Q j ∈ R ( j = 1, 2, . . . , N ) are called the “charges” determined by
the way given below. We call the approximation (2) the “conventional scheme” of
the MFS. We remark that the approximate solution uN satisfies the Laplace equa-
tion �u(C)

N = 0 exactly in the problem region Ω . Regarding the Dirichlet boundary

condition, we choose the charges Q j by the collocation method so that u(C)
N sat-

isfies the boundary condition approximately. Namely, we choose boundary points
zi ∈ Γ (i = 1, 2, . . . , N ) which are called the “collocation points” and determine the
charges Q j by the collocation equation

u(C)
N (zi ) = f (zi ) (i = 1, 2, . . . , N ), (3)

which is equivalent to the system of linear equations for Q j

⎡
⎢⎢⎢⎣

G11 G12 · · · G1N

G21 G22 · · · G2N
...

...
...

G N1 G N2 · · · G N N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Q1
Q2
...

QN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f (z1)

f (z2)
...

f (zN )

⎤
⎥⎥⎥⎦ ,

Gi j = − 1
2π

log |zi − ζ j | (i, j = 1, 2, . . . , N ).

(4)

1 Throughout this paper, we denote the set of all the positive integers by N, the set of all the integers by Z,
the set of all the real numbers by R and the set of all the complex numbers by C.
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Convergence of invariant scheme of fundamental solution method 233

As shown above, the MFS is a very simple method and its computational cost is low.
In addition, as shown in [5], this method achieves high accuracy such as exponential
convergence under some conditions. Due to these advantages, the MFS is used widely
in science and engineering.

However, the conventional scheme of the MFS lacks the very basic natural property
that the solution is invariant with respect to trivial affine transformation such as scaling
of coordinates

z → αz and ζ j → αζ j , (5)

where α( �= 0) is a real constant, and the origin shift for the boundary data

f (z) → f (z) + c, (6)

where c is a constant. The exact solution u of the potential problem (1) transforms

u(z) → u(αz) = u(z)

under the transformation (5) and

u(z) → u(z) + c

under the transformation (6), which, however, is not the case with the approximate
solution u(C)

N of the conventional scheme (2) of the MFS. Murota gave a solution to
this problem, that is, a scheme of the MFS which is invariant under the trivial affine
transformations (5) and (6) [6,7]. The scheme, which is called the “invariant scheme”,
gives an approximate solution of the problem (1) in the form

u(z) � u(I)
N (z) = C0 − 1

2π

N∑
j=1

Q j log |z − ζ j |. (7)

where ζ j ∈ C \ Ω ( j = 1, 2, . . . , N ) are the charge points given by the user, C0 ∈ R

is a constant and Q j ∈ R ( j = 1, 2, . . . , N ) are the charges subject to the constraint

N∑
j=1

Q j = 0. (8)

The approximate solution u(I)
N of the invariant scheme (7) also satisfies the Laplace

equation exactly in the problem region Ω and, regarding the boundary condition,
we choose the constants C0 and Q j ( j = 1, 2, . . . , N ) by the collocation method
so that uN satisfies the boundary condition approximately. Namely, we choose the
“collocation points” zi ∈ Γ (i = 1, 2, . . . , N ) and we determine the constants C0 and
Q j ( j = 1, 2, . . . , N ) by the collocation equation
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234 H. Ogata, M. Katsurada

u(I)
N (zi ) = f (zi ) (i = 1, 2, . . . , N ), (9)

and the Eq. (8), which are equivalent to the system of linear equations for C0 and Q j

⎡
⎢⎢⎢⎢⎢⎣

G11 G12 · · · G1N 1
G21 G22 · · · G2N 1
...

...
...

...

G N1 G N2 · · · G N N 1
1 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Q1
Q2
...

QN

C0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f (z1)

f (z2)
...

f (zN )

0

⎤
⎥⎥⎥⎥⎥⎦

,

Gi j = − 1
2π

log |zi − ζ j | (i, j = 1, 2, . . . , N ).

(10)

The approximate solution of the invariant scheme u(I)
N satisfies the invariance properties

of the exact solution of the potential problem. In fact, under the coordinate scaling (5),
the approximate solution u(I)

I (z) transforms as

u(I)
N (z) = C0 − 1

2π

N∑
j=1

Q j log |z − ζ j |

→ C0 − 1

2π

N∑
j=1

Q j log |α(z − ζ j )|

= u(I)
N (z) − 1

2π
log |α|

N∑
j=1

Q j

︸ ︷︷ ︸
0

= u(I)
N (z)

due to the constraint (8). And, under the origin shift (6), the approximate solution
u(I)

N (z) transforms as u(I)
N (z) → u(I)

N (z) + c since the constants transforms as C0 →
C0 + c and Q j → Q j ( j = 1, 2, . . . , N ).

It is important to choose the charge points ζ j and the collocation points zi suitably
for a good approximation in the both two schemes of the MFS. In the special case that
the problem region Ω is a disk

Ω = Dρ = {z ∈ C ||z| < ρ } (ρ > 0),

it is natural to choose the charge points ζ j and the collocation points zi uniformly on
concentric circles, that is,

ζ j = σρω j , z j = ρω j ( j = 1, 2, . . . , N ), (11)

where ω = e2π i/N and σ is a real constant called the “assignment parameter” such
that σ > 1. We call the positioning of the charge points and the collocation points
an “equi-distant equally phased arrangement” of assignment parameter σ . It is known
theoretically that the method of fundamental solutions works quite well if we choose
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Convergence of invariant scheme of fundamental solution method 235

the charge points ζ j and the collocation points zi as (11) as in the theorems below. For
the conventional scheme, we have the following theorem [5].

Theorem 1 We consider the conventional scheme of the MFS applied to a potential
problem (1) in a disk region Dρ . We assume that the charge points ζ j and the collo-
cation points zi of the MFS are in an equi-distant equally phased arrangement (11)
of assignment parameter σ > 1. Then, the following (i) and (ii) hold true.

(i) If we assume that (σρ)N − ρN �= 1, then the collocation equation (4) of the
conventional scheme has a unique solution.

(ii) We further assume that σρ �= 1 and the Fourier coefficients of the boundary data
f

f̂ (n) =
1∫

0

f (ρe2π iτ )e−2nπ iτ dτ (n ∈ Z)

decay exponentially, that is, there exist constants A f > 0 and a (0 < a < 1)

such that

| f̂ (n)| ≤ A f a|n| (∀n ∈ Z). (12)

Then, the following error estimate of the conventional scheme of the MFS holds.

sup
z∈Dρ

|u(z) − uN (z)| ≤ A f CC(ρ, a, σ ) ×
⎧⎨
⎩

σ−N if σ < a−1/2

Nσ−N if σ = a−1/2

aN/2 if σ > a−1/2,

where CC(ρ, a, σ ) is a positive constant depending on ρ, a and σ only.

For the invariant scheme, we have the following theorem2.

Theorem 2 We consider the invariant scheme of the MFS applied to a potential prob-
lem (1) in a disk region Dρ . We assume that the charge points ζ j and the collocation
points zi of the MFS are in an equi-distant equally phased arrangement (11) of assign-
ment parameter σ > 1. Then, the following (i) and (ii) hold true.

(i) The collocation equation (4) of the invariant scheme with the Eq. (8) has a unique
solution.

(ii) We further assume that the Fourier coefficients of the boundary data f decay
exponentially as in (12). Then, for the error of the invariant scheme, we have the
inequality

sup
z∈Dρ

|u(z) − u(I)
N (z)| ≤ A f CI(ρ, a, σ ) ×

⎧⎨
⎩

σ−N if σ < a−1/2

Nσ−N if σ = a−1/2

aN/2 if σ > a−1/2,

where CI(ρ, a, σ ) is a positive constant depending on ρ, a and σ only.

2 The result on the convergence of the invariant scheme is not given in the previous papers as far as the
authors know, but we can obtain the convergence theorem easily in a way similar to the proof of Theorem 1.
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236 H. Ogata, M. Katsurada

We remark that the convergence theorem of the invariant scheme for a disk region Dρ

does not require the somewhat unnatural assumptions that

(σρ)N − ρN �= 1 and σρ �= 1,

which are needed in the convergence theorem of the conventional scheme for a disk
region. It may be a reflection of the fact that the solution u(I)

N of the invariant scheme
has invariance properties under trivial transformations (5) and (6).

