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Abstract This paper examines the consequences for a life annuity insurance

company if the solvency II solvency capital requirements (SCR) are calibrated

based on expected shortfall (ES) instead of value-at-risk (VaR). We focus on the

risk modules of the SCRs for the three risk classes equity risk, interest rate risk and

longevity risk. The stress scenarios are determined using the calibration method

proposed by EIOPA in 2014. We apply the stress-scenarios for these three risk

classes to a fictitious life annuity insurance company. We find that for EIOPA’s

current quantile 99.5% of the VaR, the stress scenarios of the various risk classes

based on ES are close to the stress scenarios based on VaR. Might EIOPA choose to

calibrate the stress scenarios on a smaller quantile, the longevity SCR is relatively

larger and the equity SCR is relatively smaller if ES is used instead of VaR. We

derive the same conclusion if stress scenarios are determined with empirical stress

scenarios.

Keywords Solvency II � Solvency capital requirement � Expected
shortfall � Value-at-risk

1 Introduction

Solvency II is the new supervisory framework that is in force from 2016 for insurers

and reinsurers in Europe. It puts demands on the required economic capital, risk

management, and reporting standards of insurance companies. Solvency II focuses

on an enterprize risk management approach towards required capital standards. Its
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main objective is to ensure that insurance companies hold sufficient economic

capital to protect the policyholders as it aims to reduce the risk that an insurer is

unable to meet its financial claims (see, e.g., [17]). The required capital is based on

the risks that the insurer faces. This capital requirement is called the solvency

capital requirement (SCR) and covers all the risks that an insurer faces. EIOPA [25]

defines the SCR of an insurance or reinsurance company as the value-at-risk (VaR)

of the basic own funds subject to a confidence level of 99.5% on a 1-year period. In

this paper, we base our model on the solvency II calibrations of EIOPA [25, 26].

The value-at-risk is a widely used risk measure and can be described as the

maximum loss within a certain confidence level. In the case of the SCR, the

confidence level of 99.5% tells us that the company can expect to lose no more than

VaR in the next year with 99.5% confidence, so, on average, only once every

200 years the VaR loss level will be exceeded. The value-at-risk is however

criticized for not being sub-additive [4]. Sub-additivity of a risk measure ensures

that diversification is rewarded. Besides not being sub-additive, the VaR does also

not consider the shape of the tail beyond the confidence level. This means that the

VaR does not take into account what happens beyond the confidence level, so it

does not consider the worst case scenarios. This is discussed by Acerbi and Tasche

[3] and Yamai and Yoshiba [46]. The fact that VaR is not sub-additive and that it

does not consider the tail beyond the confidence level might make it less suitable to

calculate capital requirements.

Coherent risk measures are sub-additive, and consider the shape of the tail

beyond the confidence level. A risk measure is called coherent if it satisfies the

axioms translation invariance, sub-additivity, positive homogeneity, and mono-

tonicity [4]. The most popular coherent risk measure is the expected shortfall (ES).

This risk measure is equal to the expected value of the loss, given that the loss is

larger than the value-at-risk, therefore the expected shortfall also depends on the

quantile used. Two other regulatory frameworks for financial institutions, the Swiss

Solvency Test and the Basel III framework, use the expected shortfall as risk

measure.

The contribution of this paper is not to claim that the expected shortfall is a better

risk measure than the value-at-risk. Instead, we exemplary analyze the effects on

three main risk factors of the total SCR for a fictitious life annuity insurer if the

solvency II SCR calibration is based on expected shortfall instead of value-at-risk.

The use of expected shortfall for insurance stress testing is also suggested by

CEIOPS [12], Sandström [40], and Wagner [45]. We hereby consider this

hypothetical change in regulation for three major risk classes: equity risk, interest

rate risk, and longevity risk. Moreover, we analyze what happens if all SCRs are

determined via empirical stress scenarios.

The standard model of solvency II explicitly assumes a Gaussian distribution for

returns in some risk classes. If a return is Gaussian, the value-at-risk, as prescribed

by solvency II, and expected shortfall provide similar information (e.g., [46]). If

returns are non-Gaussian, which is observed for the most important classes of risk,

the use of value-at-risk might lead to a mismatch of the SCR and the underlying

riskiness. In this paper, we examine what the effects are of using such a standard

model when risks are calibrated using the expected shortfall instead. We find that
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for EIOPA’s current quantile 99.5% of the value-at-risk, the stress scenarios of the

various risk classes based on expected shortfall are close to the stress scenarios

based on value-at-risk. We show that if EIOPA aims to keep the solvency capital

requirement the same if it would switch to v, it should set the confidence level at

approximately 98.8%. So, applying a 99% confidence level for the expected

shortfall leads to an increase in the solvency capital requirement. Moreover, might

EIOPA choose to calibrate the stress scenarios on a smaller quantile, the longevity

SCR is relatively large and the equity SCR is relatively small if expected shortfall is

used instead of value-at-risk.

This paper is set out as follows. Section 2 defines the risk measures value-at-risk

and expected shortfall. Section 3 introduces the part of the solvency II regulations

that we use in this paper. Section 4 states our methodology, and shows the stress

scenarios for the solvency capital requirements under the two risk measures.

Section 5 shows the main results, and a sensitivity analysis. Section 6 illustrates our

results in relations to other regulatory frameworks, and Sect. 7 concludes.

2 Risk measures to calibrate solvency capital

Risk measures are used to determine the amount of economic capital to be kept in

reserve in order to protect a company for any negative risky impacts that may arise

in the future. A risk measure maps random variables into real numbers. In this paper

we discuss two well known risk measures: the value-at-risk (VaR) and the expected

shortfall (ES), where we refer to McNeilet al. [36] for more details about these two

risk measures.

The value-at-risk with confidence level a 2 ð0; 1Þ is the a-quantile, i.e.,

VaRaðXÞ ¼ inffx 2 IR : PðX[ xÞ� 1� ag; ð1Þ

for all random variables X (a loss).

Coherence of risk measures is introduced by Artzner et al. [4]. A risk measures q
is coherent if it satisfies the four axioms translation invariance, sub-additivity,

positive homogeneity, and monotonicity. The relevance of these properties is widely

discussed by Artzner et al. [4]. Particularly, sub-additivity of a risk measure implies

that the risk measure weakly decreases if risks are pooled. It also implies that there

is no incentive for a company to split its risk into pieces and evaluate them

separately.

The expected shortfall (ES) is given by

ESaðXÞ ¼
1

1� a

Z 1

a
VaRsðXÞds; ð2Þ

for all a 2 ½0; 1Þ, and all random variables X (a loss), whenever the integral con-

verges. If the integral does not converge, ES equals infinity. An infinite value of a

risk measure is useless for practical purposes. If the random variable X is contin-

uously distributed, the ES may be even more intuitively expressed as conditional

VaR or the tail conditional expectation:
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ESaðXÞ ¼ EðX j X�VaRaðXÞÞ: ð3Þ

For numerical convenience, the expression in (3) is often used in historical simu-

lations. For the same reason, we use (3) as definition of expected shortfall in this

paper.

The use of expected shortfall gained popularity (see, e.g., [1, 20]). The main

argument is based on the fact that ES considers the size of worst case events,

whereas the VaR uses only a quantile. A quantile provides insight in the frequency

of worst case events, where the ES considers both the frequency and size. For this

reason, the interpretation of the ES is not straightforward. Other arguments in favor

of the ES are based on stability and robustness (see, e.g., [33]). Daniélsson et al. [16]

show that the sub-additivity may be violated if historical simulations are used.

