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Abstract We introduce a new PDE approach to establishing the large time asymptotic
behavior of solutions of Hamilton–Jacobi equations, which modifies and simplifies
the previous ones (Barles et al. in Arch Ration Mech Anal 204(2):515–558, 2012;
Barles and Souganidis in SIAM J Math Anal 31(4):925–939, 2000), under a refined
“strict convexity” assumption on the Hamiltonians. Not only such “strict convex-
ity” conditions generalize the corresponding requirements on the Hamiltonians in
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Barles and Souganidis (SIAM J Math Anal 31(4):925–939, 2000), but also one of the
most refined our conditions covers the situation studied in Namah and Roquejoffre
(Commun Partial Differ Equ 24(5–6):883–893, 1999).

Keywords Asymptotic behavior · Hamilton–Jacobi equations · PDE approach

Mathematics Subject Classification (1991) Primary 35F21; Secondary 35B40 ·
35D40 · 35F31 · 49L25

1 Introduction

In this article we introduce a new PDE approach to establishing the large time asymp-
totic behavior of solutions of Hamilton–Jacobi equations.

In the last two decades there have been major developments in the study of the large
time asymptotics of solutions of Hamilton–Jacobi equations, initiated by the work by
Namah and Roquejoffre [19] and by Fathi [9].

The approach by Fathi is based on the weak KAM theory and the representation
of solutions of the Hopf-Lax-Oleinik type or, in other words, as the value functions
of optimal control, and has a wide scope which is different from the one in Namah–
Roquejoffre [19]. The optimal control/dynamical approach of Fathi has been sub-
sequently developed for further applications and technical improvements by many
authors (see, for instance, [8,10,12,14,15,17,18]).

At the beginning of the developments mentioned above, another approach has been
introduced by the first author and Souganidis [5], which does not depend on the repre-
sentation formulas of solutions and thus applies to a more general class of Hamilton–
Jacobi equations including those with non-convex Hamiltonians. We refer for recent
developments in this direction to [3,4].

We also refer [3] for further comments and references related to the large time
asymptotics of solutions of Hamilton–Jacobi equations and [6] for a new development
on this study for the general degenerate viscous Hamilton-Jacobi equations.

Our aim here is to modify and slightly simplify the main ingredient in the PDE
approach by the first author and Souganidis [5] as well as to refine the requirements
on the Hamiltonians.

To clarify and simplify the presentation, we consider the asymptotic problem in the
periodic setting. We are thus concerned with the Cauchy problem

{
ut (x, t) + H(x, Dx u(x, t)) = 0 in Q,

u(x, 0) = u0(x) for x ∈ R
n,

(CP)

where Q := R
n × (0,∞), u represents the unknown function on Q, ut = ut (x, t) =

(∂u/∂t)(x, t), Dx u(x, t) = ((∂u/∂x1)(x, t), ..., (∂u/∂xn)(x, t)) and u0 represents
the initial data. The functions u(x, t) and u0(x) are supposed to be periodic in x .

We make the following assumptions throughout this article:

(A1) The function u0 is continuous in Rn and periodic with period Z
n .

(A2) H ∈ C(Rn × R
n).
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New PDE approach to the large time asymptotics 365

(A3) The Hamiltonian H(x, p) is periodic in x with period Z
n for every p ∈ R

n .
(A4) The Hamiltonian H is coercive. That is,

lim
r→∞ inf{H(x, p) : (x, p) ∈ R

2n, |p| ≥ r} = ∞.

Our notational conventions are as follows. We may regard functions f (x) on R
n

(resp., g(x, y) on Rn × V , where V is a subset of Rm) periodic in x ∈ R
n with period

Z
n as functions on the torus Tn (resp., Tn × V ). In this viewpoint, we write C(Tn),

C(Tn × V ), etc, for the subspaces of all functions f (x) in C(Rn), of all functions
g(x, y) inC(Rn×V ), etc, periodic in x with periodZn .We denote the sup-norm (or the
L∞-norm) of a function f by ‖ f ‖∞ and ‖ f ‖L∞ interchangeably. Regarding the notion
of solution of Hamilton–Jacobi equations, in this article we will be only concerned
with viscosity solutions, viscosity subsolutions and viscosity supersolutions, which
we refer simply as solutions, subsolutions and supersolutions. For any R > 0, BR

denotes the open ball of Rn with center at the origin and radius R. For any X ⊂ R
n ,

UC (X) and Lip(X) denote the spaces of all uniformly continuous functions and all
Lipschitz continuous functions on X , respectively.

We now recall the following basic results.

Theorem 1 Under the hypotheses (A1)–(A4), there exists a unique solution u ∈
UC (Tn ×[0, ∞)) of (CP). Furthermore, if u0 ∈ Lip(Tn), then u ∈ Lip(Tn ×[0, ∞)).

Theorem 2 Under the hypotheses (A2)–(A4), let u, v ∈ UC (Tn × [0, ∞)) be solu-
tions of

ut + H(x, Dx u) = 0 in Q. (HJ)

Then

‖u − v‖L∞(Q) ≤ ‖u(·, 0) − v(·, 0)‖L∞(Rn).

Theorem 3 Under the hypotheses (A2)–(A4), there exists a unique constant c ∈ R

such that the problem

H(x, Dv(x)) = c in R
n (EP)

has a solution v ∈ Lip(Tn).

These theorems are classical results in viscosity solutions theory. For instance,
the existence part of Theorem 1 is a consequence of Corollaire II.1 in [1]. Under
assumptions (A2) and (A3), as is well known, the comparison principle holds between
bounded semicontinuous sub and supersolutions of (CP) if one of them is Lipschitz
continuous. This comparison result and the existence part of Theorem 1 assure that for
each continuous solution u of (CP) there is a sequence {uk}k∈N of Lipschitz continuous
solutions of (CP), with u0 replaced by uk(·, 0), which converges to u uniformly in
Q. The existence of such a sequence of Lipschitz continuous solutions of (CP) and
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the comparison principle for Lipschitz continuous solutions of (CP) guarantees the
Theorem 2 holds. Theorem 3 and its proof can be found in [16].

The problem of finding a pair (c, v) ∈ R × C(Tn), where v satisfies (EP) in
the viscosity sense, is called an additive eigenvalue problem or ergodic problem.
Thus, for such a pair (c, v), the function v (resp., the constant c) is called an additive
eigenfunction (resp., eigenvalue).

We note that the conditions (A2)–(A4) are invariant under addition of constants.
Hence, by replacing H by H − c, with c being the additive eigenvalue of (EP), we
may normalize so that the additive eigenvalue c is zero. Thus, in what follows, we
always assume that

(A5) c = 0, where c denotes the additive eigenvalue.