In the cases of general regions, it is a difficult problem how to choose the charge
points and the collocation points since it is not trivial how to position the points
uniformly. Katsurada gave a solution of positioning the points [4]. Namely, he proposed
to use the images of points in an equi-distant equally phased arrangement (11), that
is, he proposed to use the points

ζ j = Ψ (σρω j ) and z j = Ψ (ρω j ) ( j = 1, 2, . . . , N ), (13)

with a conformal mapping

Ψ : {w ∈ C ||w| > ρ } → C \ Ω, (14)

which is assured to exist by Riemann’s mapping theorem and admits a conformal
extension to {w ∈ C||w| ≥ αρ} (0 < α < 1), as the charge points ζ j and the
collocation points z j of the conventional scheme of the MFS, and he presented a
convergence theorem for the conventional scheme with the charge points and the
collocation points (13). Katsurada also proposed to use the charge points and the
collocation points of the MFS obtained by an interior conformal mapping [3].

The purpose of this paper is to extend Katsurada’s result to the invariant scheme
of the MFS. Namely, we propose to use the points (14) as the charge points ζ j and
the collocation points z j also in the invariant scheme of the MFS and give a conver-
gence theorem of this scheme. The convergence theorem for the conventional scheme
(Theorem 3.1 of [4]) requires the assumptions that

σρ �= 1 and the capacity of the curve {Ψ (σρe2π iτ ) ∈ C|0 ≤ τ ≤ 1} �= 1,

which are rather unnatural from a physical point of view. It is, however, shown in
this paper that the convergence theorem for the invariant scheme does not need these
unnatural assumptions. It is an advantage of the invariant scheme of the MFS compared
with the conventional scheme, and it may be a reflection of the fact that the invariant
scheme has the invariance properties under the trivial affine transformations (5) and
(6).

The contents of this paper are as follows. In Sect. 2, we prepare some notations for
the analysis of the invariant scheme of the MFS. Especially, we introduce a Hilbert
space to which the exact solution u, the approximate solution u(I)

N of the invariant
scheme and the boundary data f belong and whose norm is used to estimate the error
of the invariant scheme. In Sect. 3, we present main theorems of this paper, which
show the convergence of the invariant scheme of the MFS. We present the proof of the
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Convergence of invariant scheme of fundamental solution method 237

theorems in Sect. 4. In Sect. 5, we summarize this paper and give some concluding
remarks.

2 Preliminaries

Throughout this paper, we use the notation S1 = R/Z. Functions defined on S1 are
periodic functions of period 1. We reduce our problem to a problem of approximating
functions on S1 and use a technique based on the Fourier analysis for our purpose.

Following [4], we prepare a family of functions for the analysis of the invariant
scheme of the MFS. Let T be the set of all the real valued finite Fourier series, that
is,

T =
{
ϕ(τ) =

∑
n∈Z

ϕ̂(n)e2nπ iτ
∣∣∣ϕ̂(n) ∈ C

are zeros except for a finite number of them and ϕ̂(−n) = ϕ̂(n) (∀n ∈ Z)
}
.

For each (ε, s) ∈ (0,+∞) × R, we define the norm ‖ · ‖ε,s on T by

‖ϕ‖ε,s =
{∑

n∈Z

|ϕ̂(n)|2ε2|n|n2s

}1/2

,

where

n =
{

2π |n| (n �= 0)

1 (n = 0),

and define the Hilbert space Xε,s as the completion of T in the norm ‖ · ‖ε,s .
Hilbert space Xε,s is originally introduced by Arnold for the analysis of the spline-
trigonometric-Galerkin method [1].

We also prepare the following notations.

1. We define the order relations “≥” and “>” on (0,+∞) × R respectively by

(ε1, s1) ≥ (ε2, s2) ⇐⇒ ε1 > ε2 or (ε1 = ε2 and s1 ≥ s2)

and

(ε1, s1) > (ε2, s2) ⇐⇒ (ε1, s1) ≥ (ε2, s2) and (ε1, s1) �= (ε2, s2),

that is, the order relations “≥” and “>” are the lexicographic order relations.
2. We define the sets ΛN and ΔN for N ∈ N respectively by

ΛN =
{

n ∈ Z

∣∣∣∣− N

2
≤ n <

N

2

}
and ΔN =

{ n

N
∈ S1

∣∣∣ n ∈ ΛN

}
.

Related to the functional spaces Xε,s , we have the following lemma.
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238 H. Ogata, M. Katsurada

Lemma 1 If (ε1, s1) > (ε2, s2), then the natural inclusion Xε1,s1 ↪→ Xε2,s2 exists
and is compact.

Proof It is easy to prove that Xε1,s1 ⊂ Xε2,s2 if (ε1, s1) > (ε2, s2). In order to prove
that this inclusion is compact, we remark that we can equalize ϕ ∈ Xε1,s1 to a sequence{
ϕ̂(n)ε

|n|
1 ns1

}
n∈Z

∈ l2. Then, the inclusion mapping Xε1,s1 ↪→ Xε2,s2 is equalised

to the mapping of
{
ϕ̂(n)ε

|n|
1 ns1

}
∈ l2 to

{
ϕ̂(n)ε

|n|
2 ns2

}
n∈Z

=
{
ϕ̂(n)ε

|n|
1 ns1 · (ε2/ε1)

|n| ns2−s1
}

n∈Z
∈ l2.

Since the sequence
{
(ε2/ε1)

|n|ns2−s1
}

n∈Z
decreases monotonously as n → ±∞, this

mapping is compact. ��
Related to the expression of the approximate solution of the invariant scheme (7)

and (8), we define the integral operator A for function q on S1 by

Aq(τ ) = q̂(0) − 1

2π

∫

S1

log
∣∣∣Ψ (ρe2π iτ ) − Ψ (σρe2π iθ )

∣∣∣ {q(θ) − q̂(0)} dθ, (15)

Using the integral operator A, the approximate solution of the invariant scheme on the
boundary Γ is written as

u(I)
N (Ψ (ρe2π iτ )) = AqN (τ ) (τ ∈ S1) (16)

with

qN (τ ) = C0 +
∑

j∈ΛN

Q jδ

(
τ − j

N

)
, (17)

where C0 and Q j ( j ∈ ΛN ) are real constants such that

∑
j∈ΛN

Q j = 0 (18)

and δ(·) is the Dirac delta function. The constants C0 and Q j ( j ∈ ΛN ) are determined
by the collocation equation

u(I)
N (Ψ (ρωi )) = f (Ψ (ρωi )) (i ∈ ΛN ) (19)

and the Eq. (18). We denote the set of functions qN of the form (17) whose real
constants C0 and Q j ( j ∈ ΛN ) satisfy the condition (18) by DN . Related to DN , we
have the following lemma, which can be proved easily.
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Convergence of invariant scheme of fundamental solution method 239

Lemma 2 1. For arbitrary qN ∈ DN , we have

q̂N (n) = q̂N (m) if n ≡ m mod N and n, m �≡ 0 mod N .

q̂N (n) = 0 if n ≡ 0 mod N and n �= 0.

2. DN ⊂ Xε,s if (ε, s) < (1,−1/2).

In this paper, we express the solution of the potential problem (1) as a single layer
potential

u(z) = q̂(0) − 1

2π

∫

S1

log |z − Ψ (σρe2π iθ )|{q(θ) − q̂(0)} dθ (20)

with charge density q(θ) (θ ∈ S1), and, then, we have

u(Ψ (ρe2π iτ )) = f (Ψ (ρe2π iτ )) = Aq(τ ) (τ ∈ S1). (21)

We regard the approximate solution u(I)
N by the invariant scheme as a single layer

potential with discrete charge density qN (� q) and estimate the error on the boundary
( f − u(I)

N )|Γ by measuring the error of the charge qN − q by the norm ‖ · ‖ε′,s′ of a
Hilbert space Xε′,s′ for some(ε′, s′) ∈ (0,+∞) × R.

3 Main theorem

The following theorem is the main result of this paper.

Theorem 3 We consider the application of the invariant scheme of the MFS to the
potential problem with the charge points ζ j and the collocation points z j given by

z j = Ψ (ρω j ), ζ j = Ψ (σρω j ) ( j ∈ ΛN ), (22)

where Ψ is a conformal mapping

Ψ : {w ∈ C||w| > ρ} → C \ Ω, (23)

ω = e2π i/N and σ is a constant such that σ > 1. We assume the following conditions.

1. The conformal mapping Ψ admits a conformal extension to{w ∈ C||w| ≥ αρ},
where α is a constant such that 0 < α < 1.

1. σα < 1.