Historical simulations are used in the calibration of solvency II. Other authors that

claim that the ES is more appropriate to determine capital buffers are Beder [10],

Acerbi and Tasche 3, [44], Frey and McNeil [28], Yamai and Yoshiba [46], and

Wagner [45]. CEIOPS [12] acknowledges the theoretical advantages of using the

expected shortfall to calculate the SCR.

On the other hand, backtesting of the VaR is relatively straightforward compared

to the ES (see, e.g., [2]). Kellner and Rösch [32] show that the ES is more sensitive

to model risk than the VaR. Koch-Medina and Munari [34] show that the ES does

not protect the policyholders sufficiently. Moreover, in the literature, the relevance

of coherence (and sub-additivity) is criticized as well (see, e.g., [9, 35]). To

summarize, there is no clear argument whether the ES is better than the VaR. This

paper does not aim to provide a justification for either of the two risk measures, but

seeks to compare them quantitatively in the solvency II context.

When returns are Gaussian, the same information is given by the value-at-risk

and expected shortfall. In particular, the value-at-risk and expected shortfall are

multiples of the standard deviation for zero-mean Gaussian random variables. For

example, VaR at 99.5% confidence level is approximately 2.58 times the standard

deviation, while expected shortfall at the same confidence level is approximately

2.89 times the standard deviation.1 The assumption that financial returns are

Gaussian is often criticized and it may lead to an underestimation of the risk being

faced (see, e.g., [40]). It is a well-known (e.g., [14]) that asset returns are fat-tailed,

asymmetric and, therefore, not Gaussian.

3 Solvency II

We describe the solvency II regulations in Sect. 3.1. In Sect. 3.2, we specify all

formulas of the solvency capital requirements (SCR) according to EIOPA [25] for

three relevant risk classes.

1 As shown by Yamai and Yoshiba [46], it holds that if the random variable X is Gaussian with mean l
and standard deviation r, then VaRaðXÞ ¼ lþ qar and EShðXÞ ¼ lþ ½/ðqhÞ=ð1� hÞ�r, where qa is the
quantile-function of a standard Gaussian distribution, and / is the density function of a standard Gaussian

distribution.
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3.1 Introduction

Solvency II is a regulatory framework that is in force since 2016 for the European

insurance industry and puts demands on the required economic capital, risk

management and reporting standards of insurance companies. The underlying

quantitative regulation mechanism is that insurers should hold an amount of capital

that enables them to absorb unexpected losses and meet the obligations towards

policyholders at a high level of equitableness. In the European Union, there are on-

going discussions about applying such a framework to all European pension funds

as well [23]. For instance, see Doff [17], Eling et al. [19], Sandström [40], Steffen

[43], and Wagner [45] for an overview and critical discussion of the solvency II

framework.

This paper focusses on the first pillar of the solvency II framework. This pillar

prescribes the quantitative requirements which an insurer must meet. It contains the

SCR, which is to be calculated by using the standard formula or an internal model or

a combination of the two. These quantitative requirements are supported by the so-

called quantitative impact studies (QIS). For internal models, it is also not clear how

the SCR is precisely defined [11] and therefore we focus on the standard formula in

this paper.

EIOPA [25] describes how the assets and liabilities of an insurer should be

valued. Assets should be valued at the amount for which they could be exchanged

between knowledgeable willing parties in an arm’s length transaction. Liabilities

should be valued at the amount for which they could be transferred, or settled,

between parties in an arm’s length transaction. Valuing assets on a market-

consistent basis is generally straightforward. Generally, perfect replication of

expected cash flows is not possible for the liabilities of an insurer. The quantitative

impact study 5 (QIS 5) prescribes to use the best estimate and the risk margin to

value the liabilities. The best estimate of the liabilities (BEL) is the present value of

the expected future liability payments. The risk margin is the cost of holding an

amount of basic own funds equal to the SCR over the lifetime of the insurance

liabilities.

EIOPA [25] prescribes that the SCR should correspond to the value-at-risk of the

basic own funds of an insurer subject to a confidence level of 99.5% on a 1-year

period. The principle of the standard formula is to apply a set of shocks to certain

risk drivers, and to calculate the impact on the basic own funds for various risks.

These shocks are calibrated using the VaR with a confidence level of 99.5%. The

standard formula of the SCR is divided into risk modules. Predefined correlation

matrices are used to aggregate the SCRs for all risks to the total SCR.

We do not consider operational risk, and the adjustment for the risk absorbing

effects of technical provisions and deferred taxes. Moreover, we only consider

equity risk, interest rate risk and longevity risk. In Fig. 1, we provide an overview of

our reduced total SCR calculation and its different risk modules. Market risk and

life risk account together for approximately 91.1% of the basic SCR for life

insurance companies [22]. Moreover, EIOPA [24] shows that the market risk

predominantly consists of equity and interest rate risk.
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Market risk arises from the volatility of market prices of financial instruments.

Exposure to market risk is measured by the impact of movements in the level of

financial variables such as equity prices, interest rates, real estate prices and

exchange rates. Market risk is the largest component of the SCR and market risk

accounts for approximately 67.4% of the Basic SCR for representative life insurance

companies [22].

Life risk covers the risk arising from the underwriting of life insurance,

associated with both the perils covered and the processes followed in the conduct of

the business. Life risk is the second largest risk class and it accounts for

approximately 23.7% of the diversified BSCR for representative life insurance

companies [22]. The most important components of life risk for a life annuity

insurer are longevity risk and lapse risk. Longevity risk covers approximately 44%

of the life SCR [22], and is associated with insurance obligations where an insurer

guarantees to make recurring payments until the death of the policyholder and

where a decrease in mortality rates leads to a decrease in the basic own funds.

Longevity risk is associated to higher than expected pay-outs because of increasing

life expectancy. In this paper, we ignore lapse risk for simplicity.

3.2 Calculation of the SCR

In this section, we describe the solvency II regulations for calculating the reduced

total SCR. The market SCR is a combination of the different market risks, in this

case equity risk and interest rate risk. The market SCR, denoted by SCRmkt, is

defined as follows:

SCRmkt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkt2eq þMktint þ 2A �Mkteq �Mktint

q
; ð4Þ

where index eq denotes equity risk, index int denotes interest rate risk, Mkti is the

solvency capital requirement for the individual market risk i 2 feq; intg, A ¼ 0 if

the interest rate shocks are determined via the interest rate up scenario, and A ¼ 0:5

Fig. 1 The different risk modules that we calibrate in this paper for the reduced total SCR
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otherwise. We clarify the up and down shocks in interest rates later in (7)–(9).

EIOPA [25] provides a standard model where the ‘‘global’’ equity shock is - 39%

and the ‘‘other’’ equity shock is - 49%. There is a symmetric adjustment applied by

EIOPA [25] that corrects for pro-cyclicality in equity returns (see [18]).