Accordingly, problem (EP) becomes simply a stationary problem

H(x, Dv(x)) = 0 in R
n . (1)

The crucial assumptions in this article are the following conditions.
(A6)+ There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) ≤ 0 and
H(x, q) ≥ η, then

H(x, p + θ(q − p)) ≥ ηθ + ψ.

(A6)− There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) ≤ 0 and
H(x, q) ≥ −η, then

H(x, p + θ(q − p)) ≥ −ηθ + ψ.

We will furthermore modify and refine these conditions [see (A9)±] in Sect. 4,
one of which covers the situation studied by Namah–Roquejoffre [19]. An important
consequence is that our PDE method gives a unified approach to most of the large
time asymptotic convergence results for (CP) in the literature.

The assumptions above are some kind of strict convexity requirements and they are
satisfied if H is strictly convex in p. Indeed in this case, since q = θ−1(p + θ(q − p))

+ (1 − θ−1)p,

H(x, q) < θ−1H(x, p + θ(q − p)) + (1 − θ−1)H(x, p)

< θ−1H(x, p + θ(q − p)),

andψ measures how strict is this inequality.We point out that, for (A6)−, this argument
is valid if p 
= q and the inequality is obvious if p = q, while in the case of (A6)+
clearly we have always p 
= q.

Onemay have another interpretation of these assumptions, namely that the function
H(x, r), as a function of r , grows more than linearly on the line segment connecting
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New PDE approach to the large time asymptotics 367

from q to p + θ0(q − p) for some θ0 > 1 (notice that this growth rate is negative in
the case of (A6)−).

We conclude these remarks on (A6)± by pointing out that (A6)+ is an assumption on
the behavior of H on the set {H ≥ 0}while (A6)− is an assumption on the behavior of
H on the set {H ≤ 0}. We refer to Sect. 3 for more precise comments in this direction.

A condition similar to (A6)+ has appeared first in Barles–Souganidis [5] (see (H4)
in [5]). Our condition (A6)+ is less stringent and has a wider application than (A6)+
in [3]. For this comparison, see Sect. 3. Also, (A6)− is less stringent than (A6)− in
[3]. A type of condition (A6)− has first introduced in Ichihara–Ishii [11] for convex
Hamiltonians (see the condition (16) in [11]).

We establish the following theorem by a PDE approach which modifies and sim-
plifies the previous ones in [3,5].

Theorem 4 Assume that (A1)–(A5) hold and that either (A6)+ or (A6)− holds. Then
the unique solution u(x, t) in UC (Tn × [0, ∞)) of (CP) converges uniformly in R

n,
as t → ∞, to a function u∞(x) in Lip(Tn), which is a solution of (1).

A generalization of the theorem above is given in Sect. 4 (see Theorem 11), which
covers the main result in [19] in the periodic setting.

In Sect. 2, we give an explanation of the new ingredient in our new PDE method,
a (hopefully transparent) formal proof of Theorem 4 by the new PDE method and
its exact version. In Sect. 3, we make comparisons between (A6)± and its classical
versions, and discuss convexity-like properties of the Hamiltonians H implied by
(A6)± as well as a couple of conditions equivalent to (A6)±. In Sect. 4, we present a
theorem, with (A6)± replaced by refined conditions, which includes the situation in
[19] as a special case.

2 Proof of Theorem 4

Throughout this section, we assume that (A1)–(A5) hold. The first step consists in
reducing to the case when u0 ∈ Lip(Tn) and therefore u is Lipschitz continuous on
T

n × [0, ∞).

Lemma 5 If the result of Theorem 4 holds for any u0 ∈ Lip(Tn) then it holds for any
u0 ∈ C(Tn).

Proof For a general u0 ∈ C(Tn) we select a sequence {u0, j } j∈N ⊂ Lip(Tn) which
converges to u0 uniformly in R

n . For each j ∈ N let u j ∈ Lip(Tn × [0, ∞)) be the
unique solution of (CP), with u0, j in place of u0. By Theorem 2, we have

‖u j − uk‖L∞(Q) ≤ ‖u0, j − u0,k‖L∞(Rn) for all j, k ∈ N. (2)

Since Theorem 4 holds for any initial data in Lip(Tn), we know that for each j ∈ N

there exists a function u∞, j ∈ C(Tn) such that limt→∞ u j (x, t) = u∞, j (x) uniformly
in Rn . This implies

‖u∞, j − u∞,k‖L∞(Rn) ≤ ‖u j − uk‖L∞(Q) for all j, k ∈ N,
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which together with (2) yields

‖u∞, j − u∞,k‖∞ ≤ ‖u0, j − u0,k‖∞ for all j, k ∈ N.

Hence there is a function u∞ ∈ C(Tn) such that lim j→∞ u∞, j (x) = u∞(x) uniformly
in Rn .

Observe by using Theorem 2 that for any j ∈ N,

‖u(·, t) − u∞‖∞ ≤ ‖u(·, t) − u j (·, t)‖∞ + ‖u j (·, t) − u∞, j‖∞ + ‖u∞, j − u∞‖∞
≤ ‖u0 − u0, j‖∞ + ‖u j (·, t) − u∞, j‖∞ + ‖u∞, j − u∞‖∞,

from which we conclude that limt→∞ ‖u(·, t)− u∞‖∞ = 0. By the stability property
of viscosity solutions, we see that u∞ is a solution of (1) and, consequently, u∞ ∈
Lip(Rn) by Theorem 3. ��

Now we turn to the proof of Theorem 4 when u0 ∈ Lip(Tn). By Theorem 1, there
exists a unique solution u ∈ Lip(Tn × [0, ∞)) of (CP) and we have to prove that
u(x, t) converges uniformly in Rn to a function u∞(x) as t → ∞.

Henceforth in this section we assume that u0 ∈ Lip(Tn) and hence the solution u
of (CP) is in Lip(Tn × [0, ∞)). Also, we fix a solution v0 ∈ Lip(Tn) of (1). Such a
function v0 exists thanks to Theorem 3. We set L := max{‖Dx u‖∞, ‖Dxv0‖∞}.

If we set z(x, t) = v0(x) and invoke Theorem 2, then we get

‖u − z‖L∞(Q) ≤ ‖u0 − v0‖L∞(Rn),

which shows that u is bounded in Q. We may assume by adding a constant to v0 if
needed that for some constant C0 > 0,

0 ≤ u(x, t) − v0(x) ≤ C0 for all (x, t) ∈ Q.

2.1 Under assumption (A6)+

Throughout this subsection we assume, in addition to (A1)–(A5), that (A6)+ holds.
Let η0 > 0 and θ0 > 1 be the constants from (A6)+.