Then, the following (i) and (ii) hold true.

(i) The collocation equation (19) of the invariant scheme with the Eq. (18) have a
unique solution, that is, the coefficient matrix of the system of linear equations
(10) with ζ j and zi given by (22) is regular.
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240 H. Ogata, M. Katsurada

(ii) We further assume that the real constants a and t satisfy

1 < a−1 < σ 2, (a−1, t) < (α−1,−1/2)

Then, there exists a constant C > 0 such that, for sufficiently large N ∈ N and
for arbitrary f with fρ ∈ Xa−1,t , where fρ is defined by fρ(τ ) = f (Ψ (ρe2π iτ )),

the following error estimate of the invariant scheme holds.

‖ f − u(I)
N ‖Hs (Γ ) ≤ C‖ fρ‖a−1,t N s−t aN/2, (24)

where s is an arbitrary real constant, Hs(Γ ) is the set of functions v defined on Γ

such that the function vρ(τ ) = v(Ψ (ρe2π iτ )) defined on S1 belongs to the usual
Sobolev space Hs(S1) and ‖v‖Hs (Γ ) = ‖vρ‖Hs (S1) (v ∈ Hs(Γ )).

It is interesting that the order of the convergence in (24) is, neglecting N ’s power, the
same as the order of the convergence of the conventional scheme with σ > a−1/2 and
the invariant scheme with σ > a−1/2 applied to problems in disk regions as shown
respectively in Theorems 1 and 2. We also remark that the condition that fρ ∈ Xa−1,t
is satisfied if and only if the boundary data f (z) is an analytic function in the annulus
aρ < |z| < ρ/a.

Remark 1 From the viewpoint of actual computations, it is important to measure the
error by the supremum norm. If s > 1/2 and v ∈ Hs(Γ ), we have v ∈ C(Γ ) and3

‖v‖∞ ≤ C‖v‖Hs (Γ ) (∀v ∈ Hs(Γ )).

In fact, we have for θ ∈ S1

|v(Ψ (ρe2π iθ ))| =
∣∣∣∣∣
∑
n∈Z

v̂ρ(n)e2π iθ

∣∣∣∣∣ ≤
∑
n∈Z

|v̂ρ(n)|

=
∑
n∈Z

n−s · |v̂ρ(n)|ns ≤
{∑

n∈Z

n−2s

}1/2 {∑
n∈Z

|v̂ρ(n)|2n2s

}1/2

and
∑

n∈Z
n−2s < ∞ since s > 1/2. Therefore, if s > 1/2 and fρ ∈ Xa−1,t we have

‖ fρ − (u(I)
N )ρ‖∞ ≤ C‖ fρ‖a−1,t N s−t aN/2,

and, by the principle of the maximum, we have

sup
z∈Ω

|u(z) − u(I)
N (z)| ≤ C‖ fρ‖a−1,t N s−t aN/2.

3 Throughout this paper, the symbols “C, C ′, . . .” etc. denote positive constants and take different values
in different lines.
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Convergence of invariant scheme of fundamental solution method 241

Remark 2 The condition that fρ ∈ Xa−1,t is satisfied if and only if the boundary data
f (z) is an analytic function in a neighborhood of the boundary Γ . In fact, if f (z) is
analytic in the region

{
Ψ (w)

∣∣r0 ≤ |w| ≤ ρ2/r0
}

with r0 such that σ−2ρ < r0 < ρ,
we have

| f̂ρ(n)| ≤
(

r0

ρ

)|n|
sup

{
| f (Ψ (w))|

∣∣∣∣r0 ≤ |w| ≤ ρ2

r0

}

and the condition that fρ ∈ Xa−1,t holds for arbitrary a such that r0/ρ < a < 1.
Conversely, if the condition that fρ ∈ Xa−1,t holds, let

F+(w) =
∞∑

n=0

f̂ρ(n)wn, F−(w) =
∞∑

n=1

f̂ρ(−n)w−n .

The function F+(w) is analytic in a neighborhood of {w ∈ C ||w| ≤ 1 } and the
function F−(w) is analytic in a neighborhood of {w ∈ C ||w| ≥ 1 } . Hence, the func-
tion F = F++F− is analytic in a neighborhood of the unit circle {w ∈ C ||w| = 1 } .

Let

F(w) = F

(
w

ρ

)
.

Then, the function F(w) is analytic in a neighborhood of the circle {w ∈ C ||w| = ρ }
and coincides with the transformed boundary data f (Ψ (w)) on the circle {w ∈ C ||w|
= ρ } . It implies that the transformed boundary data f (Ψ (w)) is analytic in a neigh-
borhood of the circle {w ∈ C ||w| = ρ } and, then, the boundary data f (z) is analytic
in a neighborhood of Γ .

Theorem 3 is obtained as a special case of the following theorem.

Theorem 4 Let (ε, s), (δ, t) ∈ (0,+∞) × R, and σ be the parameter appearing in
(22) such that σ > 1. We assume the following conditions.

1. The conformal mapping Ψ of (23) admits a conformal extension to {w ∈ C||w| ≥
αρ} (0 < α < 1).

2.

(
1,

1

2

)
< (δ, t) <

(
1

α
,−1

2

)
.

3. max

{
δ

σ 2 ,
1

δ

}
≤ ε ≤ min

{
δ,

σ 2

δ

}
. If ε = δ, we further assume s < t and, if

ε = δ = σ , we further assume s <
1

2
.

4. σα < 1.

5.

(
α,

3

2

)
< (ε, s).

Then, the following (i) and (ii) hold true.
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(i) For arbitrary f̃ ∈ Xδ,t and sufficiently large N ∈ N, there exists a unique function
qN ∈ DN such that

AqN = f̃ on ΔN . (25)

(ii) There exists a constant C > 0 such that

‖ f̃ − AqN ‖ε,s ≤ C‖ f̃ ‖δ,t N P(ε,s,δ,t)
(ε

δ

)N/2
, (26)

where P(ε, s, δ, t) is defined by

P(ε, s, δ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{s−t,−t} if δε = 1 and σ−1 ≤ δ < σ

max{s−t, s−1} if δε = σ 2 and σ ≤ δ < σ 2

max{s−t,−1} if ε = σ−2δ and σ < δ < σ 2

max{s−t,−t,−1} if (δ, ε) = (σ, σ−1)

max{s−t, s−1,−1} if (δ, ε) = (σ 2, 1)

s − t otherwise.

(27)

Remark 3 Since the definition of P(ε, s, δ, t) by (27) is rather complicated, we rewrite
(27) by using a figure. Figure 1 shows the region of (δ, ε) satisfying the assumption
of Theorem 4 and, using this figure, we can rewrite (27) as

P(ε, s, δ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{s − t,−t} if (δ, ε) ∈ H1 \ {(σ, σ−1)}
max{s−t, s−1} if (δ, ε) ∈ H2 \ {(σ 2, 1)}
max{s−t,−1} if (δ, ε) ∈ L1 \ {(σ, σ−1), (σ 2, 1)}
max{s−t,−t,−1} if (δ, ε) = (σ, σ−1)

max{s − t, s−1,−1} if (δ, ε) = (σ 2, 1)

s − t otherwise.

(28)

Fig. 1 The region where (δ, ε)

exists (the shadowed area)
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The aim of this paper is to prove Theorem 4. Theorem 3 is obtained by putting
δ = a−1, ε = 1, u(I)

N (Ψ (ρe2π iτ )) = AqN (τ ) and f̃ = fρ in Theorem 4, whose
assumptions are satisfied as follows.

1. The first assumption is satisfied.
2. The relation (δ, t) = (a−1, t) < (α−1,−1/2) holds true and the relation (δ, t) =

(a−1, t) > (1, 1/2) holds true for arbitrary t ∈ R since 1 < a−1(< σ 2).
3. The relation ε > max{σ−2δ, δ−1} holds true since σ−2δ = σ−2a−1 < 1 = ε

and δ−1 = a < 1 = ε, which are obtained by 1 < a−1 < σ 2. The relation
ε < min{δ, σ 2δ−1} holds true since δ = a−1 > 1 = ε and σ 2δ−1 = σ 2a >

1 = ε, which is obtained by 1 < a−1 < σ 2. In addition, from the inequality
max{σ−2δ, δ−1} < ε < min{δ, σ 2δ−1}, the definition of P(ε, s, δ, t) (28) and
Fig. 1, we find P(ε, s, δ, t) = P(1, s, a−1, t) = s − t .