The basic own funds (BOF, net value of assets minus liabilities) is defined by

CEIOPS [13] as the asset value minus the best estimate of the liabilities (BEL).2 The

solvency capital requirement for equity risk is determined by the decrease of the

BOF after a negative shock has been applied to equity. This negative shock implies

that the value of equity decreases with a certain percentage. The shock differs for

‘‘global’’ equity and ‘‘other’’ equity. ‘‘Global’’ equity includes equities listed in EEA

or OECD countries, and ‘‘other’’ equity includes equities listed in other countries,

hedge funds, private equities and other alternative investments. For category

i 2 f“global”; “other”g, the solvency capital requirement is given by

Mkteq;i ¼ maxfMBOFjequity shocki; 0g; ð5Þ

where MBOF is the BOF before the equity shock minus the BOF after the equity

shock. The equity SCR is given by

Mkteq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkt2eq;“global” þMkt2eq;“other” þ 1:5 �Mkteq;“other” �Mkteq;“global”

q
; ð6Þ

where an implicit assumption is that the correlation between ‘‘global’’ and ‘‘other’’

equity is 0.75.

To determine the solvency capital requirement for interest rate risk, an upward

and a downward shock are given to the interest term structure. The altered term

structures are given by maxfð1þ supm Þ � rm; rm þ 1%g and ð1þ sdownm Þ � rm, where rm
is the current interest rate with maturity m, and supm and sdownm are the up- and down-

shocks to the interest rates with maturity m. These shocks to the interest rates are

expressed as the relative amounts compared to the current interest rates. So, in

addition to the calibration of the relative stress factor, a minimum shock of 1% is

applied for the interest rate in the upward scenario [26]. Using an alternative term

structure results in a change of the value of the assets and liabilities. The solvency

capital requirements for the downward and upward shock are determined by the

changes in the BOF if the shocked interest rate curve is used instead of the nominal

term structure. The interest rate shock is the worst of the up and down shock. This

leads to the following definitions:

Mktup;int ¼ MBOFjupshock; ð7Þ

Mktdown;int ¼ MBOFjdownshock; ð8Þ

Mktint ¼ maxfMktup;int;Mktdown;int; 0g: ð9Þ

In this paper, we only consider longevity risk in the class of life risk, i.e., the life

SCR equals longevity SCR. The longevity SCR is determined by the change in net

2 Adding a risk margin (based on the total SCR) would lead to a circular argument. This is noted by

Coppola and D’Amato [15].
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value of assets minus liabilities after a permanent percentage decrease in mortality

rates for all ages. This decrease resembles the risk that people live longer than

expected and this leads to an increase in the present value of the liabilities from

annuity products. This shock therefore leads to a decrease in the value of BOF. The

definition of longevity SCR is given by

SCRlife ¼ Lifelong ¼ maxfMBOFjlongevityshock; 0g: ð10Þ

EIOPA [25] provides a standard model where all mortality rates are reduced by

20%.

The market risk and life risk SCRs are combined to determine the reduced total

SCR. The reduced total SCR is calculated by the following formula:

SCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SCR2

mkt þ SCR2
life þ 0:5 � SCRmkt � SCRlife

q
; ð11Þ

where SCRi is the solvency capital requirement for the individual risk class

i 2 fmkt; lifeg, and where an implicit assumption is that the correlation between

market risk and life risk is 0.25.

The structure of the solvency capital requirements in solvency II is partially

derived from a formula developed by the German Insurance Association (see, e.g.,

[19, 41]). The structure of a square-root formula as in (4), (6) and (11) is derived

from the assumption that the individual returns are Gaussian and the dependence is

linear. In general, linear dependence is sufficient to describe dependencies between

elliptical distributions. However, there arise problems with this formula if the

individual returns are not Gaussian, or dependencies are non-linear. For instance,

skewness or excess kurtosis of the marginal distributions may lead to very irregular

outcomes (see [40]). Moreover, even if the different returns have Gaussian marginal

distributions, their influence on the aggregate loss may not be closely related to a

square-root formula (see [7]). Non-linear dependence structures may yield situations

where the square-root formula severely underestimates the total risk (see [38]). A

more accurate approach instead of the square-root formula may require nested

simulations, and is therefore substantially more complex (see [8]). In this paper, we

do not analyze alternative risk aggregation methods.

4 Methodology

In this section, we calibrate the SCR stress scenarios for the three risk classes based

on the VaR and the ES following the calibration methods used in solvency II. We

calculate the SCR with stress scenarios calibrated with VaR or ES for a fictitious life

annuity insurer. To show the impact of the stress scenarios on this life annuity

insurer, we first specify the insurer in Sect. 4.1. In Sect. 4.2, we introduce the

method we use to compare the stress scenarios based on VaR with the stress

scenarios based on ES. In Sect. 4.3, we show the stress scenarios for all three risk

classes.
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4.1 Calibrating the fictitious life annuity insurer

The liability portfolio of the fictitious insurer consists of (deferred) life annuity

products only. The portfolio is normalized such that it consists of 100,000 male

policyholders. The policyholders in this portfolio have an average age of 50 years.

In Table 7 in Appendix 1, we provide details of the liability portfolio.

The single-life annuity will be paid at the end of every year starting from age 65

if alive. So, for policyholders younger than age 65, it is a deferred annuity. For the

youngest age cohort 21, the yearly amount paid out after age 65 is equal to 0.067.

This amount increases linearly over the age cohorts up to 1 for age cohorts of 65

years old and older. The increasing trend accounts for the fact that younger cohorts

have paid less premiums in the past. Here, we use age 65 as a retirement age, where

the retirement benefits are normalized to 1 for every retired individual. We refer to

Hári et al. [29] for an overview of the actuarial valuation of the annuity liabilities.

To discount cash flows and determine the bond prices, we use the nominal

interest rate term structure of the European central bank and a Smith–Wilson

extrapolation [42] towards an ultimate forward rate (UFR) for interest rates after 20

years (see Fig. 7 in Appendix 1).3 We set the present at December 31st, 2014.

We assume that the fictitious insurer has no BOF, so the asset value is equal to

the value of the liabilities. The asset portfolio consists of 25% in ‘‘global’’ equity

and 75% in bonds. To construct the bond portfolio, we pick 5- and 30-year bonds.4

The 5-year bond has 2.13% coupons, and the 30-year bond has 3.45% coupons.5 We

determine the bond portfolio as follows. The duration of the bonds equals 50% of

the duration of the liabilities. Since 75% of the assets is invested in bonds, this

coincides with a duration of the assets of 75%� 50% ¼ 37:5% of the duration of

the liabilities. Via this duration, we determine the amount invested in the 5- and

30-year bonds. For both the characteristics of the portfolio and the composition of

the asset portfolio, we will later perform a sensitivity analysis. We use the mortality

table of the Dutch Actuarial Society: AG 2012-2062,6 developed in 2012, which

contains a longevity trend. Note that there is no risk involved in equity, interest rates

and longevity other then the stress scenarios.

4.2 Matching the total SCR value

For the fictitious life annuity insurer, we denote the SCR based on stress scenarios

calibrated on VaR and ES by SCR(VaRa) and SCR(ESh), for different parameters a
and h. We focus on the relative impact on the SCR for the three risk classes.