For (η, θ) ∈ (0, η0) × (1, θ0), we define the function w on Q by

w(x, t) = sup
s≥t

[u(x, t) − v0(x) − θ(u(x, s) − v0(x) + η(s − t))]. (3)

The following proposition is crucial in our proof of Theorem 4 under (A6)+. To
state the proposition, we introduce the functions ωH,R , with R > 0, as

ωH,R(r) = sup{|H(x, p) − H(x, q)| : x ∈ R
n, p, q ∈ B R, |p − q| ≤ r}.

Note that for each R > 0, the function ωH,R is nonnegative and nondecreasing in
[0, ∞) and ωH,R(0) = 0.
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Proposition 6 Let ψ = ψ(η, θ) > 0 be the constant from (A6)+. Then the function
w is a subsolution of

min{w(x, t), wt (x, t) − ωH,R(|Dxw(x, t)|) + ψ} ≤ 0 in Q, (4)

where R := (2θ0 + 1)L.

Our proof of Theorem 4 follows the outline of previous works like [3,5] where a key
result is an asymptotic monotonicity property for u. This asymptotic monotonicity is
a consequence of Proposition 6 which, roughly speaking, implies that min{ut , 0} → 0
as t → ∞. This is rigorously stated in Lemma 8 and its consequence in (27).
With assumption (A6)−, this is also the case but with a different monotonicity (i.e.,
max{ut , 0} → 0 as t → ∞).

For this reason, the function w defined by (3) is a kind of Lyapunov function in our
asymptotic analysis in a broad sense. The main new aspect in this article, compared
to [3,5], is indeed the simpler form of our w, which is defined by taking supremum in
s of the function

u(x, t) − v0(x) − θ(u(x, s) − v0(x) + η(s − t)),

whose functional dependence on u and v0 is linear. In the previous works, the function

sup
s≥t

u(x, s) − v0(x) + η(s − t)

u(x, t) − v0(x)
(5)

(one should assumehere by adding a constant tov0 if necessary that inf(x,t)∈Q(u(x, t)−
v0(x)) > 0), played the same role as our function w, and the value

u(x, s) − v0(x) + η(s − t)

u(x, t) − v0(x)

depends nonlinearly in u and v0. One might see that the passage from the function
given by (5) to w given by (3) bears a resemblance that from the Kruzkov transform
to a linear change in [13] in the analysis of the comparison principle for stationary
Hamilton–Jacobi equations.

From a technical point of view, they are a lot of variants for such results. For
example, as it is the case in [5], one may look for a variational inequality for
m(t) := maxx∈Rn w(x, t) or for m(t) := maxx∈� w(x, t) where � is a suitable
domain of Rn . This last form can be typically useful when one wants to couple dif-
ferent assumptions on H on � and its complementary as in [5] where the coupling
with Namah–Roquejoffre type assumptions was solved in that way, the point being to
control the behavior of u on ∂�.

For the connections between our assumptions and Namah–Roquejoffre type
assumptions, we refer to Sect. 4.
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2.1.1 A formal computation

Here we explain the algebra which bridges condition (A6)+ to Proposition 6 under the
strong regularity assumptions that u, w ∈ C1(Tn × [0, ∞)) and v0 ∈ C1(Tn) and
that for each (x, t) ∈ Q there exists an s > t such that

w(x, t) = u(x, t) − v0(x) − θ(u(x, s) − v0(x) + η(s − t)). (6)

Of course, these conditions do not hold in general.
Fix any (x, t) ∈ Q and an s > t so that (6) holds. If w(x, t) ≤ 0, then (4) holds at

(x, t). We thus suppose that w(x, t) > 0.
Setting

p = Dv0(x), q = Dx u(x, s), r = Dx u(x, t), a = us(x, s) and b = ut (x, t),

we have

H(x, p) ≤ 0. (7)

a + H(x, q) ≥ 0, (8)

b + H(x, r) ≤ 0, (9)

Also, by the choice of s, we get

Dxw(x, t) = r − p − θ(q − p), (10)

wt (x, t) = b + θη, (11)

0 = −θ(a + η). (12)

Combining (8) and (12) yields

H(x, q) ≥ η. (13)

Now, in view of inequalities (7) and (13), we may use assumption (A6)+, to get

H(x, p + θ(q − p)) ≥ θη + ψ.

Using (10), we get

H(x, r) = H(x, Dxw(x, t) + p + θ(q − p)).

Using the definition of L > 0, we clearly have

|r | = |Dx u(x, t)| ≤ L ≤ R, |p + θ(q − p)| ≤ (1 + 2θ)L ≤ R
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New PDE approach to the large time asymptotics 371

and therefore we get

H(x, r) ≥ H(x, p + θ(q − p)) − ωH,R(|Dxw(x, t)|)
≥ −ωH,R(|Dxw(x, t)|) + θη + ψ.

This together with (9) and (11) yields

0 ≥ b + H(x, r) = wt (x, t) − θη + H(x, r)

≥ wt (x, t) − θη − ωH,R(|Dxw(x, t)|) + θη + ψ

= wt (x, t) − ωH,R(|Dxw(x, t)|) + ψ.

This shows under our convenient regularity assumptions that (4) holds.

Remark 1 The actual requirement to v0 is just the subsolution property in the above
computation, which is true also in the following proof of Theorem 4. Some of subso-
lutions of (1) may have a better property, which solutions of (1) do not have. This is
the technical insight in the generalization of Theorem 4 in Sect. 4.

2.1.2 Proof of Proposition 6

We begin with the following lemma.

Lemma 7 We have

−C0(θ − 1) ≤ w(x, t) ≤ C0 for all (x, t) ∈ R
n × [0, ∞).

Proof We just need to note that for all (x, t) ∈ R
n × [0, ∞),

w(x, t) ≥ u(x, t) − v0(x) − θ(u(x, t) − v0(x)) = (1 − θ)(u(x, t) − v0(x))

≥ −C0(θ − 1),

and

w(x, t) ≤ max
s≥t

(u(x, t) − v(x)) ≤ C0.

��
Proof of Proposition 6 Noting that u ∈ Lip(Tn × [0, ∞)) and v0 ∈ Lip(Tn) and
rewriting w as

w(x, t) = max
r≥0

(u(x, t) − v0(x) − θ(u(x, r + t) − v0(x) + ηr)),

we deduce that w ∈ Lip(Tn × [0, ∞)).
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Fix any φ0 ∈ C1(Q) and (x̂, t̂) ∈ Q, and assume that

max
Q

(w − φ0) = (w − φ0)(x̂, t̂).