4. The fourth assumption is satisfied.
5. Since ε = 1 > α, we have (ε, s) > (α, 3/2) for arbitrary s ∈ R.

We remark that the right hand side of (26) decays as N increases, that is,

N P(ε,s,δ,t)
(ε

δ

)N/2 = o(1) as N → ∞.

In fact, we have ε/δ ≤ 1 and, if ε = δ, we have

P(ε, s, δ, t) =
⎧⎨
⎩

max{s − t,−t} if (δ, ε) = (1, 1)

max{s − t, s − 1} if (δ, ε) = (σ, σ )

s − t otherwise.

Then, we have P(ε, s, δ, t) < 0 from the assumptions of the theorem.

Remark 4 In the error analysis of the conventional scheme in [4], the solution u is
represented as a single layer potential

u(z) = − 1

2π

∫

S1

log |z − Ψ (σρe2π iθ )|q(θ) dθ

and the integral operator AC given by

ACq(τ ) = − 1

2π

∫

S1

log |Ψ (ρe2π iτ ) − Ψ (σρe2π iθ )|q(θ) dθ

is used for the error estimation. Theorem 3.2 of [4] presents the unique solvability
of the collocation equation and the convergence of the same order as (26) of the
conventional scheme of the MFS under the assumptions of Theorem 3 and, in addition,
the assumption that

σρ �= 1 and the capacity of the curve {Ψ (σρe2π iτ )|τ ∈ S1} �= 1,
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which is unnatural from physical point of view. We remark that, in Theorem 3, these
unnatural assumptions are removed.

We now present the sketch of the proof. First, we consider the special case that the
problem region is a disk Dρ = {z ∈ C||z| < ρ}, that is, the conformal mapping Ψ is
the identity. In this case, the integral operator A is the operator L given by

Lq(τ ) = q̂(0) − 1

2π

∫

S1

log |ρe2π iτ − σρe2π iθ |{q(θ) − q̂(0)} dθ, (29)

and we can show the existence of a unique function qN ∈ DN such that LqN =
f̃ on ΔN , that is, the unique solvability of the collocation equation (9) with the Eq. (8)
and estimate the error of the approximate solution‖ f̃ −LqN ‖ε,s by elementary calculus
of the Fourier series. Second, in the case of a general region Ω , we split the operator
A as A = L + K , where K is the integral operator given by

K q(τ ) = − 1

2π

∫

S1

log

∣∣∣∣Ψ (ρe2π iτ ) − Ψ (σρe2π iθ )

ρe2π iτ − σρe2π iθ

∣∣∣∣ {q(θ) − q̂(0)} dθ. (30)

Then, regarding K as a compact perturbation of the isomorphism L , we show that A is
an isomorphism, there exists a unique function qN ∈ DN such that AqN = f̃ on ΔN ,
that is, there exists a unique solution of the collocation equation (9) with the Eq. (8)
and estimate the error ‖ f̃ − AqN ‖ε,s by the application of the Riesz–Schauder theory.

4 Proof of the main theorem

4.1 Step 1—case of a disk region

First, we consider the special case that the region Ω is a disk Dρ and the conformal
mapping Ψ is the identity mapping. In this case, the approximate solution of the
invariant scheme is given by

u(I)
N (z) = C0 − 1

2π

∑
j∈ΛN

Q j log |z − σρω j |, (31)

where the constants C0, Q j ( j ∈ ΛN ) are determined by the collocation equation

u(I)
N (ρωi ) = f (ρωi ) (i ∈ ΛN ) (32)

and the constraint

∑
j∈ΛN

Q j = 0. (33)
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The integral operator A is the operator L given by (29). Using the function

G(θ) = − 1

2π
log |σρ − ρe2π iθ |,

the integral operator L is given by the convolution

Lq = q̂(0) + G ∗ {q − q̂(0)}.

Since the Fourier coefficients of G(θ) are given by [5]

Ĝ(n) =

⎧⎪⎪⎨
⎪⎪⎩

σ−|n|

4π |n| (n �= 0)

− 1

2π
log(σρ) (n = 0),

the Fourier coefficients of Lq are given by

L̂q(n) =
⎧⎨
⎩

σ−|n|

4π |n| q̂(n) (n �= 0)

q̂(0) (n = 0).

(34)

Therefore, we have the following lemma.

Lemma 3 For arbitrary (ε, s) ∈ (0,+∞) × R and arbitrary σ(> 1), the operator
L : Xε,s → Xσε,s+1 is an isomorphism.

Proof It is obvious that the operator L is linear and surjective from (34). For q ∈ Xε,s ,
we have

‖Lq‖2
σε,s+1 = ∣∣L̂q(0)

∣∣2 +
∑

n∈Z\{0}

∣∣L̂q(n)
∣∣2 (σε)2|n|(2π |n|)2(s+1)

= |̂q(0)|2 +
∑

n∈Z\{0}

∣∣∣∣ σ
−|n|

4π |n| q̂(n)

∣∣∣∣
2

(σε)2|n|(2π |n|)2(s+1)

= |̂q(0)|2 + 1

4

∑
n∈Z\{0}

|̂q(n)|2ε2|n|(2π |n|)2s .

This gives the inequality

1

2
‖q‖ε,s ≤ ‖Lq‖σε,s+1 ≤ ‖q‖ε,s,

which shows that the operator L is an isomorphism. ��
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Remark 5 In [4], the integral operator LC given by

LCq(τ ) = − 1

2π

∫

S1

log |ρe2π iτ − σρe2π iθ |q(θ) dθ

is used instead of L given by (29) for the analysis of the conventional scheme applied
to problems in a disk region. The operator LC is shown to be an isomorphism from
Xε,s to Xσε,s+1 under the somewhat unnatural assumptions that

(σρ)N − ρN �= 1 and σρ �= 1.

Lemma 3 for the integral operator L given in this paper does not need these unnatural
assumptions.

The following theorem shows the unique solvability of the collocation equation
(32) with the Eq. (33) and gives an error estimate of the invariant scheme for the case
of a disk region Dρ .

Theorem 5 We consider the invariant scheme of the MFS (31) for potential problems
(1) in a disk region Dρ .

1. The collocation equation (32) with the Eq. (33) have a unique solution u(I)
N for

arbitrary (δ, t) ∈ (0,+∞) × R and arbitrary boundary data f such that fρ ∈
Xδ,t .

2. We assume that (ε, s), (δ, t) ∈ (0,+∞) × R and σ(> 1) satisfy

(δ, t) >

(
1,

1

2

)
, max

{
δ

σ 2 ,
1

δ

}
≤ ε ≤ min

{
δ,

σ 2

δ

}
.

If δ = ε, we assume s ≤ t . if ε = σ , we assume s <
1

2
. Then, if the function fρ

on S1 belongs to Xδ,t , we have

‖ fρ − (u(I)
N )ρ‖ε,s ≤ C‖ fρ‖δ,t N P(ε,s,δ,t)

(ε

δ

)N/2

for sufficiently large N ∈ N, where (u(I)
N )ρ is the function on S1 given by

(u(I)
N )ρ(τ ) = u(I)

N (ρe2π iτ ),

and P(ε, s, δ, t) is defined by (27).

Theorem 5 is proved by the following lemma.

Lemma 4 1. For arbitrary function q on S1, there exists a unique function qN ∈ DN

such that

LqN = Lq on ΔN . (35)
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2. We assume that (ε, s), (δ, t) ∈ (0,+∞) × R and σ(> 1) satisfy

(δ, t) >

(
1

σ
,−1

2

)
,

1

σ 2 max

{
δ,

1

δ

}
≤ ε ≤ min

{
δ,

1

δ

}
.

If ε = δ, we assume s ≤ t . If ε = 1, we assume s < −1

2
. Then, for arbitrary

function q ∈ Xδ,t and qN ∈ DN determined by (35), we have

‖q − qN ‖ε,s ≤ C‖q‖δ,t N P0(ε,s,δ,t)
(ε

δ

)N/2

for sufficiently large N ∈ N, where P0(ε, s, δ, t) is defined by

P0(ε, s, δ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{s − t,−t − 1} if δε = σ−2 and σ−2 ≤ δ < 1
max{s − t, s} if δε = 1 and 1 ≤ δ < σ

max{s − t,−1} if ε = σ−2δ and 1 < δ < σ

max{s − t,−t − 1,−1} if (δ, ε) = (1, σ−2)

max{s − t, s,−1} if (δ, ε) = (σ, σ−1)

s − t otherwise.