3 See http://www.toezicht.dnb.nl/en/binaries/51-226788.pdf (last accessed: November 9th, 2016) or [13]

for more information on the procedure to calibrate the interest rate term structure.
4 For EEA government bonds that have a AAA credit rating, an insurer is not required to hold an SCR for

spread risk by EIOPA [21].
5 The coupon rates are based on the 5- and 30-year UK Gilt bonds on December 31st, 2014.
6 For the detailed mortality table that we use, see http://www.ag-ai.nl/download/14127-

Prognosetafel?AG2012-2062.xls (last accessed: May 4th, 2017).
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Therefore, to compare the SCR(VaRa) properly with the SCR(ESh), the confidence

level for the ES, h, is chosen based on matching the reduced total SCR value, i.e.,

SCRðVaRaÞ ¼ SCRðEShÞ: ð12Þ

In this way, we define the function h : ½95%; 100%� ! ½0; 1� as a strictly increasing

function such that (12) is satisfied for all a 2 ½95%; 100%�. For instance, we find that
hð99:5%Þ � 98:78% and hð98:5%Þ � 97:00% if we calibrate the SCR risk scenarios

as we will specify in Sect. 4.3. We display the function h in Fig. 2. We get that the

function h is not affine, which is due to non-Gaussianity of the returns.7

Using the function h in (12), we compare the stress scenarios for equity risk,

interest rate risk and longevity risk. Those stress scenarios lead to three SCRs,

which are then used to determine the reduced total SCR as described in Sect. 3.2.

We denote the vector of the SCRs for all three risk classes as an allocation.

4.3 Calibrating the SCR stress scenarios

In this section, we calibrate stress scenarios for equity risk, interest rate risk, and

longevity risk based on the value-at-risk and the expected shortfall. After we

calibrate the distribution of the risks, we derive stress scenarios based on the VaR

and ES. These stress scenarios will be applied to the representative life annuity

insurer in Sect. 5. EIOPA [26] proposes stress scenarios given by a shock of the

Fig. 2 The function h as defined in Sect. 4.2

7 If all returns were Gaussian, we would have hð99:5%Þ � 98:71%. A commonly used rule of thumb is

that VaRa ¼ ESh, where h � 1� 2:5ð1� aÞ for large values of a. The Basel III regulation moves for

instance from a VaR with a ¼ 99% to an ES with h ¼ 97:5%. In Fig. 2, we see that this relation holds for

smaller quantiles a, but the factor 2 (instead of 2.5) provides a better representation for large quantiles.

So, if an ES with h ¼ 99% is used instead of a VaR with a ¼ 99:5%, the reduced total SCR increases.
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underlying risk. This risk may be multi-dimensional, which is the case for interest

rate risk. Interest rate SCR is calculated via shocks for every duration (see (7)–(9)).

In line with this approach of EIOPA, we assume that the SCR for a risk is given by

shocki ¼ qðriskiÞ; i ¼ 1; . . .; I;

SCR ¼ DBOFjshock;

where q is the risk measure VaR or ES, and the dimension of the risk is I. The data

we use in this paper to calibrate the distribution of the risks is similar to the data

used of CEIOPS [13] and EIOPA [26], except that we modify the horizons.

The calibration method for equity risk is discussed by CEIOPS [13]. The

empirical distribution of annual holding period returns is derived from the Morgan

Stanley Capital International (MSCI) World Developed (Market) Price Equity

Index. The data from Bloomberg consists of daily returns for a period of 41 years,

starting in June 1973 until June 2014. We convert this into annual holding period

returns for every working day, with an overlapping horizon. The empirical VaR and

the empirical ES serve as the stress shock for ‘‘global’’ equity. We follow the

technical specifications of EIOPA [25] with an adjustment of 7.5% to increase the

equity risk shock. With this symmetric adjustment included, the stress rates for

equity risk are provided in Table 1. Recall that the function hðaÞ is fixed such that

the reduced total SCR remains the same. If a ¼ 99:5%, the differences between

using VaR and ES are small. When the quantile a ¼ 98:5% is chosen, the use of

VaR leads to a larger equity risk shock.

For the calibration method for interest rate risk, we use the following four

datasets as also used by CEIOPS [13] and EIOPA [26], but with shifted horizons in

order to include more recent data:

• Euro area government bond yield curve, with maturities from 1 to 15 years,

spaced out in annual intervals. The daily data spans a period of approximately

10 years and runs from September 2004 to July 2014. The data is from the

European Central Bank;8

• the UK government liability curve. The data is daily and is from the Bank of

England.9 The data covers a period from January 1998 to June 2014, so that the

longer maturities (i.e., beyond 15 years) are all available. It contains rates of

maturities starting from 1 year up until 20 year whilst the in between data points

are spaced on annual intervals;

• Euro vs Euribor IR swap rates. The daily data is downloaded from Datastream

and covers a period from 1999 to 2014. The data contains the 1–10 year rates

spaced out in 1-year intervals, as well as the 12, 15 and 20 year rates;

• UK (GBP) 6m IRS swap rates. The daily data is downloaded from Datastream

and covers a period from 1999 to 2014. The data contains the 1–10 year rates

spaced out in 1-year intervals, as well as the 12, 15 and 20 year rates.

8 See https://www.ecb.europa.eu/stats/services/sdmx/html/index.en.html (last accessed: May 4th, 2017).
9 See http://www.bankofengland.co.uk/statistics/yieldcurve/archive.htm (last accessed: May 4th, 2017).
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The data sets represent the most liquid markets for interest rate-sensitive

instruments in the European area. These four datasets are used to determine the

risk in interest rates, that we will use to determine the stress scenarios.

We calibrate the stress interest rate scenarios using principal component analysis

(PCA) as prescribed by EIOPA [26]. To transform the principal components and

eigenvectors into a VaR and an ES, we use the method described by Fiori and

Iannotti [27]. We describe and discuss the method we use in Appendix 2. For every

dataset, we derive a shock scenario for the annualized interest rate returns. So, we

have four stress shocks for every maturity from 1 to 20 years. For each maturity, the

overall interest rate shock is the average of the four stress shocks.

In Table 2, we provide the resulting stress scenarios of interest rates with

quantiles a ¼ 98:5; 99:5% for various maturities. Similar as for equity risk, the

differences between using VaR and ES are small when a ¼ 99:5%. Even though the

differences are small, calibrating with VaR leads to larger stress rates. When the

quantile a ¼ 98:5% is chosen, the differences are larger. We get for the fictitious

insurer that the down-shock is more harmful than the up-shock. This is partially due

to the fact that duration is not fully hedged.10 Hence, the down-shock is generally

used for the interest rate SCR.

We follow the calibration method for longevity shocks as introduced by CEIOPS

[13]. From the Human Mortality Database, we use unisex mortality tables from

1992 until 2009 with age bands of 5 years from nine countries. These nine countries

are Denmark, France, England and Wales, Estonia, Italy, Sweden, Poland, Hungary,

and Czech Republic. We calibrate the longevity stress scenarios by assuming that

annual mortality rate improvements follow a Gaussian distribution as prescribed by

CEIOPS [13]. The same shock in mortality rates is used for all different ages.