We intend to prove that for R = (2θ0 + 1)L ,

min{w,φ0,t − ωH,R(|Dφ0|) + ψ} ≤ 0 at (x̂, t̂). (14)

If w(x̂, t̂) ≤ 0, then (14) clearly holds. We may thus suppose that w(x̂, t̂) > 0. We
choose an ŝ ≥ t̂ so that

w(x̂, t̂) = u(x̂, t̂) − v0(x̂) − θ(u(x̂, ŝ) − v0(x̂) + η(ŝ − t̂)).

Observe that for any s = t̂ ,

u(x̂, t̂) − v0(x̂) − θ(u(x̂, s) − v0(x̂) + η(s − t̂) = (1 − θ)(u(x̂, t̂) − v0(x̂)) ≤ 0,

which guarantees that ŝ > t̂ .
Define the function φ ∈ C1(Q × (0, ∞)) by

φ(x, t, s) = φ0(x, t) + |x − x̂ |2 + (t − t̂)2 + (s − ŝ)2.

Note that the function

u(x, t) − v0(x) − θ(u(x, s) − v0(x) + η(s − t)) − φ(x, t, s)

on Q × (0, ∞) attains a strict maximum at (x̂, t̂, ŝ), and that Dxφ(x̂, t̂, ŝ) =
Dxφ0(x̂, t̂), φt (x̂, t̂, ŝ) = φ0,t (x̂, t̂) and φs(x̂, t̂, ŝ) = 0.

Now, if B is an open ball of R3n+2 centered at (x̂, x̂, x̂, t̂, ŝ) with its closure B
contained inR3n × (0, ∞)2, we use the technique of “tripling variables” and consider
the function 	 on B given by

	(x, y, z, t, s) = u(x, t) − v0(z) − θ(u(y, s) − v0(z) + η(s − t))

−φ(x, t, s) − α(|x − y|2 + |x − z|2),

where α > 0 is a (large) constant.
Let (xα, yα, zα, tα, sα) ∈ B be a maximum point of 	. As usual in viscosity solu-

tions theory, we observe that

lim
α→∞(xα, yα, zα, tα, sα) = (x̂, x̂, x̂, t̂, ŝ).

Consequently, if α is sufficiently large, then

(xα, yα, zα, tα, sα) ∈ B.
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New PDE approach to the large time asymptotics 373

We assume henceforth that α is sufficiently large so that the above inclusion holds.
Next, setting

pα = 2(θ − 1)−1α(zα − xα) and qα = 2θ−1α(xα − yα),

and noting that

	(x, y, z, t, s) = u(x, t) − θu(y, s) + (θ − 1)v0(z) − θη(s − t)

−φ(x, t, s) − α(|x − y|2 + |x − z|2),

we observe that

pα ∈ D+v0(zα), (15)(
qα, −θ−1φs(xα, tα, sα) − η

)
∈ D−u(yα, sα), (16)(

Dxφ(xα, tα, sα) + θqα − (θ − 1)pα, φt (xα, tα, sα) − θη
) ∈ D+u(xα, tα), (17)

By the definition of L , we see as usual in viscosity solutions theory thatmax{|pα|, |qα|}
≤ L . Sending α → ∞ in (15)–(17) along an appropriate sequence, we find points
p̂, q̂ ∈ BL such that

p̂ ∈ D+v0(x̂), (18)(
q̂, −θ−1φs(x̂, t̂, ŝ) − η

)
∈ D−u(x̂, ŝ), (19)(

Dxφ(x̂, t̂, ŝ) + θ q̂ − (θ − 1) p̂, φt (x̂, t̂, ŝ) − θη
) ∈ D+u(x̂, t̂), (20)

where D± stand for the closures of D±, for instance, D
+

u(x̂, ŝ) denotes the set
of points (q, b) ∈ R

n × R for which there are sequences {(q j , b j )} j ⊂ R
n × R

and {(x j , s j )} j ⊂ Q such that lim j (q j , b j , x j , s j ) = (q, b, x̂, ŝ) and (q j , b j ) ∈
D+u(x j , s j ) for all j . Here recall that φs(x̂, t̂, ŝ) = 0, φt (x̂, t̂, ŝ) = φ0,t (x̂, t̂) and
Dxφ(x̂, t̂, ŝ) = Dxφ0(x̂, t̂).

From (18) and (19), we get H(x̂, p̂ ) ≤ 0 and

−η + H(x̂, q̂ ) ≥ 0.

By condition (A6)+, we get

H(x̂, p̂ + θ(q̂ − p̂)) ≥ θη + ψ. (21)

From (20), we get

0 ≥ φ0,t (x̂, t̂) − θη + H(x̂, Dxφ0(x̂, t̂) + θ q̂ − (θ − 1) p̂). (22)

Noting that | p̂ + θ(q̂ − p̂)| ≤ (1+ 2θ)L ≤ R and |Dxφ0(x̂, t̂)+ θ q̂ − (θ − 1) p̂| ≤ L
because of (20) and combining (22) and (21), we get
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0 ≥ φ0,t (x̂, t̂ ) − θη + H(x̂, p̂ + θ(q̂ − p̂)) − ωH,R(|Dxφ0(x̂, t̂ )|)
≥ φ0,t (x̂, t̂ ) − ωH,R(|Dxφ0(x̂, t̂ )|) + ψ,

which shows that (14) holds. ��

2.1.3 Completion of the proof of Theorem 4 under (A6)+

We set

w∞(x) = lim sup
t→∞

w(x, t) for all x ∈ R
n .

Lemma 8 We have

w∞(x) ≤ 0 for all x ∈ R
n .

Moreover, the convergence

lim
t→∞max{w(x, t), 0} = 0 (23)

is uniform in x ∈ R
n.

Proof It is sufficient to prove that the convergence (23) holds uniformly in x ∈ R
n .

Contrary to this, we suppose that there is a sequence (x j , t j ) ∈ Q such that
lim j→∞ t j = ∞ and w(x j , t j ) ≥ δ for all j ∈ N and some constant δ > 0. In
view of the periodicity of w, we may assume that lim j→∞ x j = y for some y ∈ R

n .
Moreover, in view of the Ascoli–Arzela theorem, we may assume by passing to a
subsequence of {(x j , t j )} if needed that

lim
j→∞ w(x, t + t j ) = f (x, t) locally uniformly inRn × (−∞,+∞),

for some bounded function f ∈ Lip(Tn × R).
Now, note that f (y, 0) ≥ δ. By the stability of the subsolution property under

uniform convergence, we see that f is a subsolution of

min{ f (x, t), ft (x, t) − ωH,R(|Dx f (x, t)|) + ψ} ≤ 0 inRn+1. (24)

Since f ∈ C(Tn × R) and f is bounded on R
n+1, for every ε > 0 the function

f (x, t)− εt2 attains a maximum over Rn+1 at a point (xε, tε). Observe as usual in the
viscosity solutions theory that

f (xε, tε) − εt2ε ≥ f (y, 0) ≥ δ,

and therefore

f (xε, tε) ≥ δ and ε|tε| ≤ (ε‖ f ‖∞)1/2.
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In particular, we have limε→0+ εtε = 0. In view of inequality (24), we get

2εtε − ωH,R(0) + ψ ≤ 0,

which, in the limit as ε → 0+, yields ψ ≤ 0, a contradiction. This shows that the
uniform convergence (23) holds.