(36)

Proof of Theorem 5 Since the operator L : Xσ−1δ,t−1 → Xδ,t is an isomorphism
from Lemma 3, there exists a unique function q ∈ Xσ−1δ,t−1 such that Lq = fρ for
fρ ∈ Xδ,t . Then, there exists a unique function qN ∈ DN such that LqN = Lq =
fρ on ΔN from Lemma 4, and remarking that the parameters (σ−1ε, s−1, σ−1δ, t−1)

satisfy the assumption of Lemma 4, (u(I)
N )ρ = LqN satisfies

‖ fρ − LqN ‖ε,s ≤ C‖q − qN ‖σ−1ε,s−1

≤ C ′‖q‖σ−1δ,t−1 N P0(σ−1ε,s−1,σ−1δ,t−1)
(ε

δ

)N/2

≤ C ′′‖ fρ‖δ,t N P(ε,s,δ,t)
(ε

δ

)N/2
,

where we remark qN ∈ Xσ−1ε,s−1 and, then, q − qN ∈ Xσ−1ε,s−1 since (σ−1ε, s −
1) < (1,−1/2). ��

Proof of Lemma 4 We here prove the unique solvability of the collocation equation
only, and postpone the estimation of ‖q − qN ‖ε,s to the appendix.

We show the unique solvability of the collocation equation LqN = Lq on ΔN by
giving the solution explicitly. The collocation equation is equivalent to the equation

C0 − 1

2π

∑
j∈ΛN

Q j log |ρ − σρω−(i− j)| = Lq

(
i

N

)
(i ∈ ΛN ), (37)
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if we express qN as (17). Multiplying the both sides by ω−pi (p ∈ Z) and taking the
sum with respect to i ∈ ΛN , we have

C0 = 1

N

∑
i∈ΛN

Lq

(
i

N

)
, (38)

ϕ(N )
p (ρ)

∑
j∈ΛN

ω−pj Q j =
∑

i∈ΛN

ω−pi Lq

(
i

N

)
(p �≡ 0 mod N ), (39)

where we used the constraint (8), the formula

∑
j∈ΛN

ωnj =
{

N if n ≡ 0 mod N
0 otherwise

(40)

and the function

ϕ(N )
p (z) = − 1

2π

∑
i∈ΛN

ωpi log |z − σρωi |
(

z ∈ C \ {σρωi |i ∈ ΛN }, p ∈ Z

)
. (41)

We can also express the function ϕ
(N )
p (z) as [5]

ϕ(N )
p (z)=ϕ(N )

p (re2π iτ )=
⎧⎨
⎩

N
4π

∑
m∈Z

m≡p

1
|m|

(
r

σρ

)|m|
e2mπ iτ if p �≡0 mod N

− 1
2π

log |zN −(σρ)N | if p ≡0 mod N
(42)

and, especially, we have

ϕ(N )
p (ρ) = N

4π

∑
m∈Z

m≡p

σ−|m|

|m| �= 0 if p �≡ 0 mod N .

Then, we can divide the both side of (39) by ϕ
(N )
p (ρ) and we obtain

∑
j∈ΛN

ω−pj Q j = 1

ϕ
(N )
p (ρ)

∑
i∈ΛN

ω−pi Lq

(
i

N

)
.

Multiplying the both sides by ωpk (k ∈ ΛN ) and taking the sum with respect to
p ∈ ΛN \ {0}, we obtain

Qk = 1

N

∑
p∈ΛN \{0}

∑
i∈ΛN

ωp(k−i) Lq(i/N )

ϕ
(N )
p (ρ)

. (43)
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Therefore, we obtain a unique solution C0 and Q j ( j ∈ ΛN ) of the Eqs. (37) and (8).
It means that there exists a unique function qN ∈ DN which satisfies the collocation
equation LqN = Lq on ΔN . ��

4.2 Step 2—case of a general region

We split the integral operator A into A = L + K , where K is the integral operator
given by (30). Using the function

k(τ, θ) = − 1

2π
log

∣∣∣∣Ψ (ρe2π iτ ) − Ψ (σρe2π iθ )

ρe2π iτ − σρe2π iθ

∣∣∣∣ ,

the operator K is given by

K q(τ ) =
∫

S1

k(τ, θ){q(τ ) − q̂(0)} dθ.

The Fourier coefficients of K q are given by

K̂ q(n) =
∑

m∈Z\{0}
k̂(n, m)q̂(−m),

where k̂(n, m) are the Fourier coefficients of k(τ, θ), that is,

k̂(n, m) =
∫∫

S1×S1

k(τ, θ)e−2π i(nτ+mθ) dτ dθ.

The following lemma shows the compactness of the operator K .

Lemma 5 We assume the following conditions.

1. The conformal mapping Ψ : {w ∈ C||w| > ρ} → C \ Ω admits a conformal
extension to {w ∈ C||w| ≥ αρ} (0 < α < 1).

2. The parameters (ε, s), (δ, t) ∈ (0,+∞) × R, α and σ(> 1) satisfy

(ε, s) >

(
α

σ
,

1

2

)
and (δ, t) <

(
1

α
,−1

2

)
,

Then, the operator K : Xε,s −→ Xδ,t is compact.

We can prove this lemma in the same way as the proof of Lemma 4.3 of [4].
From the above lemma, we can regard the operator A as a perturbation of the

isomorphism L by the compact operator K . Then, A is a Fredholm operator and is
shown to be an isomorphism by the Riesz–Schauder theory as in the following lemma.

123



250 H. Ogata, M. Katsurada

Lemma 6 We assume the following conditions.

1. The conformal mapping Ψ : {w ∈ C||w| > ρ} admits a conformal extension to
{w ∈ C||w| ≥ αρ} (0 < α < 1).

2. The parameters (ε, s), (δ, t) ∈ (0,+∞) × R, α and σ(> 1) satisfy

(
α

σ
,

1

2

)
< (ε, s) <

(
1

σα
,−3

2

)
.

Then, the following (i) and (ii) hold true.

(i) The operator A : Xε,s → Xσε,s+1 is bounded.
(ii) Moreover if ασ < 1, then the operator A is an isomorphism.

Proof (i) The operator L : Xε,s → Xσε,s+1 is bounded from Lemma 3 and the
operator K : Xε,s → Xσε,s+1 is compact, that is, it is bounded from Lemma 5,
whose assumptions are satisfied since (σε, s + 1) < (α−1,−1/2). Therefore,
the operator A = L + K : Xε,s → Xσε,s+1 is bounded.

(ii) Since the operator A = L + K is a Fredholm operator of index 0, we only have
to prove that A is injective. We assume that q ∈ Xε,s satisfies Aq = 0. Then,
we have q = −L−1 K q. From Lemma 5, K q ∈ Xα−1,t for arbitrary t < −1/2
and q = −L−1 K q ∈ X(σα)−1,t−1. Since σα < 1, q is analytic and, then, we
have q = 0 from the lemma below.

��
Lemma 7 Let Γ be a smooth closed Jordan curve in C and q : S1 → R be a Hölder
continuous function. Then, if Aq = 0, we have q = 0.

Proof We here use the notations

ζ(θ) = Ψ (σρe2π iθ ) (θ ∈ S1),

Γσρ =
{
ζ(θ)| θ ∈ S1

}
,

Ωσρ = (the interior of Γσρ), Ω ′
σρ = (the exterior of Γσρ).

We define the function u(z) (z ∈ C) by

u(z) = q̂(0) − 1

2π

∫

S1

log |z − ζ(θ)|{q(θ) − q̂(0)} dθ.

The function u(z) is harmonic in C \ Γσρ and continuous in C by Theorem 15.8b of
[2]. From the assumption, we have u = 0 on Γ and, then, u = 0 in Ω by the principle
of the maximum for harmonic functions. We let v be the conjugate harmonic function
of u

v(z) = − 1

2π

∫

S1

arg{z − ζ(θ)}{q(θ) − q̂(0)} dθ
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and put f = u + iv. Since u = 0 in Ω , we have v ≡ c1(const.) in Ω . Then, f is an
analytic function in Ωσρ and f ≡ ic1 in Ω . It follows that f ≡ ic1 in Ωσρ by the
identity theorem and, then, u ≡ 0 in Ωσρ . From the continuity of u in C, we have
u = 0 on Γσρ .