Annual mortality rate changes are calculated per country, per age band and per

year based on the data from the Human Mortality Database. We compute the means

and standard deviations of the annual mortality rate improvements, and we assume

that all annual mortality rate improvements have a Gaussian distribution. In this

case we have 198 Gaussian distributions, since we have nine countries and 22

different age bands. CEIOPS [13] determines per age cohort an average longevity

shock over all nine countries. This is than summarized into a longevity shock for all

age cohorts. We propose to determine the average of all age cohorts to determine the

age-independent longevity shock. So, we take the average of all VaRs or ESs. Due

to the Gaussian distribution of mortality improvements, we could define ĥ
analytically for every a such that SCRlifeðVaRaÞ ¼ SCRlifeðESĥÞ for any insurance

Table 1 Stress scenarios for ‘‘global’’ equity risk derived from the VaR and ES, where a fixed symmetric

adjustment of 7.5% is included

a (%) VaRa (%) EShðaÞ (%)

99.5 - 51.66 - 51.69

98.5 - 46.75 - 45.22

10 If the fictitious life annuity insurer applies duration matching, we still find that the down-shock is more

harmful than the up-shock.
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portfolio. Differences in the longevity SCR are due to the function h which may

differ from ĥ.
We display the stress scenarios for longevity risk in Table 3. For both quantiles

a ¼ 98:5; 99:5%, calibrating with ES leads to fiercer shock rates. The effect is larger

when the quantile a ¼ 98:5% is used.

When we apply the stress scenarios, we obtain that the reduced total SCR of the

fictitious life annuity insurer is approximately 23:24% of the BEL. The allocation of

this SCR(VaR99:5%) to the three different risk classes in shown in Table 4. In Fig. 3

we display SCR(VaRa) and SCR(ESa). By construction, it holds that

SCRðVaRaÞ� SCRðESaÞ.

Table 2 Interest rate stress scenarios supm and sdownm for maturities m ¼ 1; . . .; 20, calibrated with VaR99:5%,

EShð99:5%Þ, VaR98:5%, or EShð98:5%Þ

Maturity SCR(VaR99:5%) SCR(EShð99:5%Þ) SCR(VaR98:5%) SCR(EShð98:5%Þ)

Up (%) Down (%) Up (%) Down (%) Up (%) Down (%) Up (%) Down (%)

1 49.1 - 83.0 49.5 - 82.6 42.0 - 74.7 43.8 - 77.7

2 51.0 - 84.5 51.1 - 84.9 43.3 - 76.4 45.1 - 78.7

3 47.3 - 75.6 47.4 - 75.5 40.4 - 65.6 42.0 - 67.9

4 44.2 - 66.3 44.3 - 66.6 37.6 - 59.1 39.1 - 60.7

5 41.3 - 59.8 41.2 - 60.1 35.0 - 54.0 36.5 - 55.2

6 39.6 - 55.1 39.6 - 55.3 33.6 - 49.8 35.0 - 51.1

7 37.6 - 51.1 37.6 - 51.2 32.5 - 46.7 33.5 - 47.6

8 35.3 - 48.5 35.2 - 48.5 30.4 - 43.6 31.4 - 44.8

9 33.8 - 47.2 33.6 - 46.9 28.9 - 42.3 30.0 - 43.2

10 32.4 - 44.9 32.6 - 45.2 27.9 - 40.8 29.0 - 41.6

11 32.8 - 44.0 32.7 - 44.5 27.9 - 40.0 29.1 - 40.9

12 32.7 - 43.6 32.7 - 43.8 28.0 - 39.6 29.1 - 40.3

13 32.6 - 42.6 32.6 - 42.7 27.8 - 38.5 28.8 - 39.2

14 32.2 - 41.3 32.4 - 41.6 27.5 - 37.3 28.6 - 38.2

15 31.8 - 40.3 32.2 - 40.5 27.1 - 36.3 28.2 - 37.2

16 29.5 - 39.2 29.7 - 39.4 24.9 - 35.7 25.9 - 36.4

17 29.6 - 38.9 29.9 - 38.8 24.9 - 35.1 25.9 - 35.8

18 29.8 - 38.5 30.0 - 38.3 24.9 - 34.5 26.0 - 35.3

19 30.0 - 37.8 30.2 - 37.8 24.9 - 34.0 26.1 - 34.7

20 30.5 - 37.4 30.4 - 37.3 25.5 - 33.4 26.2 - 34.2

The stress scenarios are then applied to the assets and liabilities of the fictitious life annuity insurer as

described in Sect. 3.2

Table 3 Stress rates for longevity risk derived from the VaR and ES

a (%) VaRa (%) EShðaÞ (%)

99.5 - 18.78 - 18.90

98.5 - 16.19 - 16.90
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5 Results

In Sect. 5.1, we compare the allocation of SCR(VaRa) with the allocation of

SCR(EShðaÞ for a fictitious life annuity insurer. In Sect. 5.2, we provide some

sensitivity analysis and show that the results of Sect. 5.1 are robust to changes to the

asset and liability portfolio of the fictitious life annuity insurer.

5.1 Comparing the SCR(VaRa) with the SCR(EShðaÞ) for the fictitious life

annuity insurer

In this section, we compare the SCR(VaRa) with the SCR(EShðaÞ) for the fictitious

life annuity insurer. Recall that h is chosen such that SCR(VaRa) equals SCR(ESh).

Therefore, we focus on the allocation of the reduced total SCR for the three risk

classes: equity SCR, interest rate SCR and longevity SCR. By comparing these

allocations for VaR and ES, we can see whether the current method, which uses

VaR, underestimates or overestimates certain risks. This is done for different

quantiles a used for the VaR.

Table 4 The allocation of this SCR(VaR99:5%) for the fictitious life annuity insurer

Reduced total SCR 23.24%

Interest rate SCR 10.05%

Equity SCR 14.85%

Market SCR 21.70%

Longevity SCR 4.49%

All SCRs are expressed in percentage of the BEL

Fig. 3 Comparing SCR(VaRa) with SCR(ESa) of the fictitious life annuity insurer for various a
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5.1.1 The changes in allocation of the reduced total SCR

Figure 4 shows the change in allocation of the reduced total SCR for the three

different risk classes when ES is used to calibrate the shock scenarios instead of

VaR. The stress scenarios used to determine the SCR are derived as prescribed by

EIOPA, that means that the interest rate stress scenarios are calibrated using PCA

and the longevity stress scenarios are calibrated assuming Gaussian distributions.

We call this the base case.

Figure 4 shows for the quantile a ¼ 99:5% that the differences in allocation are

small. When the quantile a decreases to 98.5%, the differences become more

significant. By using ES to determine the shocks, the longevity risk and the interest

rate shocks are more harmful and the equity risk shock is milder. When we use ES

instead of VaR to determine the stress shocks for a ¼ 98:5%, the longevity SCR

grows with 4.22%, the interest rate SCR increases with 2.27%, and the equity SCR

decreases with 1.77%.

These changes do not add up to zero since the amounts of SCR for the different

risk measures differ. Therefore, a decrease of 2% for the equity SCR leads to a

larger change in the actual amount of SCR than an increase of 2% for the interest

rate SCR, because the equity SCR is larger than the interest rate SCR. When the

quantile a is smaller than 98.5%, the differences are smaller. For values of a smaller

than 97.5%, we get that the equity SCR is relatively large. This follows from the

observation that the tails for equity returns are fat (see, e.g., [14]), but the extreme

events are worse for the interest rate shocks. We get that relative effects are fairly

constant when a gets smaller, as tail risk events will have a smaller impact on both

the ES as the VaR.