Proof of Theorem 4 under (A6)+ Let w be the function defined by (3), with arbitrary
(η, θ) ∈ (0, η0) × (0, θ0).

Fix any ε > 0. Thanks to (23), we may choose a constant Tε ≡ Tε,η,θ > 0 so that
for any t ≥ Tε,

w(x, t) ≤ ε for all x ∈ R
n .

Let t ≥ Tε and x ∈ R
n . From the above, for any s ≥ t , we have

u(x, t) − v0(x) ≤ ε + θ(u(x, s) − v0(x)) + θη(s − t)

= ε + u(x, s) − v0(x) + (θ − 1)(u(x, s) − v0(x)) + θη(s − t)

≤ ε + u(x, s) − v0(x) + (θ − 1)C0 + θη(s − t).

Thus, for any 0 ≤ s ≤ 1, we have

u(x, t) ≤ u(x, t + s) + (θ − 1)C0 + θη + ε. (25)

Now, since u is bounded and Lipschitz continuous in Q, in view of the Ascoli–
Arzela theorem, we may choose a sequence τ j → ∞ and a bounded function z ∈
Lip(Tn × (−∞,+∞)) so that

lim
j→∞ u(x, t + τ j ) = z(x, t) locally uniformly on R

n+1. (26)

By (25) we get

z(x, t) ≤ z(x, t + s) + (θ − 1)C0 + θη + ε for all (x, t, s) ∈ R
n+1 × [0, 1].

This is valid for all (η, θ) ∈ (0, η0) × (1, θ0). Hence,

z(x, t) ≤ z(x, t + s) + ε for all (x, t, s) ∈ R
n+1 × [0, 1],

and moreover

z(x, t) ≤ z(x, t + s) for all (x, t, s) ∈ R
n+1 × [0, 1]. (27)

Thus we find that the function z(x, t) is nondecreasing in t ∈ R for all x ∈ R
n . From

this, we conclude that

lim
t→∞ z(x, t) = u∞(x) uniformly on R

n (28)

for some function u∞ ∈ Lip(Tn).
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Fix any δ > 0. By (28) there is a constant τ > 0 such that

‖z(·, τ ) − u∞‖L∞(Rn) < δ,

Then, by (26) there is a j ∈ N such that

‖z(·, τ ) − u(·, τ + τ j )‖∞ < δ.

Hence,

‖u(·, τ + τ j ) − u∞‖∞ < 2δ.

By the contraction property (Theorem 2), we see that for any t ≥ τ + τ j ,

‖u(·, t) − u∞‖∞ ≤ ‖u(·, τ + τ j ) − u∞‖∞ < 2δ,

which completes the proof.

2.2 Under assumption (A6)−

In addition to (A1)–(A5), we assume throughout this subsection that (A6)− holds.
To accommodate the previous w to (A6)−, we modify and replace it by the new

function, which we denote by the same symbol, given by

w(x, t) = max
0≤s≤t

(u(x, t) − v0(x) − θ(u(x, s) − v0(x) − η(s − t)),

where (η, θ) is chosen arbitrarily in (0, η0) × (1, θ0) and the constants η0 and θ0 are
those from (A6)−.

Lemma 9 We have

−C0(θ − 1) ≤ w(x, t) ≤ C0 for all (x, t) ∈ Q.

Proof Recall that 0 ≤ u(x, t) − v0(x) ≤ C0 for all (x, t) ∈ Q, and note that for all
(x, t) ∈ Q,

w(x, t) ≥ u(x, t) − v0(x) − θ(u(x, t) − v0(x)) = (1 − θ)(u(x, t) − v0(x))

≥ −C0(θ − 1)

and

w(x, t) ≤ max
0≤s≤t

(u(x, t) − v0(x)) ≤ C0.

��
We have the following proposition similar to Proposition 6.
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Proposition 10 The function w is a subsolution of

min{w(x, t), wt (x, t)−ωH,R(|Dxw(x, t)|)+ψ} ≤ 0 in (x, t)∈R
n × (T, ∞), (29)

where ψ = ψ(θ, η) > 0 is the constant from (A6)−, T := C0/η and R := (2θ0+1)L.

Since the proof of the above proposition is very similar to that of Proposition 6, we
present just an outline of it.

Outline of proof Note that for any (x, t) ∈ R
n × (T, ∞) and s ∈ [0, t − T ),

u(x, t)−v0(x)−θ(u(x, s)−v0(x)−η(s−t)) ≤ C0−θη(t−s)

< C0− θηT =−(θ−1)C0. (30)

Hence, in view of Lemma 9, for any (x, t) ∈ R
n × (T, ∞) we have

w(x, t) = max
t−T ≤s≤t

[u(x, t) − v0(x) − θ(u(x, s) − v0(x) − η(s − t))]
= max−T ≤s≤0

[u(x, t) − v0(x) − θ(u(x, s + t) − v0(x) − ηs)].

From this latter expression of w, as the functions u and v0 are Lipschitz continuous in
Q and Rn , respectively, we see that w is Lipschitz continuous in Rn × [T, ∞). Also,
from (30) we see that for any (x, t) ∈ R

n × (T, ∞), if

w(x, t) = u(x, t) − v0(x) − θ(u(x, s) − v0(x) − η(s − t))

for some 0 ≤ s ≤ t , then s ≥ t − T > 0.
To see that (29) holds, we fix any test function φ0 ∈ C1(Rn × (T, ∞)) and assume

that w − φ0 attains a strict maximum at a point (x̂, t̂).
Following the same arguments as in the proof under (A6)+, we are led to the

inclusions
⎧⎨
⎩

p̂ ∈ D+v0(x̂),(
q̂, η

) ∈ D−u(x̂, ŝ),(
Dxφ0(x̂, t̂) + θ q̂ − (θ − 1) p̂, φ0,t (x̂, t̂) + θη

) ∈ D+u(x̂, t̂)
(31)

for some p̂, q̂ ∈ R
n .

Using (31), we observe that H(x̂, p̂) ≤ 0 and η+H(x̂, q̂) ≥ 0. Hence, by condition
(A6)−, we get

H(x̂, p̂ + θ(q̂ − p̂)) ≥ −θη + ψ.