The function u is harmonic in Ω ′
σρ , continuous in Ω ′

σρ ∪ Γσρ and u = 0 on
Γσρ . Then, the function u(Ψ (w)) is harmonic in {w ∈ C||w| > σρ}, continuous
in {w ∈ C||w| ≥ σρ} and satisfies the boundary condition u(Ψ (w)) = 0 on {w ∈
C||w| = σρ}. Therefore, u(Ψ (w)) = 0 in {w ∈ C||w| ≥ σρ}, and, then, u(z) = 0 in
Ω ′

σρ ∪ Γσρ . Consequently, the function f is analytic in C \ Γσρ and

f (z) = q̂(0) − 1

2π

∫

S1

log{z − ζ(θ)}{q(θ) − q̂(0)} dθ =
{

ic1 in Ωσρ

ic2 in Ω ′
σρ,

(44)

where c2 is a real constant. Differentiating it with respect to z, we have

1

2π

∫

S1

q(θ) − q̂(0)

ζ(θ) − z
dθ = 0 in C \ Γσρ = Ωσρ ∪ Ω ′

σρ.

Introducing the function

q̃(ζ(θ)) = i(q(θ) − q̂(0))

ζ ′(θ)
,

we have

p(z) ≡ 1

2π i

∫
Γσρ

q̃(ζ )

ζ − z
dζ = 0 in C \ Γσρ.

For z ∈ Γσρ ,

p+(z) ≡ lim
ζ→z

ζ∈Ωσρ

p(ζ ) = 0 and p−(z) ≡ lim
ζ→z

ζ∈Ω ′
σρ

p(ζ ) = 0,

and we have

q̃(z) = p+(z) − p−(z) = 0 (z ∈ Γσρ)

from Sokhotskyi’s formula [2] and q(θ) − q̂(0) = 0 (θ ∈ S1). Substituting it into
(44), we have

f (z) = q̂(0) =
{

ic1 in Ωσρ

ic2 in Ω ′
σρ

and q̂(0) = c1 = c2 = 0 since q̂(0), c1 and c2 are real constants. Therefore, we have
q(θ) = q̂(0) + {q(θ) − q̂(0)} = 0 (θ ∈ S1). ��
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Lemma 8 We assume that the conformal mapping Ψ admits a conformal extension
to {w ∈ C||w| ≥ αρ} (0 < α < 1), and the parameters (ε, s), (δ, t) ∈ (0,+∞) × R,

α and σ(> 1) satisfy the following conditions.

1.

(
1

σ
,−1

2

)
< (δ, t) <

(
1

σα
,−3

2

)
.

2.
1

σ 2 max

{
δ,

1

δ

}
≤ ε ≤ min

{
δ,

1

δ

}
. If ε = 1, we assume s < −1/2. If ε = δ, we

assume s < t .
3. σα < 1.

4.

(
α

σ
,

1

2

)
< (ε, s).

Then, the following (i) and (ii) hold true for sufficiently large N ∈ N.

(i) The collocation equation for qN ∈ DN

AqN = Aq on ΔN , (45)

where q is a given function of Xδ,t , has a unique solution qN .
(ii) There exists a constant C > 0 such that, for arbitrary q ∈ Xδ,t and qN ∈ DN

determined by (45) we have

‖q − qN ‖ε,s ≤ C‖q‖δ,t N P0(ε,s,δ,t)
(ε

δ

)N/2
.

where P0(ε, s, δ, t) is defined by (36).

Proof (i) If we write qN ∈ DN as (17), the collocation equation (45) is equivalent
to the system of linear equations for C0 and Q j ( j ∈ ΛN )

G Q = f , (46)

with

G =

⎡
⎢⎢⎢⎣
[

Gi j
]

i, j∈ΛN

1
...

1
1 · · · 1 0

⎤
⎥⎥⎥⎦ , Gi j = − 1

2π
log |Ψ (ρωi ) − Ψ (σρω j )|,

Q =
[

[Qi ]i∈ΛN

C0

]
and f =

[
[Aq(i/N )]i∈ΛN

0

]
. (47)

Then, we have

(The collocation equation (45) is uniquely solvable.)

⇐⇒ (The coefficient matrix G of the linear system(46) is regular.)

⇐⇒ (If G Q = 0,then Q = 0.)

⇐⇒ (If qN ∈ DN and AqN = 0 on ΔN , then qN = 0.).
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Therefore, we only have to show that, if qN ∈ DN and AqN = 0 on ΔN , we
have qN = 0.
The operator L : Xε,s → Xσε,s+1 is an isomorphism by Lemma 3 and the oper-
ator A : Xε,s → Xσε,s+1 is an isomorphism from Lemma 6, whose assumptions
are satisfied since (α/σ, 1/2) < (ε, s) < ((σα)−1,−3/2). Then, we have

‖qN ‖ε,s ≤ C‖AqN ‖σε,s+1 ≤ C ′‖L−1 AqN ‖ε,s,

where we remark qN ∈ Xε,s from (ε, s) < (1,−1/2) and Lemma 2. We now
let

w0 = qN − L−1 AqN ,

which belongs to Xε,s and satisfies that

L−1 AqN = qN − w0,

LqN = Lw0 on ΔN ,

w0 = L−1(L − A)qN .

(48)

Since qN satisfies the collocation equation (48), we have

‖L−1 AqN ‖ε,s = ‖qN − w0‖ε,s ≤ C‖w0‖δ,t N P0(ε,s,δ,t)
(ε

δ

)N/2

if w0 ∈ Xδ,t from Lemma 4, whose assumptions are satisfied from the assump-
tions of this lemma. The operator L : Xδ,t → Xσδ,t+1 is an isomorphism
from Lemma 3 and the operator L − A = −K : Xε,s → Xσδ,t+1 is com-
pact and, then, it is bounded from Lemma 5, whose assumptions are satisfied
since (ε, s) > (α/σ, 1/2) and (σδ, t + 1) < (α−1,−1/2). Then, we have
w0 = L−1(L − A)qN ∈ Xδ,t and

‖w0‖δ,t = ‖L−1(L − A)qN ‖δ,t ≤ C‖(L − A)qN ‖σδ,t+1 ≤ C ′‖qN ‖ε,s .

Gathering the above three inequalities, we have

‖qN ‖ε,s ≤ C‖qN ‖ε,s N P0(ε,s,δ,t)
(ε

δ

)N/2

and, then, {
1 − C N P0(ε,s,δ,t)

(ε

δ

)N/2
}

‖qN ‖ε,s ≤ 0.

We here remark that

N P0(ε,s,δ,t)
(ε

δ

)N/2 = o(1) as N → ∞.
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In fact, we have ε/δ ≤ 1 and, if ε/δ = 1, we have

P0(ε, s, δ, t) =
⎧⎨
⎩

max{s − t,−t − 1} if (δ, ε) = (σ−1, σ−1)

max{s − t, s} if (δ, ε) = (1, 1)

s − t otherwise

< 0.

Therefore, for sufficiently large N ∈ N, we have ‖qN ‖ε,s = 0 and qN = 0.
(ii) We have a unique solution qN ∈ DN of the collocation equation AqN = Aq onΔN

for arbitrary q ∈ Xδ,t by the former part of this proof. We remark that q ∈
Xε,s since (ε, s) < (δ, t) and, then, qN − q ∈ Xε,s since qN ∈ Xε,s due to
(ε, s) < (1,−1/2) and Lemma 2. Since the operators L : Xε,s → Xσε,s+1 and
A : Xε,s → Xσε,s+1 are already shown to be isomorphic, we have

‖qN − q‖ε,s ≤ C‖A(qN − q)‖σε,s+1 ≤ C ′‖L−1 A(qN − q)‖ε,s .

Now we let

w = qN − L−1 A(qN − q),

which belongs to Xε,s and satisfies that

L−1 A(qN − q) = qN − w,

LqN = Lw on ΔN ,

w = q + L−1(L − A)(qN − q).

(49)

Since qN satisfies the collocation equation (49), we have

‖L−1 A(qN − q)‖ε,s = ‖qN − w‖ε,s ≤ C‖w‖δ,t N P0(ε,s,δ,t)
(ε

δ

)N/2
,

if w ∈ Xδ,t from Lemma 4, whose assumptions are satisfied from the assumptions
of this lemma. Since the operator L − A = −K : Xε,s → Xσδ,t+1 is already
shown to be compact and, then, bounded, we have w = q+L−1(L− A)(qN −q) ∈
Xδ,t and

‖w‖δ,t = ‖q + L−1(L − A)(qN − q)‖δ,t

≤ ‖q‖δ,t + ‖L−1(L − A)(qN − q)‖δ,t

≤ ‖q‖δ,t + C‖(L − A)(qN − q)‖σδ,t+1

≤ ‖q‖δ,t + C ′‖qN − q‖ε,s .