Fig. 4 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, when the stress scenarios are determined in a similar way as EIOPA prescribes (base
case). The horizontal axis represents the quantile a used for VaR in the calibration method. The vertical
axis represents the change in allocation of the SCR when the stress scenarios are calibrated with ES
instead of VaR
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5.1.2 The changes in allocation of the reduced total SCR with empirical stress

scenarios

Historical simulation is a popular method in practice. The empirical performance of

historical simulation has been examined by, e.g., Beder [10], Hendricks [30], and

Pritsker [39]. Historical simulation is a resampling method which does not assume

any distribution about the underlying risk process. For this non-parametric model,

we assume that the distribution of past returns is a perfect representation of the

expected future returns. The advantage is that we do not impose any assumptions

about the underlying probability distributions. Historical simulation is heavily

sensitive to the length of the sample of past returns (see, e.g., [39]).

If we apply historical simulation to the three risk classes, the equity SCR remains

unchanged as the equity shock was already determined empirically. For the interest

rate SCR, we use the annualized absolute interest rate changes of the four datasets as

described in Sect. 4.3. Per dataset and for each maturity, we calculate the empirical

VaR and ES and this leads to a vector of absolute up and down shocks. The

percentage interest rate stress vectors per dataset are then computed by dividing it

by the average interest rates for each maturity. Since the swap rates are not defined

for all maturities between 1 and 20 years, linear interpolation is used to determine

the swap rates for these maturities. The average of the four up and down shock

vectors has been taken to determine the overall up and down shock vector. For the

longevity SCR, we aggregate all annual mortality rate changes for the nine countries

used by EIOPA (see Sect. 4.3) and all age cohorts for the period 1992–2009. For

this dataset, we calculate an empirical VaR and an empirical ES. The empirical VaR

or the empirical ES serve as the stress rate for longevity risk for all age cohorts.

The SCR(VaR99:5%) increases from approximately 23:24% of the BEL under the

EIOPA standard model to approximately 24:40% if the stress scenarios for the three

risk classes are determined empirically. We show the differences of the SCR of all

classes of risk in Table 5. From this table we get that the longevity shocks are more

harmful if the SCR is determined empirically. This effect dominates the increase in

the reduced total SCR. The interest rate SCR decreases by approximately 13:09% if

it is determined empirically.

Figure 5 shows the change in allocation of the reduced total SCR for the three

different risk classes when ES is used to calibrate the shock scenarios instead of

VaR. The stress scenarios used to determine the SCR are this time determined

empirically. Similar as when EIOPA stress scenarios are used, the difference in

individual risk modules is small when a = 99.5%. Again, the differences are largest

when a is approximately 98.5%. At the quantile a ¼ 98:5%, the differences are

considerably larger compared to the base case, since the longevity SCR is

approximately 11:26% higher and the equity SCR is approximately 2:85% lower for

SCR(EShðaÞ) when compared with SCR(VaRa). For smaller values of the quantile a
until approximately 97.5% we see that the differences are getting smaller. The

changes in interest rate SCR differ substantially when empirical stress scenarios are

used compared to when EIOPA stress scenarios are used. For values of the quantile

a smaller than 97.5%, we see that the differences are stable, and differences in the
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interest rate SCR are smallest. We also see this in Fig. 4 in Sect. 5.1.1, where

EIOPA stress scenarios are used.

Comparing Figs. 4 and 5, we get that the differences in the SCR allocation when

ES is used instead of VaR are considerably larger when the stress scenarios are

calibrated empirically. The longevity SCR will increase more when ES is used

instead of VaR and when the quantile a is below 99%. This increase is at the

expense of a lower interest rate SCR.

For both using EIOPA stress scenarios and empirical stress scenarios we see that

the changes in allocation of the reduced total SCR are small for the quantile a ¼
99:5% as used in solvency II. When the quantile a decreases, the differences

between the SCR allocation when ES is used instead of VaR get larger. We get that

by using ES to determine the shocks, longevity risk is more harmful and equity risk

is milder, particularly at the quantile a ¼ 98:5%. When we decrease the quantile a
until approximately 97.5%, these effects are getting smaller.

Table 5 Overview of the SCR changes of different risk classes using VaR99:5%, if we switch from PCA

analysis for interest shocks and the Gaussian approximations for longevity shocks to empirical interest

and longevity shocks

Change reduced total SCR 5:01%

Change interest rate SCR � 13:09%

Change equity SCR 0:00%

Change market SCR � 4:82%

Change longevity SCR 96:11%

All changes in SCR are expressed as percentage of the BEL

Fig. 5 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, when the stress scenarios are determined empirically. The horizontal axis represents the
quantile a used for VaR in the calibration method. The vertical axis represents the change in allocation of
the SCRs when the stress scenarios are calibrated with ES instead of VaR
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By comparing the empirical distribution of the tail of the data used for equity risk

and longevity risk we can explain why the differences are largest at approximately

98.5%. The downside tails of the data used for equity risk and longevity risk are

shown in Fig. 6. In this figure, both graphs have two horizontal axis. The first

horizontal axis represents the annual holding period return for equity risk and the

annual mortality rate changes for longevity risk. On the second horizontal axis, we

display the survival distribution (1—cumulative distribution).

One of the main characteristics of the VaR is that it does not consider the shape

of the tail. When the distribution has a heavy tail beyond the VaR level, then this

might lead to an underestimation of the risk. In Fig. 6, we see that the distribution of

longevity has a heavy tail and that the distribution of equity returns has a less heavy

tail. This explains why the longevity SCR is smaller and the equity SCR is larger if

we use VaR. To understand why the difference is largest for a � 98:5%, we focus

Fig. 6 The left tail (smallest 5%) of the empirical distribution for the data used in this paper for the
equity returns (upper graph) and the mortality rate changes (lower graph). The first horizontal axis
represents the annual holding period return of equity (upper graph) or the annual longevity changes
(lower graph). For the second horizontal axis, we display the survival distribution (1—cumulative
distribution) of the empirical distribution. This helps us to determine the quantiles of the distribution. The
vertical axes represent the frequency
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on the empirical survival distribution. For equity risk the VaR98:5% is situated in the

middle of the heavy tail, therefore the equity SCR is relatively big when VaR is

used. For longevity risk, however, the VaR98:5% is situated just before the start of the

heavy tail, and this leads to a much smaller longevity SCR when VaR is used.

5.2 Sensitivity analysis

In this section, we study the sensitivity of our results. We do this by changing the

composition of the asset portfolio and the liability portfolio of the fictitious life

annuity insurer.

5.2.1 Changing the asset portfolio

As described in Sect. 4.1, the fictitious life annuity insurer has an asset portfolio

which consists of 25% in equity, and the remainder is invested in bonds. To test if

our results are sensitive to the composition of the asset portfolio we vary with the

percentage of equity in the portfolio and compare the allocation of SCR(VaRa) with

the allocation of SCR(EShðaÞ).

We analyze the following asset portfolios:

• 100% equity;

• 50% equity and 50% bonds;

• 25% equity and 75% bonds (base case);

• 10% equity and 90% bonds;

• 100% bonds.

When the asset portfolio contains bonds, the amounts invested in the 5- and 30-year

bonds are determined by matching the duration of the bond portfolio with 50% of

the duration of the liabilities. Hence, the duration is matched better when the insurer

invests more in bonds than in equity.

Figures 9, 10, 11 and 12 in Appendix 3 show the change in allocation of the

reduced total SCR for the three different risk classes when ES is used to calibrate

the shock scenarios instead of VaR for the different asset portfolios. To see how

sensitive our results are to the composition of the asset portfolio we can compare

these figures with Fig. 4.