Moreover, we compute that

0 ≥ φt (x̂, t̂, ŝ) + θη + H(x̂, Dxφ(x̂, t̂, ŝ) + θ q̂ − (θ − 1) p̂)

≥ φ0,t (x̂, t̂) + θη − ωH,R(|Dxφ0(x̂, t̂)|) + H(x̂, θ q̂ − (θ − 1) p̂)

≥ φ0,t (x̂, t̂) − ωH,R(|Dxφ0(x̂, t̂)|) + ψ.
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Note that, as above, | p̂ + θ(q̂ − p̂)| ≤ R and |Dxφ0(x̂, t̂) + θ q̂ − (θ − 1) p̂| ≤ L .

This completes the proof. ��
Outline of proof of Theorem 4 under (A6)− Using Proposition 10 and arguing as the
proof of Lemma 8, we deduce that

lim
t→∞max{w(x, t), 0} = 0 uniformly in R

n .

We fix any ε > 0 and choose a constant Tε ≡ Tε,η,θ > T so that for any t ≥ Tε,

w(x, t) ≤ ε for all x ∈ R
n .

Let t ≥ Tε and x ∈ R
n . For any 0 ≤ s ≤ t , we have

u(x, t) − v0(x) ≤ ε + u(x, s) − v0(x) + (θ − 1)C0 + θη(t − s).

We may assume that Tε > 1, and from the above, for any 0 ≤ s ≤ 1, we have

u(x, t) ≤ u(x, t − s) + (θ − 1)C0 + θη + ε. (32)

Since u ∈ Lip(Tn × (0,∞)) and it is bounded in Q, the Ascoli–Arzela theorem
assures that there is a sequence {τ j } j∈N ⊂ (0,∞) diverging to infinity such that for
some function z ∈ Lip(Tn × R),

lim u(x, t + τ j ) = z(x, t) locally uniformly in R
n+1.

We see immediately from (32) that the function z(x, t) is nonincreasing in t for every
x . Furthermore, we infer that for some function u∞ ∈ C(Tn),

lim
t→∞ z(x, t) = u∞(x) uniformly in R

n .

As exactly under (A6)+, we deduce from this that

lim
t→∞ u(x, t) = u∞(x) uniformly in R

n,

which completes the proof.

3 Conditions (A6)±

First of all we restate the conditions (A6)± in [3] as (A)±:
(A)+ There exists η0 > 0 such that, for any η ∈ (0, η0), there exists ν = ν(η) > 0
such that for all x, p, q ∈ R

n and θ > 1, if H(x, q) ≥ η and H(x, p) ≤ 0, then

H(x, p + θ(q − p)) ≥ θ H(x, q) + ν(θ − 1).
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Fig. 1 Hamiltonian satisfying
(A6)+ and not (A)+

(A)− There exists η0 > 0 such that, for any η ∈ (0, η0), there exists ν = ν(η) > 0
such that for all x, p, q ∈ R

n and λ ∈ [0, 1], if H(x, q) ≤ −η and H(x, p) ≤ 0, then

H(x, (1 − λ)p + λq) ≤ λH(x, q) − νλ(1 − λ).

Conditions (A6)± and (A)± can be considered as a sort of strict convexity require-
ments on the function H(x, p) in p near the points where H vanishes ((A6)+ and (A)+
are the ones for those points (x, p) where H(x, p) ≥ 0, while (A6)− and (A)− are for
those points where H ≤ 0).

The condition (H4) in [5] has a general feature more than (A)+ above, and its addi-
tional generality is in the point that includes the key assumption inNamah–Roquejoffre
[19]. If we push this point aside, then the condition (H4) in [5] is same as (A)+ above.

Now, we give comparison between (A6)+ and (A)+. Let η0, θ0 and ψ(η, θ) be
the positive constants from (A6)+. Note that the key inequality in (A6)+ holds with
ψ(η, θ) replaced by min{ψ(η, θ), 1}. Thus, the behavior of the function H where the
value of H is large (larger than η0θ0 + 1), is irrelevant to condition (A6)+, while (A)+
requires a certain growth of the function H where its value is positive. The function
H on Rn (see Fig. 1) given by

H(p) = max{min{|p|2, 1}, |p|2/4}

satisfies (A2)–(A5) and (A6)+, as is easily checked. However, if p = 0, |q| = 1 and
1 < θ < 2, then we have

H(p + θ(q − p)) = H(θq) = 1 < θ = θ H(q).

Therefore, (A)+ does not hold with this Hamiltonian H(x, p) = H(p).
The difference of two conditions observed above is concerned with the behavior of

the Hamiltonian H(x, p) where H is large.
The following example shows that (A)+ is a stronger requirement on H than (A6)+

even in a neighborhood of the points (x, p) where H vanishes. In this regard, the
difference between two conditions is that the termψ(η, θ) in (A6)+ depends generally
on η, θ while the term ν(η)(θ − 1) in (A)+ depends linearly in θ − 1.
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Fig. 2 Function H0

We define the function H0 (see Fig. 2) and H in C(R) by

H0(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for p ≤ 0,
p + (p − 1)2 if p ≥ 1,
p/2 + 2(p − 1/2)2 if 1/2 ≤ p ≤ 1,

...
...

p/2 j+1 + 2 j+1
(

p − 1/2 j+1
)2

if 1/2 j+1 ≤ p ≤ 1/2 j ,
...

...

and

H(p) = |p + 1| − 1 + H0(p) + H0(−p − 1)

This Hamiltonian H satisfies (A2)–(A4), and the problem

H(u′(x)) = 0 in R and u ∈ C(T),

where u′ = du/dx , has a solution u(x) ≡ 0. Thus, (A5) is satisfied with our function
H . Moreover, it is easily seen that H satisfies (A6)+. However, H does not satisfy
condition (A)+. To check this, fix any j ∈ N and choose p = 0 and q = 1/2 j+1. Note
that

H(q) = 1

2 j+1 + 1

22 j+2 ,

and that for any θ ∈ (1, 2), we have 1/2 j+1 < θq < 1/2 j and

H(θq) = θ

2 j+1 + θ

22 j+2 + 2 j+1
(

θ

2 j+1 − 1

2 j+1

)2

= θ H(q) + (θ − 1)2

2 j+1 .

Hence,

H(θq) − θ H(q) = o(θ − 1) as θ → 1+,
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which violates the inequality in (A)+. Note finally that q = 1/2 j+1 can be taken as
close to p = 0 as we wish.

Next, we show that if H ∈ C(Tn × R
n) satisfies (A)−, then it satisfies (A6)−.