Gathering the above three inequalities, we have

‖qN − q‖ε,s ≤ C N P0(ε,s,δ,t)
(ε

δ

)N/2
(‖q‖δ,t + ‖qN − q‖ε,s).

123



Convergence of invariant scheme of fundamental solution method 255

Since N P0(ε,s,δ,t)(ε/δ)N/2 = o(1) as N → ∞ from the discussion of the former
part of this proof, we have

‖qN − q‖ε,s ≤ C ′‖q‖δ, t N P0(ε,s,δ,t)
(ε

δ

)N/2
.

��
Proof of Theorem 4 (i) Let f̃ ∈ Xδ,t . Then, there exists a unique function q ∈

Xσ−1δ,t−1 such that Aq = f̃ from Lemma 6, whose assumptions are satisfied
by

(
α

σ
,

1

2

)
<

(
1

σ
,−1

2

)
<

(
δ

σ
, t − 1

)
<

(
1

σα
,−3

2

)

and σα < 1. For this q, there exists a unique function qN ∈ DN such that
AqN = Aq on ΔN from Lemma 8, whose assumptions are satisfied for
(ε/σ, s − 1) and (δ/σ, t − 1) by the following.

–

(
1

σ
,−1

2

)
<

(
δ

σ
, t − 1

)
<

(
1

σα
,−3

2

)
.

–
1

σ 2 max

{
δ

σ
,
σ

δ

}
≤ ε

σ
≤ min

{
δ

σ
,
σ

δ

}
. If ε/σ = δ/σ , we further assume

s − 1 < t − 1. If ε/σ = δ/σ = 1, we further assume s − 1 < −1/2.
– σα < 1.

–

(
α

σ
,

1

2

)
<
( ε

σ
, s − 1

)
.

It means that there exists a unique function qN ∈ DN such that AqN = f̃ on
ΔN .

(ii) First, we remark that q − qN ∈ Xσ−1ε,s−1 from (ε/σ, s − 1) < (δ/σ, t − 1)

and Lemma 1. Since the operator A : Xε/σ,s−1 → Xε,s is an isomorphism from
Lemma 6, whose assumptions are satisfied by

(
α

σ
,

1

2

)
<
( ε

σ
, s − 1

)
<

(
δ

σ
, t − 1

)
<

(
1

σα
,−3

2

)

and σα < 1, we have

‖ f̃ − AqN ‖ε,s = ‖A(q − qN )‖ε,s ≤ C‖q − qN ‖σ−1ε,s−1

≤ C ′‖q‖σ−1δ,t−1 N P0(σ
−1ε,s−1,σ−1δ,t−1)

(ε

δ

)N/2

≤ C ′′‖Aq‖δ,t N P(ε,s,δ,t)
(ε

δ

)N/2

= C ′′‖ f̃ ‖δ,t N P(ε,s,δ,t)
(ε

δ

)N/2
.
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Here, we used the fact that A : Xσ−1δ,t−1 → Xδ,t is an isomorphism on the first
and third inequalities, which holds true by the discussion in the former part of
this proof, and we used Lemma 8 on the second inequality, whose assumptions
are satisfied by the discussion in the former part of this proof. Therefore, we
obtain the theorem. ��

5 Concluding remarks

In this paper, we proposed to position the charge points and the collocation points of
the invariant scheme of the MFS using a conformal mapping of the exterior of a disk to
the exterior of the problem region as Katsurada proposed for the conventional scheme
of the MFS. A theoretical analysis shows exponential convergence of the invariant
scheme, which resemble that of the conventional scheme. It is remarkable that the
convergence theorem of the invariant scheme does not need the unnatural assumptions
which are needed in the convergence theorem of the conventional scheme. This may
be a reflection of the fact that the invariant scheme has the invariance properties under
the trivial affine transformations.

The results of this paper give the error estimate of the invariant scheme only on
the boundary of the problem region and does not give an error estimate on the whole
region. It seems difficult to give an error estimate in the interior of the region. The
reason is that we estimate the error using the exterior conformal mapping which
gives the charge points and the collocation points. We reduce our problem to the
approximation error estimate of the function u(Ψ (ρe2π iτ )) on S1, but the mapping
function Ψ cannot be extended to the whole disk {w ∈ C||w| < ρ}, that is, the range
of the conformal mapping Ψ cannot cover the whole region Ω . Thus, it is difficult to
estimate the error in the interior of the region using the exterior conformal mapping. It
may be possible to estimate the error on the whole region if we use an interior mapping
function � : {w ∈ C||w| < ρ} → Ω, which admits a conformal extension to a disk
{w ∈ C||w| ≤ βρ} with β > 1 as in Katsurada’s study for the conventional scheme
[3].

From practical point of view, exterior conformal mappings are useful compared with
interior conformal mappings. It is because we can position the charge points freely in
the exterior of the problem region using a exterior conformal mapping while the area
where the charge points can be positioned is restricted using an interior conformal
mapping.

Appendix: Proof of Lemma 4—estimation of ‖q − qN‖ε,s

First, we rewrite the expression of the C0 and Q j ( j ∈ ΛN ) given by (38) and (43)
Substituting (38) and (43) into

q̂N (n) = C0δn0 +
∑

j∈ΛN

Q jω
−nj
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and using the formula (40) and the expression (34) of Lq, we have

q̂N (n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N
4πϕ

(N )
n (ρ)

∑
m∈Z

m≡n

σ−|m|
|m| q̂(m) if n �≡ 0 mod N

q̂(0) + 1
4π

∑
m∈Z\{0}

m≡0

σ−|m|
|m| q̂(m) if n = 0

0 if n ≡ 0 mod N and n �= 0.

Then, we have

‖q − qN ‖2
ε,s = |̂q(0) − q̂N (0)|2 +

∑
n �=0

|̂q(n) − q̂N (n)|2ε2|n|(2π |n|)2s

≤ |̂q(0) − q̂N (0)|2 + (2π)2s

⎧⎨
⎩2

∑
n∈Z\ΛN

|̂q(n)|2ε2|n||n|2s

+2
∑

n∈Z\ΛN

|̂qN (n)|2ε2|n||n|2s +
∑

n∈ΛN \{0}
|̂q(n) − q̂N (n)|2ε2|n||n|2s

⎫⎬
⎭

≡ T1 + (2π)2s(2T2 + 2T3 + T4).

The terms T1, T2 and T3 are estimated in the same way as [4] as follows. Regarding
T1, we have

q̂N (0) − q̂(0) = 1

4π

∑
m≡0
m �=0

σ−|m|

|m| q̂(m),

and

T1 = 1

(4π)2

{∑
m≡0m �=0

|̂q(m)|δ|m|mt · |m|−(t+1)

(2π)t
(δσ )−|m|

}2

≤ Ct

⎧⎪⎪⎨
⎪⎪⎩
∑
m≡0
m �=0

|̂q(m)|2δ2|m|m2t

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
∑
m≡0
m �=0

|m|−2(t+1)(σ δ)−2|m|

⎫⎪⎪⎬
⎪⎪⎭

≤ Cσδ,t‖q‖2
δ,t N−2(t+1)(σ δ)−2N

≤ C ′
σδ,t‖q‖2

δ,t

(ε

δ

)N ×
{

N−2(t+1) if δε = σ−2 and s ≤ −1
N 2(s−t) otherwise,

where we remark that the underlined sum is convergent since (σδ, t + 1) > (1, 1/2)

and we used (σδ)−2 ≤ ε/δ (⇔ δε ≥ σ−2) on the third inequality.
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Regarding T2, we have

T2 =
∑

n∈Z\ΛN

|̂q(n)|2δ2|n|(2π |n|)2t · |n|2(s−t)

(2π)2t

(ε

δ

)2|n|

≤ N 2(s−t)

(2π)2t

(ε

δ

)N ∑
n∈Z\ΛN

|̂q(n)|2δ2|n|n2t ·
{( |n|

N

)2(s−t) (ε

δ

)2|n|−N
}

≤ N 2(s−t)

(2π)2t

(ε

δ

)N ‖q‖2
δ,t × sup

n∈Z\ΛN

{( |n|
N

)2(s−t) (ε

δ

)2|n|/N−1
}

≤ Cε/δ,s,t‖q‖δ,t N 2(s−t)
(ε

δ

)N
,

where we used ε/δ ≤ 1 on the second inequality and we remark that the underlined
supremum is finite since (ε/δ, s − t) ≤ (1, 0).