When the equity holdings in the portfolio increase, we find a similar trend as in

the base case. The changes in allocation of the reduced total SCR are again small for

a ¼ 99:5%, i.e., using VaR or ES leads to similar stress scenarios for all three risk

classes. When the quantile a decreases, this difference becomes more significant and

is largest for a � 98:5%. For this quantile, the longevity SCR and the interest rate

SCR are larger and the equity SCR is smaller when the SCR is based on ES. When

we decrease the value a even more until 97.5%, the differences are getting smaller.

Figure 11 displays a similar trend as the base case, except for one difference. The

similarity with the base case is that the change in allocation of the reduced total SCR

is small for the quantile a ¼ 99:5%, is largest for the quantile a � 98:5%, and if we

decrease the quantile a until 97.5% the differences are getting smaller again. This
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figure differs from the base case if we consider the percentage change in SCR per

risk class. When an asset portfolio of 10% equity and 90% bonds is used, the largest

percentage change is for the equity SCR. Whereas the relative change in equity SCR

grows in comparison with the base case, the change in longevity SCR and interest

rate SCR decreases in comparison with the base case. Overall, we still conclude that

the longevity SCR is larger and the equity SCR is smaller when ES is used.

Figure 12 looks somewhat different. In this case, the asset portfolio consists of

100% in bonds, so that there is no equity risk. We see however that the interest rate

SCR is smaller for all quantiles when ES is used.

From comparing Figs. 4, 10 and 11, we get that for different asset portfolios it

still holds that the differences in the SCR allocation are largest at a � 98:5% and

that the longevity SCR is larger and the equity SCR is smaller when ES is used. The

percentage change per risk class differs if the equity holdings change in the

portfolio, but the main trends remain similar.

5.2.2 Changing the liability portfolio

To test if our results are sensitive to the composition of the liability portfolio, we

vary with the distribution of the policyholders and compare the allocation of

SCR(VaRa) with the allocation of SCR(EShðaÞ). We show this comparison for the

following liability portfolios:

• young life annuity insurer: policyholders with an average age of 35;

• base case life annuity insurer: policyholders with an average age of 50;

• old life annuity insurer: policyholders with an average age of 65.

All other assumptions made in Sect. 4 still hold. For a precise description of the

liability portfolios, see Table 7 in Appendix 1. The number of policyholders per

liability portfolio is chosen based on matching the BEL to the BEL of the base case.

Similar to the base case, the asset portfolio consists of 25% in equity and 75% in

bonds. We again match 37:5% of the duration of the liabilities to determine the

amounts invested in the 5- and 30-year bonds.

We find that for the old life annuity insurer, the reduced total SCR is relatively

large compared to the BEL. The value of SCR(VaR99:5%) is 20.98% of the BEL,

compared to 23.24% for the baseline company. However, the longevity SCR for the

old company is 5.53%, and so larger than for the baseline company. The interest rate

SCR for the old company is however 6.42%, which is much smaller than 10.05% for

the baseline company. So, interest rate risk dominates the effect on the total SCR.

These findings for the young life annuity insurer are qualitatively similar.

Figures 13 and 14 in Appendix 3 show the change in allocation of the reduced

total SCR for the three different risk classes when ES is used to calibrate the shock

scenarios instead of VaR for the different liability portfolios. To see how sensitive

our results are to the composition of the liability portfolio we can compare Figs. 13

and 14 with Fig. 4. For all liability portfolios, the change in allocation of the

reduced total SCR is small when a ¼ 99:5%. This difference is largest for

a � 98:5%; for smaller a the differences are getting smaller until approximately
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97:5%. We observe that for all liability portfolios that the longevity SCR is larger

and the equity SCR is smaller when ES is used. For the value a ¼ 98:5%, it holds

for all three different liability portfolios that the longevity SCR increases with

approximately 4% and the equity SCR decreases with approximately 2:5% if ES

was used instead of VaR. If we compare Figs. 13 and 14 we get that relative interest

rate SCR changes are amplified for an older composition of the liability portfolio.

6 Other regulatory frameworks

The Swiss Solvency Test (SST) is a regulatory framework for insurance companies

in Switzerland. The SST uses a holistic approach by taking all risks into the capital

requirement calculations, while solvency II has a modular approach. Moreover, the

capital requirements in the SST are calibrated using the ES with confidence level

99%.

The differences in SCR(ES99%) and SCR(VaR99:5%) are displayed in Table 6. All

other assumptions are as in the base case in Sect. 4. We here ignore all other

differences of the SST regulation. The reduced total SCR increases from

approximately 23:24% of the BEL under the EIOPA standard model to a reduced

total SCR determined by ES99% equal to approximately 23:73% of the BEL.

From Table 6, we get that the difference in the reduced total SCR is substantial if

ES99% is used. This difference is driven by increases in SCR for all three risk

modules.

The Basel III framework is a global regulatory framework for banks which is

planned to be implemented in 2019. Basel III was set up in a different manner than

solvency II since it is a regulatory framework for a different part of the financial

industry. The regulation uses however also stress scenarios to see the impact of

shocks on certain risk drivers. The current Basel II framework uses stress scenarios

calibrated on value-at-risk with quantile a ¼ 99%, but the Basel III framework will

be calibrated using expected shortfall with parameter h ¼ 97:5%. The parameter

h ¼ 97:5% of ES is set such that the ES corresponds approximately to the VaR99% if

the returns are Gaussian. Our analysis for the classes interest rate risk and equity

risk suggests that ES97:5% might lead to lower capital requirements than VaR99%,

since hð99%Þ ¼ 97:81% and SCRlifeðVaR99%Þ\SCRlifeðEShð99%ÞÞ. Note that long-

evity risk is much less severe for banks. The Basel Committee on Banking

Supervision acknowledged the incoherence of the VaR as a risk measurement [6].

Table 6 Overview of the SCR changes of different risk classes, if we switch from using VaR99:5% to

ES99%

Change reduced total SCR 2:14%

Change interest rate SCR 3:14%

Change equity SCR 1:37%

Change market SCR 2:03%

Change longevity SCR 3:36%

All changes in SCR are expressed in percentage of the BEL
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7 Conclusion

This paper examines the consequences for a life annuity insurer if the solvency II

SCR calibration is based on expected shortfall (ES) instead of value-at-risk (VaR).

First, we calibrate the SCR stress scenarios for equity risk, interest rate risk and

longevity risk based on value-at-risk and expected shortfall. Thereafter, we compare

the SCR(VaRa) with the SCR(EShðaÞ) for a fictitious life annuity insurer.

Since we define hðaÞ such that SCR(VaRa) equals SCR(EShðaÞ), we focus on the

allocation of the reduced total SCR for the three risk classes: equity SCR, interest

rate SCR and longevity SCR. For the quantile a ¼ 99:5%, as used in solvency II, the

difference in allocation is small between SCR(VaRa) with the SCR(EShðaÞ), i.e., the

equity SCR, interest rate SCR and longevity SCR differ little is we use the VaR or

ES. Of course, this only applies if the confidence level hð99:5%Þ ¼ 98:78% is

applied for determining the expected shortfall. When a � 98:5%, the differences are

largest. If we use the ES instead of the VaR to determine the shocks, the longevity

SCR is larger and equity SCR is smaller. For smaller values of a, the differences

become smaller.