For this, let H ∈ C(Tn × R
n) satisfy (A6)−. Let η0 > 0 be the constant and ν the

function on (0, η0) given by (A)−.
Fix any η ∈ (0, η0) and θ > 1, and set λ = θ−1 ∈ (0, 1). Let x, p, q ∈ R

n and
assume that H(x, p) ≤ 0 and H(x, q) ≥ −η. Set

ψ = ψ(η, θ) := (θ − 1)min{θ−1ν(η), η} = min{(1 − λ)ν(η), (θ − 1)η}. (33)

It is enough to show that

H(x, p + θ(q − p)) ≥ −θη + ψ. (34)

To the contrary, we suppose that

H(x, p + θ(q − p)) < −θη + ψ. (35)

Set r = p + θ(q − p) and note that q = λr + (1− λ)p. Note by the choice of ψ that

H(x, r) < −θη + (θ − 1)η = −η.

Hence, using (A)−, (34) and (33), we deduce that

H(x, q)= H(x, λr +(1−λ)p)≤λH(x, r)−ν(η)λ(1−λ)<λ(− θ+ψ)−ψλ=−η.

This is a contradiction, which shows that (34) holds.
Now, let H ∈ C(Tn × R

n) satisfy (A6)+, and we show that for each x ∈ R
n the

sublevel set {p ∈ R
n : H(x, p) ≤ 0} is convex.

To do this, we fix any x ∈ R
n and let p1, p2 ∈ K := {p ∈ R

n : H(x, p) ≤ 0}. We
need to show that

λp1 + (1 − λ)p2 ∈ K for all λ ∈ [0, 1]. (36)

We suppose that this is not the case and will get a contradiction.
Let η0 > 0 and θ0 > 0 be the constants from (A6)+. Then, setting

λ0 = sup{λ ∈ [0, 1] : λp1 + (1 − λ)p2 
∈ K },

we have

λ0 p1 + (1 − λ0)p2 ∈ K by the continuity of H.

By the definition of λ0, we may select a λ ∈ (0, λ0) so that

λp1 + (1 − λ)p2 
∈ K and λθ0 > λ0.
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Fig. 3 Hamiltonian satisfying
(A6)− and not (A)−

Set

q : = λp1 + (1 − λ)p2 = p2 + λ(p1 − p2),

θ : = λ0/λ ∈ (1, θ0),

and note that H(x, q) > 0. Fix an 0 < η < η0 so that H(x, q) ≥ η, and use condition
(A6)+, to get

H(x, p2 + θ(q − p2)) > θη > 0,

and moreover,

0 < H(x, p2 + θ(q − p2)) = H(x, λ0 p1 + (1 − λ0)p2) ≤ 0.

This is a contradiction.
An argument similar to the above guarantees that if H ∈ C(Tn × R

n) satisfies
(A6)−, then the sublevel set {p ∈ R

n : H(x, p) < 0} is convex for every x ∈ R
n . We

leave it for the interested reader to check this convexity property.
The following example of H(x, p) = H(p) explicitly shows that condition (A)−

is more stringent than (A6)−. Define the functions f, g ∈ C(R) by

f (p) =

⎧⎪⎨
⎪⎩
0 if p ≤ 0 or p ≥ 1,

−p/2 if 0 ≤ p ≤ 1/2,

−(p − 1)2 if 1/2 ≤ p ≤ 1,

g(p) = −p +
∞∑

k=1

2−k f (2k p),

and then H ∈ C(R) (see Fig. 3) by

H(p) = max{g(p), g(1 − p)}.

We do not give the detail, but observing that in the py plane, for each slope m < 0,
the half line y = mp, p > 0, meets the graph y = H(p) at exactly one point, we
can deduce that the function H satisfies (A6)−. On the other hand, setting p = 0 and
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q = 1/2k , with k ∈ N, observing that if 1
2 ≤ λ ≤ 1, then 1/2k+1 ≤ λq ≤ 1/2k and

that for any 1
2 ≤ λ ≤ 1,

H(λq) = −k + 1

2k+1 − (λ − 1)2

2k
,

and hence,

H(q) = −k + 1

2k+1 ,

H(λq) = λH(q) − (λ − 1)2

2k
,

we may deduce that (A)− does not hold with the current function H .
Next, we remark that under hypotheses (A2)–(A4), conditions (A6)+ and (A6)− are

equivalent to the following (A7)+ and (A7)−, respectively.
(A7)+ There exist constants η0 > 0 and θ0 > 1 such that for all (η, θ) ∈ (0, η0) ×
(1, θ0), x, p, q ∈ R

n , if H(x, p) ≤ 0 and H(x, q) ≥ η, then

H(x, p + θ(q − p)) > ηθ.

(A7)− There exist constants η0 > 0 and θ0 > 1 and for all (η, θ) ∈ (0, η0) × (1, θ0),
x, p, q ∈ R

n , if H(x, p) ≤ 0 and H(x, q) ≥ −η, then

H(x, p + θ(q − p)) > −ηθ.

Indeed, it is clear that (A6)± imply (A7)±, respectively. On the other hand, assuming
that (A7)+ holds, choosing R > 0 so large that

H(x, p) > η0θ0 if |p| > R,

where η0 > 0 and θ0 > 1 are the constants from (A7)+, and setting

ψ(η, θ) = min{H(x, p + θ(q − p)) − θη : x ∈ T
n, H(x, p) ≤ 0, H(x, q) ≥ η}

for any (η, θ) ∈ (0, η0)(1, θ0) we observe that ψ(η, θ) is positive and satisfies

H(x, p + θ(q − p)) ≥ ηθ + ψ(η, θ)

for all (x, p, q) ∈ R
3n such that H(x, p) ≤ 0 and H(x, q) ≥ η, which shows that

(A6)+ holds. Similarly, we see that (A7)− implies (A6)−.
Finally,we remark that under (A2)–(A4), conditions (A6)+ and (A6)− are equivalent

to the following (A8)+ and (A8)−, respectively.
(A8)+ There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) = 0 and
H(x, q) = η, then
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Fig. 4 Position of p, q, qλ, etc

H(x, p + θ(q − p)) ≥ ηθ + ψ.

(A8)− There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) = 0 and
H(x, q) = −η, then

H(x, p + θ(q − p)) ≥ −ηθ + ψ.

It is clear that (A6)± imply (A8)+, respectively.
We next show that (A8)+ implies (A7)+, which is equivalent to (A6)+. We leave it

to the reader to check that (A8)− implies (A7)−.
Let η0 and θ0 be the constants from (A8)+. We may assume, by replacing θ0 by a

smaller one if needed, that θ0 < 2.
Fix any0 < η < η0/2 and (x, p, q) ∈ R

3n such that H(x, p) ≤ 0 and H(x, q) ≥ η.
It is enough to show that for all 1 < θ < θ0,

H(x, p + θ(q − p) > θη. (37)

We assume for contradiction that (37) does not hold. We set

� = {θ ∈ (1, θ0) : H(x, p + θ(q − p)) ≤ θη}.