Regarding T3, we have

T3 =
∑

p∈ΛN \{0}

∑
l∈Z

l �=0

|̂qN (l N + p)|2ε2|l N+p||l N + p|2s

=
∑

p∈ΛN \{0}
|̂qN (p)|2

∑
l �=0

ε2|l N+p||l N + p|2s

≤ Cε,s N 2sε2N
∑

p∈ΛN \{0}
ε−2|p||̂qN (p)|2,

where we remark that q̂N (n) = 0 if n ≡ 0 mod N and n �= 0 on the first equality
and the underlined sum is convergent by (ε, s) < (1,−1/2), and

|̂qN (p)|2 ≤
{

N

4πϕ
(N )
p (ρ)

}2 {∑
m≡p

σ−|m|

|m| |̂q(m)|
}2

≤ |p|2σ 2|p|
{∑

m≡p

|̂q(m)|δ|m|mt · |m|−(t+1)

(2π)t
(σδ)−|m|

}2

≤ |p|2σ 2|p|

(2π)2t

{∑
m≡p

|̂q(m)|2δ2|m|m2t

}{∑
m≡p

|m|−2(t+1)(σ δ)−2|m|
}

︸ ︷︷ ︸
(a)

,

where we used ϕ(N )
p (ρ) ≥ N

4π

σ−|p|

|p| obtained from (42) on the second inequality.

Since the sum (a) is convergent by (σδ, t) > (1,−1/2) and estimated as
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(a) =
∑
l∈Z

|l N + p|−2(t+1)(σ δ)−2|l N+p|

= |p|−2(t+1)(σ δ)−2|p| +
∑
l �=0

|l N + p|−2(t+1)(σ δ)−2|l N+p|

≤ |p|−2(t+1)(σ δ)−2|p| + Cσδ N−2(t+1)(σ δ)−2(N−|p|),

we have

T3 ≤ Cε,s,t N 2sε2N
∑

p∈ΛN \{0}
ε−2|p||p|2σ 2|p|

{∑
m≡p

|̂q(m)|2δ2|m|m2t

}

×
{
|p|−2(t+1)(σ δ)−2|p| + Cσδ N−2(t+1)(σ δ)−2N+2|p|}

= Cε,s,t N 2(s−t)
(ε

δ

)N ∑
p∈ΛN \{0}

{∑
m≡p

|̂q(m)|2δ2|m|m2t

}

×
{(

N

|p|
)2t

(δε)N−2|p| + Cσδ

( |p|
N

)2 ( ε

σ 2δ

)N−2|p|
}

≤ Cε,s,t‖q‖2
δ,t N 2(s−t)

(ε

δ

)N

× sup
p∈ΛN \{0}

{(
N

|p|
)2t

(δε)N−2|p| + Cσδ

( |p|
N

)2 ( ε

σ 2δ

)N−2|p|
}

≤ Cε,s,δ,t,σ ‖q‖2
δ,t

(ε

δ

)N ×
{

N 2s if δε = 1 and t > 0
N 2(s−t) otherwise.

Regarding T4, we have

q̂(n) − q̂N (n) = q̂(n) − N

4πϕ
(N )
n (ρ)

∑
m≡n

σ−|m|

|m| q̂(m)

= N

4πϕ
(N )
n (ρ)

∑
m≡n
m �=n

σ−|m|

|m| {̂q(n) − q̂(m)},

where we used

ϕ(N )
n (ρ) = N

4π

∑
m≡n

σ−|m|

|m| ,

and

T4 ≤
∑

n∈ΛN \{0}

{
N

4πϕ
(N )
n (ρ)

}2

∣∣∣∣∣∣∣∣
∑
m≡n
m �=n

σ−|m|

|m| {̂q(n) − q̂(m)}

∣∣∣∣∣∣∣∣

2

ε2|n||n|2s
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≤ 2
∑

n∈ΛN \{0}
(σε)2|n||n|2(s+1)

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
∑
m≡n
m �=n

σ−|m|

|m| q̂(m)

∣∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣∣
∑
m≡n
m �=n

σ−|m|

|m| q̂(n)

∣∣∣∣∣∣∣∣

2⎫⎪⎪⎬
⎪⎪⎭

≡ 2(T41 + T42),

where we used

ϕ(N )
n (ρ) = N

4π

∑
m≡n

σ−|m|

|m| ≥ Nσ−|n|

4π |n|

on the second inequality. T41 is estimated as follows. We have

∣∣∣∣∣∣∣∣
∑
m≡n
m �=n

σ−|m|

|m| q̂(m)

∣∣∣∣∣∣∣∣

2

≤

⎧⎪⎪⎨
⎪⎪⎩
∑
m≡n
m �=n

|̂q(m)|δ|m|mt · |m|−(t+1)

(2π)t
(σδ)−|m|

⎫⎪⎪⎬
⎪⎪⎭

2

≤ 1

(2π)2t

⎧⎪⎪⎨
⎪⎪⎩
∑
m≡n
m �=n

|̂q(m)|2δ2|m|m2t

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
∑
m≡n
m �=n

(σδ)−2|m||m|−2(t+1)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
(b)

.

(50)

Since the part (b) is convergent since (σδ, t + 1) > (1, 1/2) and estimated as

(b) ≤
∑
l∈Z

l �=0

(σδ)−2|Nl+n||Nl + n|−2(t+1) ≤ Cσδ N−2(t+1)(σ δ)−2(N−|n|),

we have

the right-hand side of (50) ≤ C ′
σδ,t N−2(t+1)(σ δ)−2(N−|n|) ∑

m≡n
m �=n

|̂q(m)|2δ2|m|m2t ,

and

T41 ≤ C ′
σδ,t N−2(t+1)(σ δ)−2N

×
∑

n∈ΛN \{0}
(σδ)2|n|(σε)2|n||n|2(s+1)

∑
m≡n
m �=n

|̂q(m)|2δ2|m|m2t

= C ′
σδ,t N 2(s−t)

(ε

δ

)N
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×
∑

n∈ΛN \{0}

( |n|
N

)2(s+1)

(σ 2δε)−(N−2|n|) ∑
m≡n
m �=n

|̂q(m)|2δ2|m|m2t

≤ C ′
σδ,t N 2(s−t)

(ε

δ

)N ‖q‖2
δ,t · sup

n∈ΛN \{0}

{( |n|
N

)2(s+1)

(σ 2δε)−(N/|n|−2)

}

≤ C ′′
σδ,t‖q‖2

δ,t

(ε

δ

)N ×
{

N−2(t+1) if δε = σ−2 and s ≤ −1
N 2(s−t) otherwise.

T42 is estimated as follows.

T42 =
∑

n∈ΛN \{0}
(σδ)2|n||n|2(s+1)

∣∣∣∣∣∣∣∣
∑
m≡n
m �=n

σ−|m|

|m|

∣∣∣∣∣∣∣∣

2

|̂q(n)|2

≤
∑

n∈ΛN \{0}
(σε)2|n||n|2(s+1) · Cσ N−2σ−2N+2|n| · |̂q(n)|2

≤ Cσ,t N 2(s−t)
(ε

δ

)N ∑
n∈ΛN \{0}

|̂q(n)|2δ2|n|n2t ·
( |n|

N

)2(s−t+1) (
δ

σ 2ε

)N−2|n|

≤ Cσ,t N 2(s−t)
(ε

δ

)N ‖q‖2
δ,t · sup

n∈ΛN \{0}

{( |n|
N

)2(s−t+1) (
δ

σ 2ε

)N−2|n|}

≤ Cε/δ,s,t,σ ‖q‖2
δ,t

(ε

δ

)N ×
{

N−2 if ε = σ−2δ and s − t < −1
N 2(s−t) otherwise.

We summarize the above results as follows.

‖q − qN ‖2
ε,s = C‖q‖2

δ,t

(ε

δ

)N
(N 2P1 + N 2P2 + N 2P3 + N 2P41 + N 2P42),

where

P1 =
{−(t + 1) if δε = σ−2 and s ≤ −1

s − t otherwise,

P2 = s − t,

P3 =
{

s if δε = 1 and t > 0
s − t otherwise,

P41 =
{−(t + 1) if δε = σ−2 and s ≤ −1

s − t otherwise,

P42 =
{−1 if ε = σ−2δ and s − t < −1

s − t otherwise.

Therefore we obtain the lemma.
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