These results are robust in terms of variation with the composition of the asset

and liability portfolio of the life annuity insurer. To test the sensitivity of our results

to the calibration methods used by EIOPA, we compare the results with the SCR

allocations when the stress scenarios are determined empirically. We find that when

empirical stress scenarios are used, the reduced total SCR increases due to a higher

longevity SCR. Moreover, the interest rate SCR is smaller compared to when the

calibration methods are as determined by EIOPA [25].
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Appendix 1: data

See Table 7 and Fig. 7

Table 7 The liability portfolio of the young, base case, and old life annuity insurer corresponding to

Sects. 4.1 and 5.2

Age Number of policies

Young

Number of policies

Base case

Number of policies

Old

Accrued yearly payment

Starting at age 65

21 7634 361 0 0.067

23 9141 531 0 0.109

25 10646 762 0 0.152

27 12061 1063 0 0.194

29 13289 1441 0 0.236

31 14242 1902 88 0.279

33 14847 2440 138 0.321

35 15054 3046 213 0.364

37 14847 3698 318 0.406

39 14242 4367 462 0.448

41 13289 5016 654 0.491

43 12061 5605 899 0.533

45 10646 6090 1203 0.576

47 9141 6437 1565 0.618

49 7634 6618 1981 0.661

51 6202 6618 2438 0.703

53 4900 6437 2919 0.745

55 3766 6090 3400 0.788

57 2815 5605 3852 0.830

59 2047 5016 4244 0.873

61 1448 4367 4548 0.915

63 996 3698 4742 0.958

65 666 3046 4808 1

67 434 2440 4742 1

69 274 1902 4548 1

71 169 1441 4244 1

73 101 1063 3852 1

75 59 762 3400 1

77 33 531 2919 1

79 18 361 2438 1

81 0 0 1981 1

83 0 0 1565 1

85 0 0 1203 1

87 0 0 899 1

89 0 0 654 1

We assume that all policyholders are born on January 1st
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Appendix 2: interest rate risk stress scenarios by using principal
component analysis

In this appendix, we describe the principal component analysis (PCA) to calibrate

the interest rate shocks. PCA is used to describe movements of the yield curve and is

explained by Fiori and Iannotti [27] and Barber and Copper [5]. It applies an

orthogonal linear transformation that converts interest rate changes data of

correlated variables into a set of values of linearly uncorrelated variables. For the

m maturities, the relative yield curve change can then be represented exactly as a

linear combination of m vectors:

Xt ¼ ct þ b1;tU1 þ � � � þ bm;tUm ð13Þ

where Xt is the relative change in the annualized yield curve at time t ¼ 1; . . .; T , ct
is a time-varying constant, and Uk are time-independent, zero-mean m� 1 vectors

that are orthogonal.

The data is then transformed into a new coordinate system such that the first

coordinate (i.e., the principal component b1;t) explains the largest share of the

variance by any projection of the data, the second coordinate has the second largest

explanation of the variance, etcetera. The objective of PCA is to determine a small

set of components that best explain the total variance of the data. The number of

components is then small K 	 m, but with high explanatory power:

Xt ¼ ct þ b1;tU1 þ � � � þ bK;tUK þ et

where et is a zero-mean error term.

When PCA is used to describe interest rate movements, the factors Uk; k ¼
1; . . .;K are the eigenvectors of the covariance matrix of the original data. The first

six components explain between 99.2 and 99.5% of the variance with a 90%

Fig. 7 The nominal interest rate term structure from the European Central Bank of December 31st, 2014,
used in Sect. 4.3. Source: http://www.dnb.nl/statistiek/statistieken-dnb/index.jsp (last accessed: May 4th,
2017)
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confidence interval (cf. [5]). The principal components describe the different yield

curve movements and the first three are interpreted as the shift, twist and butterfly

moves of the yield curve [31, 37]. Figure 8 shows the first three eigenvectors of the

Euro vs Euribor IR swap rates. In this figure, we observe the shift, twist and butterfly

moves.

The principal components are derived via the following matrix multiplication:

bk;t ¼ U0
kXt; for k ¼ 1; 2; . . .;K: ð14Þ

To transform the principal components and eigenvectors into VaR and ES based

interests rate stress scenarios, we use a method of Fiori and Iannotti [27]. For a

maturity k, we regress the relative annual percentage rate changes on the principal

components to derive the ‘‘beta’’ sensitivity of each rate to each principal compo-

nent via (14). We use the empirical distribution of each principal component vector

bk. Via historical simulation of the principal components, we derive a down risk

stress scenario and an up risk stress scenario for both VaR and ES as follows:

VaRc ¼ VaRc

XK
k¼1

b̂kUk

 !
; for c ¼ a; ð1� aÞ; ð15Þ

ESc ¼ ESc
XK
k¼1

b̂kUk

 !
; for c ¼ hðaÞ; 1� hðaÞ: ð16Þ

Since the eigenvectors Uk; k ¼ 1; . . .;K are orthogonal, we can randomly draw the

marginal distributions of b̂k; k ¼ 1; . . .;K and determine the empirical distribution

of
PK

k¼1 b̂kUk accordingly (see, e.g., [27]). We use 4000 simulations for each

dataset.

Fig. 8 The shift (PC1), twist (PC2) and butterfly (PC3) components of the yield curve of the Euro vs
Euribor IR swap rates. The horizontal axis represents the term to maturity and the vertical axis represents
the level of the eigenvector component

Solvency II solvency capital requirement for life insurance companies... 429

123



In our four datasets, we set K ¼ 3 or K ¼ 4, which is determined such that the

principal components describe at least 95% of the variance. Since we have four

datasets, we have four different up and down shock vectors. In line with [25], we set

the up and down shock at maturity of 90 years and longer at þ 20 and - 20%.

Moreover, the swap rates are not always defined for every maturity, and therefore

linear interpolation is used to fill in shocks for these maturities. The mean result of

the four different up and down shock vectors has been taken to arrive at a

generalized up and down shock vector [26].

Appendix 3: figures sensitivity analysis

See Figs. 9, 10, 11, 12, 13 and 14.

Fig. 9 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, with an asset portfolio consisting of 100% equity. The horizontal axis represents the
quantile a used for VaR in the calibration method. The vertical axis represents the change in allocation of
the SCRs when the stress scenarios are calibrated with ES instead of VaR
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Fig. 10 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, with an asset portfolio consisting of 50% equity and 50% bonds. The horizontal axis
represents the quantile a used for VaR in the calibration method. The vertical axis represents the change
in allocation of the SCRs when the stress scenarios are calibrated on ES instead with VaR

Fig. 11 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, with an asset portfolio consisting of 10% equity and 90% bonds. The horizontal axis
represents the quantile a used for VaR in the calibration method. The vertical axis represents the change
in allocation of the SCRs when the stress scenarios are calibrated with ES instead of VaR
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Fig. 12 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the fictitious life

annuity insurer, with an asset portfolio consisting of 100% bonds. The horizontal axis represents the
quantile a used for VaR in the calibration method. The vertical axis represents the change in allocation of
the SCRs when the stress scenarios are calibrated with ES instead of VaR

Fig. 13 Comparing the allocation of SCR(VaRa) with the allocation of SCR(EShðaÞ) for the young life

annuity insurer. The horizontal axis represents the quantile a used for VaR in the calibration method. The
vertical axis represents the change in allocation of the SCRs when the stress scenarios are calibrated with
ES instead of VaR
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