Note by the above assumption that � 
= ∅ and set θ̂ := inf �. It is clear that 1 ≤ θ̂ <

θ0, H(x, p + θ̂ (q − p)) = θ̂η since H(x, q) ≥ η and H(x, p + θ(q − p)) > θη if
1 < θ < θ̂ .

In what follows, we write H(r) := H(x, r) and qθ = p+θ(q − p) for 0 ≤ θ < θ0.
We fix a λ ∈ [0, 1) so that H(p + λ(q − p)) = 0. Note that H(qλ) = 0.

Consider the case where θ̂ = 1. In this case we have q
θ̂

= q and H(q) = η. By
(A8)+, we get

H(qλ + ρ(q − qλ)) > ρη for all ρ ∈ (1, θ0). (38)
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Noting that

qλ + ρ(q − qλ) = p + λ(q − p) + ρ(q − p − λ(q − p))

= p + (λ + (1 − λ)ρ)(q − p),

from (38) we get

H(p + (λ + (1 − λ)ρ)(q − p)) > ρη ≥ (λ + (1 − λ)ρ)η for all ρ ∈ (1, θ0),

which implies that�∩(1, λ+(1−λ)θ0) = ∅. This ensures that θ̂ ≥ λ+(1−λ)θ0 > 1,
which contradicts that θ̂ = 1.

Consider next the casewhere θ̂ > 1 (seeFig. 4).Recall that H(q
θ̂
) = θ̂η < 2η < η0

and H(qθ ) > θη for all θ ∈ (1, θ̂ ). Setting ηθ := H(qθ ), we observe that if 1 < θ < θ̂

is close to θ̂ , then θη < ηθ < η0. For any such θ , by (A8)+, we get

H(qλ + ρ(qθ − qλ)) > ρηθ for all ρ ∈ (1, θ0). (39)

Note that qλ + ρ(qθ − qλ) = p + (λ + ρ(θ − λ))(q − p). We select ρ̂ so that
θ̂ = λ + ρ̂(θ − λ) or, equivalently, ρ̂ = (θ̂ − λ)/(θ − λ). Since θ is assumed to be
close enough to θ̂ , we may assume that ρ̂ ∈ (1, θ0). Thanks to (39), we get

θ̂η = H(q
θ̂
) = H(qλ + ρ̂(qθ − qλ)) > ρ̂ηθ >

θ̂ − λ

θ − λ
ηθ.

Thus,we get θ̂ (θ−λ) > θ(θ̂−λ) or, equivalently,λ(θ̂−θ) < 0. This is a contradiction.
We thus see that (A8)+ implies (A7)+.

4 A generalization of (A6)±

We recall that the following conditions on the Hamiltonian H ∈ C(Tn ×R
n) has been

introduced by Namah–Roquejoffre [19] in their study of the large time asymptotic
behavior of solutions of (CP).

(NR1) The function H(x, p) is convex in p ∈ R
n for every x ∈ R

n .
(NR2) minp∈Rn H(x, p) = H(x, 0) for all x ∈ R

n .
(NR3) maxx∈Rn H(x, 0) = 0.
(NR4) limr→∞ inf{H(x, p) : (x, p) ∈ T

n × R
n, |p| ≥ r} = ∞.

Assume for the moment that H ∈ C(Tn × R
n) satisfies (NR3). Then the function

v(x) ≡ 0 solves in the classical sense

H(x, Dv(x)) = H(x, 0) in R
n .

Here, if H(x, 0) < 0 for some points x , then v is a “strict” subsolution of H(x, Du) =
0 in the set {x ∈ R

n : H(x, 0) < 0}.
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We take this observation into account and modify conditions (A6)± as follows.
The new conditions depend on our choice of a subsolution v0 of (1), which plays the
same role as the function v0 in the proof of Theorem 4. As we have already noted in
Remark 1, the function v0 in the proof of Theorem 4 is needed to be just a subsolution
of (1) and the outcome may depend on our choice of v0. Now we fix a subsolution
v0 ∈ C(Tn) of (1) and choose a nonnegative function f ∈ C(Tn) so that v0 is a
subsolution of

H(x, Dv0(x)) ≤ − f (x) in R
n .

(A9)+ There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) ≤ − f (x) and
H(x, q) ≥ η, then

H(x, p + θ(q − p)) ≥ ηθ + ψ.

(A9)− There exist constants η0 > 0 and θ0 > 1 and for each (η, θ) ∈ (0, η0)× (1, θ0)
a constant ψ = ψ(η, θ) > 0 such that for all x, p, q ∈ R

n , if H(x, p) ≤ − f (x) and
H(x, q) ≥ −η, then

H(x, p + θ(q − p)) ≥ −ηθ + ψ.

The same proof as that of Theorem 4 yields the following proposition. We do not
repeat its proof here, and leave it to the reader to check the detail.

Theorem 11 The assertion of Theorem 4, with (A9)± in place of (A6)±, holds.

In the following, we show that if H ∈ C(Tn × R
n) satisfies (NR1)–(NR3), then

(A9)− holds.
We choose v0 to be the function v0(x) ≡ 0. This function v0 satisfies

H(x, Dv0(x)) = H(x, 0) = − f (x) for all x ∈ R
n,

where f (x) := −H(x, 0).
Fix any x, p, q ∈ R

3n, η > 0 such that H(x, p) ≤ − f (x) and H(x, q) ≥ −η. To
prove that (A9)− holds with f (x) = −H(x, 0), it is enough to show that there is a
constant ψ(η, θ) > 0 such that

H(x, p + θ(q − p)) ≥ −θη + ψ(η, θ).

Since

H(x, p) ≤ − f (x) = H(x, 0) = min
r∈Rn

H(x, r),
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we have H(x, p) = − f (x) = H(x, 0). Fix any θ > 1. By the convexity of H , we
have

H(x, p + θ(q − p)) ≥ H(x, p) + θ(H(x, q) − H(x, p))

= − f (x) + θ(−η + f (x)) = −θη + (θ − 1) f (x),

while we have

H(x, p + θ(q − p)) ≥ H(x, 0) = − f (x) = −θη + (θη − f (x)).

Setting

ψ(η, θ) = min
x∈Tn

max{(θ − 1) f (x), θη − f (x)},

we observe that ψ(η, θ) > 0 and

H(x, p + θ(q − p)) ≥ −θη + ψ(η, θ).

Thus, H satisfies (A9)−.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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